
DSC 204A: Scalable Data Systems

Winter 2024

1

https://hao-ai-lab.github.io/dsc204a-w24/

Foundations of Data Systems

Cloud

Machine Learning Systems

Big Data



2

Data indexes

• Straw-man design (bash script, get, set, append-only)

• Fast write 

• Slow read

• Large storage space.

• Hash table (all keys in the memory, all values on the disk, background 

compaction)

• Fast write & read

• Less storage space

• All keys need to fit in memory. 

• SSTable

• Segments are sorted

• Index is sparse and small

• Compaction is based on merge sort

• But how to get the segments sorted in first place?



3

How do you get your data to be sorted 

by key in the first place?



4

LSMTable: Augment SSTable with MemTable

• Easier to manipulate data in memory than disk.

• Why?

• Maintain a sorted data structure in memory. 



5

Self-balanced trees

• Any node-based binary search tree that automatically keeps its 

height (maximal number of levels below the root) small in the 

face of arbitrary item insertions and deletions.

• E.g., Red-black trees or AVL trees

• Height O(log n)



6

AVL v.s Binary Search Tree



7

How a LSM (Log-structured merged-tree) storage engine 

works

• Write:

• When a write comes in, add it to the memtable.

• If the memtable > a threshold, save the memtable as the 

most recent segment.

• Read:

• Check if the key in the memtable.

• Then go through the segments.

• Background:

• Merge and compact.

• Merge Sort



8

One issue of LSM

•What will happen if we want to look up keys 

that do not exist in the database?

•Check the memtable

•Check the segments all the way back to the 

oldest

•Optimization: 

•Use a bloom filter to test whether a key exist. 



•A space efficient probabilistic data structure

•It can test whether an element is a member of a 

set. 

•Computation: O(k) and Space: O(m).

•Cost: probabilistic?

•False positive: 

•It might tell that an element is a member of a set 

while it is not. 

9

Bloom filters

Initialization (m):

Three hashing functions (k): h1, h2, h3



10

Bloom filters (read and write)

h1(“geeks”) % 10 = 1

h2(“geeks”) % 10 = 4

h3(“geeks”) % 10 = 7

h1(“nerd”) % 10 = 3 

h2(“nerd”) % 10 = 5 

h3(“nerd”) % 10 = 4

A set of words: {“geeks”, “nerd”}



11

Bloom filters - False positive

h1(“geeks”) % 10 = 1

h2(“geeks”) % 10 = 4

h3(“geeks”) % 10 = 7

h1(“nerd”) % 10 = 3 

h2(“nerd”) % 10 = 5 

h3(“nerd”) % 10 = 4

h1(“cat”) % 10 = 1 

h2(“cat”) % 10 = 3 

h3(“cat”) % 10 = 7



12

B-tree 

Self-balanced BST
B-Tree



13

B-tree (Will not be in Exam)

B-Tree

• Corresponds more closely to the underlying 

hardware, as disks are also arranged in fixed-

size blocks. 

• Root = kept in main memory. 

• Loaded into memory when needed. 

• Not append only.

• Search for the leaf page containing the 

target key

• Change the value in that page

• Write the page back to disk. 

• Do not change the references. 



18

Trends: In-memory database

Why so much complexity?

• Magnetic Disks and SSDs are awkward to deal with. 

• Slow, Do not support random address access. 

• But they are durable/persistent and cheap. 

Hardware trends

• RAM becomes cheaper and larger. 

• Battery powered RAM. 

Notable In-memory database implementation

• Memcached, Memsql, Oracle TimesTen, Redis

Advantages

• Not because disk is slower. 

• Modern OSs do caching well. 

• Reason 1: data serialization is eliminated

• Data representations in the memory and the disk

• Reason 2: Simpler implementations. 

• Cost: Disk < Memory < Developers (you?)



Next

• File system

• Database

• Data Warehouse and Column Storage



20

Data Warehouse and Column Storage

• OLTP v.s. OLAP

• Data warehousing

• Schemas for Analytics

• Column-oriented storage

• Data cubes and materialized views



21

CRUD



22

Database transactions

• Make sale

• Place an order

• Pay an employee’s salary

• Comment a blog post

• Act in games

• Add/remove contract to an address book

Online transaction processing (OLTP)



23

Walmart Beer and Diaper (1988)

Forbes 1988

https://www.forbes.com/forbes/1998/0406/6107128a.html?sh=2574a9316260

• Unexpected correlation:

• Sales of diapers and beer



24

Data analytics

• What was the total revenue of each of our stores in Jan?

• How many more bananas that usual did we sell during our 

latest data? 

• Which brand of baby food is most often purchased together 

with brand X diapers?

Online analytic processing (OLAP)



25

OLTP v.s. OLAP



26

OLTP v.s. OLAP



27

Today’s topic

• OLTP v.s. OLAP

• Data warehousing

• Schemas for Analytics

• Column-oriented storage



28

Transaction systems are complex.

Elon Musk's Twitter System Design Diagram Explained

https://www.youtube.com/watch?v=_Y5aGCOkymQ



29

Transaction systems need to be highly available.

https://twitter.com/alexxubyte/status/1594008281340530688

• Low latency.

• Highly available. 

• Ad hoc analytic queries are expensive.

https://twitter.com/alexxubyte/status/1594008281340530688


30

Data warehouse

• A separate database that analysts can query to their hearts’ 

content, without affecting OLTP operations.

• Maintain a read-only copy for analytic purposes.

• Only exist in almost all large enterprises. 



31

Small companies?

https://www.levels.fyi/blog/scaling-to-millions-with-google-sheets.html



32

Extract-Transform-Load (ETL)

• Extract

• Periodica data dump

• Continuous streaming

• Transform

• Analysis-friendly schema

• Data cleaning

• Load into a data warehouse



33

Why data warehouse?

• Separation of concerns

• Performance (reliability, latency)

• Expertise requirement, management

• The indexes in last lecture (e.g., SSTable, B-tree) are good for 

reading and writing a single record.

• But are not good at answering analytic queries.



34

How do you interact with OLAP & OLTP

• SQL query interface 

• Select * from 

• “A database system can be considered mature when it has 

an SQL query interface”.

• Both OLAP and OLTP

• OLAP:

• More and more codeless user interfaces.

• Note: This is a big market of innovations



More Stories?

43B 73B

800M / ~30 persons400M


	Slide 1: DSC 204A: Scalable Data Systems Winter 2024
	Slide 2: Data indexes
	Slide 3: How do you get your data to be sorted by key in the first place?
	Slide 4: LSMTable: Augment SSTable with MemTable
	Slide 5: Self-balanced trees
	Slide 6: AVL v.s Binary Search Tree
	Slide 7: How a LSM (Log-structured merged-tree) storage engine works
	Slide 8: One issue of LSM
	Slide 9: Bloom filters
	Slide 10: Bloom filters (read and write)
	Slide 11: Bloom filters - False positive
	Slide 12: B-tree 
	Slide 13: B-tree (Will not be in Exam) 
	Slide 18: Trends: In-memory database
	Slide 19: Next
	Slide 20: Data Warehouse and Column Storage
	Slide 21: CRUD
	Slide 22: Database transactions
	Slide 23: Walmart Beer and Diaper (1988)
	Slide 24: Data analytics
	Slide 25: OLTP v.s. OLAP
	Slide 26: OLTP v.s. OLAP
	Slide 27: Today’s topic
	Slide 28: Transaction systems are complex.
	Slide 29: Transaction systems need to be highly available.
	Slide 30: Data warehouse
	Slide 31: Small companies?
	Slide 32: Extract-Transform-Load (ETL)
	Slide 33: Why data warehouse?
	Slide 34: How do you interact with OLAP & OLTP
	Slide 35: More Stories?

