Where We Are

Machine Learning Systems

Big Data 2010 - Now

Cloud 2000 - 2016

Foundations of Data Systems 1980 - 2000

Weak and Strong Scaling

Runtime speedup (fixed data size) Runfime scaleup

Linear

Speedup Linear Scaleup

5 |
4 E Sublinear E

Sublinear U0 >caleup
1 Speedup
1 4 3 12 1 4 3 12
Numlber of workers Factor (# workers, data size)

Speedup plot / Strong scaling Scaleup plot / Weak scaling

Q: Is superlinear speedup/scaleup ever possiblee

Discussion: Is superlinear speedup/scaleup possiblee

12 5 2
Linear .
8 speedup . Linear Scaleup
. 1
4 : Sublinear E
| : 0.5 Scaleup
Sublinear ’
1 Speedup !

1 4 3 12 1 4 3 12
Number of workers Factor (# workers, data size)

Some Clarifications on Terms

Completion fime given only 1 worker
Speedup =
Completion time given n (>1) workers

®* These tferms almost all refer to the above, but they are slightly different
* Speedup, acceleration -> strong scaling
* Scaling, scale-up -> weak scaling
¢ Scalability -> both
* “system A is very scalable”
* When you add 1 more workers, the speedup increase by ~1
® “system A is more scalable than system B”

* When you add 1 more worker, the speedup of system A is larger than that
of system B

ldle Times In Task Parallelism

Due to varying task completion fimes and varying degrees of
oarallelism in workload, idle workers waste resources

Gantt Chart visualization of
schedule:

Given 3
]O workers Wi: T1 T1 | T4 6 T6

w2: (T2 15 T5 T5 \TS
s GO
S W3: T3 T3 T3

Y Y 15 0 5 10 15 20 5/ 30 35

DO
O |dle times, or
\ "obubbles”

D

Example:

ldle Times In Task Parallelism

Due to varying task completion fimes and varying degrees of
oarallelism in workload, idle workers waste resources

Example: * In general, overall workload’s

Given 3 completion time on task-parallel
WOTIKETrS setup is always lower bounded by

the longest path in the task graph

o Possibility: A task-parallel scheduler
can “release” a worker If It knows
that will be 1dle till the end

« Can saves costs In cloud

Calculating Task Parallelism Speedup

Due to varying task completion fimes and varying degrees of

parallelism in workload,

Example:

Given 3
] () WOrKers

dle workers waste resources

Completion time 10+5+15+5+
with 1 worker 20+10 = 65

@ oo Parallel completion time 39
5

| | 15

DO
S

D

Speedup = 65/35 = 1.9x

ldeal/linear speedup Is 3x
Q: Why is it only 1.9x¢

Today's topic: Parallelism

® Express data processing in abstraction
®* Parallelisms

* Task parallelism

* Data parallelism

®* Parallel Processing Chips

Recall: Data parallelism in ML (Lecture 10)

Data@ m Worker 1 Worker 2 m @ Data

Data
@ ./VVorker3 Workerji @ Data

U+l — o) 1 ¢ Z V(W Dg))
=

10

Data parallelism: abstraction of SIMD/SIMT/SPMD

Q: How to represent data parallelism in dataflow graph notionse

Given 3
° workers
‘ D H® H® &

[[

DO E| WEREERee

D2 D3

11

Data parallelism is bullt in with foday’s Processors

e Recall Lecture 2:

« Modern computers often have multiple processors and multiple cores

per processor, with a hierarchy of shared caches

= Controller |

including
Display;
DMI and
Misc, 1/0

Processor 0

Cora 0

Coro 1

Processor 1

CPU

CPU

Cora 2

Core 3

CPU

CPU

L1 Cache L1 Cache

L1 Cache L1 Cache

L2 Cache

L2 Cache

L=l

System Memory

12

Single-Instruction Multiple-Data

SIMD

Data Pool

.

Instruction Pool

+
C
D
| -
@)
)
a
>

Al +
] +
A | +
-

Example for SIMD in data science:

Scalar Operation \

SIMD Operation of
Vector Length 4
AH BH CK
A B C
Y + |V — Y
AI ._I_B Cz

Intel” Architecture currently has SIMD
operations of vector length 4, 8, 16

SIMD Generalizations

* Single-Instruction Multiple Thread (SIMT): Generalizes notfion of SIMD to
different threads concurrently doing so

* Fach thread may be assigned a core or a whole PU

* Single-Program Multiple Data (SPMD): A higher level of abstraction
generalizing SIMD operations or programs

* Under the hood, may use multiple processes or threads
* Fach chunk of data processed by one core/PU

* Applicable to any CPU, not just vectorized PUs

* Most common form of parallel data processing at scale

Quantifying Efficiency of Data Parallelism

* As with task parallelism, we measure the speedup:

Completion time given only 1 core
Speedup =
Completion time given n (>1) core

Amdadahnl’s Law:

Q: But given n cores, can we get a speedup of n@

It depends! (Just like it did with task parallelism)

« Amdahl’'s Law: Formula to upper bound possible speedup

« A program has 2 parts: one that benefits from multi-core
parallelism and one that does nof

 Non-parallel part could be tor control, memory stalls, etc.

| core: N COres:

Tyes + 1 N(T +f
Tyes ——Tyes/N ™ N |)

Speedup =
Tho —— Tno Tyes/N + Tho n+f

enote Tyes/Tno — f

Amdadahnl’s Law:

Speedup

20

T
/
18 //
/ Parallel portion
16 / 50%
/ 75%
14 — e 90%
// —— 95%
12 /
i0 +~————7"——————— /— ————————————— e e I e e =
/ -
/ N
8 /T~
/ /./
6 /.
/7
VA4
4 +————— 2/————-”—'_—__.—_:.:.—..'-—--—--ﬁ-‘f-“m'"m""““*“"“‘“‘“"“‘“*""*""*"’""""'"’""
S
2 “z‘v/"_':‘:_—__;——-?-—-———
0
i N < o0 ({o AN < o0 O N < o0 O AN < 0 ©
i ™ (Lo N To) i N < ()] (o)) 0 O ™
= 8P g5 R 8 & 8§ 3
i (o) ({e

Number of processors

f = Tyes/Tno

Parallel portion =
f/(1+f)

Speedup =
Nn(1 + f)

N+ f

The Problem of Chip Design

If we're able to reduce 1o size
of ALU while keeping its power

That's why you see trends: 70nm -> 60nm -> 50nm -> ... -> what is the best now?¢

Problem: this is not substantiable; there are also power/heat issues when you put
more ALUS In

18

* That's why you see trends: 70nm -> 60nm -> 50nm -> ... -> what is the best nowe

1975 1980 1985 1990 1995 2000 2005 2010 2015

Frequency
(MHZz)

Typical Power
(Watts) ¢

Number of
Cores

That's why you see trends: /0nm ->

60nm > 50nm > ... > what
NOW?¢

s the best

Takeaway from hardware trends: it is
hard for general-purpose CPUs to
sustain FLOPs-heavy programis like

deep nefts
Motivated the rise of “acce

for some classes of program

erators”
S

|dea: How about we use a lot of weak/specialized cores

CpPU

20

Haraware Accelerators: GPUs

« Graphics Processing Unit (GPU): Taillored for matrix/tensor ops

« Basic idea: Use tons of ALUs (but weak and more specialized); massive

data parallelism (SIMD on steroids); now H100 offers ~980 TFLOPS for
FP16!

« Popularized by NVIDIA in early 2000s for video games, graphics, and
multimedia; now ubiquitous in DL

« CUDA released in 2007; later wrapper APIls on top: CuDNN, CuSparse,
CuDF (RapidsAl), NCCL, etc.

2]

Other Hardware Accelerators

| S e = ed @

» Tensor Processing Unit (TPU): o TIRULNT B ")
« An “application-specific integrated e 1 =
circuit” (ASIC) created by Google o gl =
in mid 2010s; used for AlphaGo j -

- B3

66866 |

5000

* Field-Programmable Gate Array
(FPGA):

« Configurable for any class of
orograms; ~0.5-3 TFLOPS but very
low power consumption

 Cheaper; new hardware-software
InNfegrated stacks for ML/DL

22

Comparing Modern Parallel Hardware

Peak FLOPS

Power
Consumption

Cost

Generality /

Flexibility

Fitness for
DL Training?

Fitness for
DL Inference?

Cloud Vendor

Support

Moderate High High
High Very High Very Low
Low High Very High

Highest Medium Very High
Poor Fit Best Fit Poor Fit
Moderate Moderate Good Fit
All All All

ASICs

(e.g., TPUs)

Very High

Low-Very Low

Highest

Lowest

Potential exists but
not mass market

Best Fit

GCP

httne /Anmaw emhedded com/levveraadina-fnaa<c-for-deean-learnina/

https://www.embedded.com/leveraging-fpgas-for-deep-learning/

Practice: Let’s fry reading the Latest Apple M3 Max

Up to 128GB of unified memory
92 billion transistors

16-core CPU

12 performance cores

4 efficiency cores
Up to 80% faster than M1 Max

Up to 50% faster than M2 Max
i 40-core GPU

Next-generation architecture
Dynamic Caching

Mesh shading

Ray tracing

Up to 50% faster than M1 Max
Up to 20% faster than M2 Max

Specialized Hardware for DS/ML Is a really good business

NVIDIACorp ——

| Overview | Videos Compare Financials
NASDAQ: NVDA N S

Market Summary > NVIDIA Corp <<Z nv ' D l A ’

7/28.34 uso

+727.52 (88,721.95%) 4 all time
Feb 14, 12:38 PM EST + Disclaimer

1D SD ™ ~6M ~YTD A~ 1Y ~5Y A Max

800 ‘¢ Reuters

600 Nvidia outstrips Alphabet as third largest US
00 company by market value

200

1 hour ago

Emerging business (hnumbers are speculations)

((cerebras GRAFHCORE

~4B ~2.38B

Sam Altman’y $7 trilli0n|AI
chip dream has him

Ly rounding on critics: ‘“You
can grind to help secure
our collective future or you
can write Substacks about

why we are going |to| fail’

~1B

Summary

* Dataflow Graph
* Two major parallelisms:
®* Task parallelism -> partitioning the dataflow graph
* Data parallel -> partitioning the dato
* Data parallelism Is ubiguitous, bullt In modern chips and

everywhere.

27

Let’s Focus On: Multl-node Distributed Systems

* Different ways of mplementing parallelisms in distributed systems:
* Shared-nothing parallelism
* Shared-disk parallelism
* Share-memory parallelism

* How to Distribute Dato

* How to Coordinate

* How to Distribute Compute

28

3 Paradigms of Multi-Node Parallelism Implementations

Interconnect
TR . TTTRNIIIT . —_— .

llll‘llv“lrlllzlll I llll‘ll‘llllzl llllllllllllllll

Interconnect

vv \:—/ vv S~ S~ g Sl S~ S
Shared-Nothing Shared-Disk Shared-Memory
Parallelism Parallelism Parallelism

29

Shared-memory parallelism (vertical scaling)

* CPUs, RAM chips, Disks are joined under
one O..

* Advantage:
* Simple, High performance.
* Disadvantage:

®* Expensive.
® Cost grows faster super-linearly.
®* Performance grows sub-linearly.

* [Imited fault tolerance —_—— ~—— ~—
* Nofe hot-swappable Shared-Memory
e Geolocation Parallelism

30

Shared-Disk Parallelism (data warehouse)

* Machines with independent CPUs
and RAM

® But stores data on an array of ‘ 4 ‘
disks cru li crulf :

L

* Advantage:

o —
Low-Cost

* Disadvantage:

* Overhead of locking Iimit the
scalabllity —_— — —

32

Shared-Nothing Parallelism (horizontal scaling)

* Most popular approach!
® Fach node uses its CPUs, RAM, and

disks independently.

* Any coordination, software level,
through a conventional network.

®* The vanilla (and most complex!)
distributed systems

® Consistency
- B e Communication
* Coordination

33

Shared-Nothing Parallelism (horizontal scaling)

* Advantage:
* Performance
® Cost
* Disadvanfage
* Complexity.
®* [nvolves many constraints and
frade-offs.

= = = * Database cannot magically hide
all these from you.

	幻灯片 1: Where We Are
	幻灯片 2: Weak and Strong Scaling
	幻灯片 3: Discussion: Is superlinear speedup/scaleup possible?
	幻灯片 4: Some Clarifications on Terms
	幻灯片 5: Idle Times in Task Parallelism
	幻灯片 6: Idle Times in Task Parallelism
	幻灯片 7: Calculating Task Parallelism Speedup
	幻灯片 8: Today’s topic: Parallelism
	幻灯片 9: Recall: Data parallelism in ML (Lecture 10)
	幻灯片 10: Data parallelism: abstraction of SIMD/SIMT/SPMD
	幻灯片 11: Data parallelism is built in with today’s Processors
	幻灯片 12: Single-Instruction Multiple-Data
	幻灯片 13: SIMD Generalizations
	幻灯片 14: Quantifying Efficiency of Data Parallelism
	幻灯片 15: Amdahl’s Law:
	幻灯片 16: Amdahl’s Law:
	幻灯片 17: The Problem of Chip Design
	幻灯片 18
	幻灯片 19: Idea: How about we use a lot of weak/specialized cores
	幻灯片 20: Hardware Accelerators: GPUs
	幻灯片 21: Other Hardware Accelerators
	幻灯片 22: Comparing Modern Parallel Hardware
	幻灯片 23: Practice: Let’s try reading the Latest Apple M3 Max
	幻灯片 24: Specialized Hardware for DS/ML is a really good business
	幻灯片 25: Emerging business (numbers are speculations)
	幻灯片 26: Summary
	幻灯片 27: Let’s Focus On: Multi-node Distributed Systems
	幻灯片 28: 3 Paradigms of Multi-Node Parallelism Implementations
	幻灯片 29: Shared-memory parallelism (vertical scaling)
	幻灯片 30: Shared-Disk Parallelism (data warehouse)
	幻灯片 32: Shared-Nothing Parallelism (horizontal scaling)
	幻灯片 33: Shared-Nothing Parallelism (horizontal scaling)

