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Weak and Strong Scaling
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Q: Is superlinear speedup/scaleup ever possible?
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Discussion: Is superlinear speedup/scaleup possible?
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Some Clarifications on Terms

• These terms almost all refer to the above, but they are slightly different

• Speedup, acceleration -> strong scaling

• Scaling, scale-up -> weak scaling

• Scalability -> both

• “system A is very scalable”

• When you add 1 more workers, the speedup increase by ~1

• “system A is more scalable than system B”

• When you add 1 more worker, the speedup of system A is larger than that 

of system B

Speedup = 
Completion time given only 1 worker

Completion time given n (>1) workers
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Idle Times in Task Parallelism

Due to varying task completion times and varying degrees of 

parallelism in workload, idle workers waste resources
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Idle Times in Task Parallelism

Due to varying task completion times and varying degrees of 

parallelism in workload, idle workers waste resources
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• In general, overall workload’s 

completion time on task-parallel 

setup is always lower bounded by 

the longest path in the task graph

• Possibility: A task-parallel scheduler 

can “release” a worker if it knows 

that will be idle till the end

• Can saves costs in cloud
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Calculating Task Parallelism Speedup

Due to varying task completion times and varying degrees of 

parallelism in workload, idle workers waste resources
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Example:

Given 3 
workers
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Speedup = 65/35 = 1.9x

Completion time 

with 1 worker

10+5+15+5+

20+10 = 65

Parallel completion time 35

Ideal/linear speedup is 3x

Q: Why is it only 1.9x?
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Today’s topic: Parallelism 

• Express data processing in abstraction

• Parallelisms

• Task parallelism

• Data parallelism 

• Parallel Processing Chips



Recall: Data parallelism in ML (Lecture 10)

Sync
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Data

Data

Data
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Data parallelism: abstraction of SIMD/SIMT/SPMD
“Data Parallel” Multi-core Execution

Q: How to represent data parallelism in dataflow graph notions?

Given 3 
workers
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Data parallelism is built in with today’s Processors 

• Recall Lecture 2:

• Modern computers often have multiple processors and multiple cores

per processor, with a hierarchy of shared caches
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Single-Instruction Multiple-Data

Example for SIMD in data science:



13

SIMD Generalizations

• Single-Instruction Multiple Thread (SIMT): Generalizes notion of SIMD to 

different threads concurrently doing so

• Each thread may be assigned a core or a whole PU

• Single-Program Multiple Data (SPMD): A higher level of abstraction 

generalizing SIMD operations or programs

• Under the hood, may use multiple processes or threads

• Each chunk of data processed by one core/PU

• Applicable to any CPU, not just vectorized PUs

• Most common form of parallel data processing at scale
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Quantifying Efficiency of Data Parallelism

• As with task parallelism, we measure the speedup: 

Speedup = 
Completion time given only 1 core

Completion time given n (>1) core
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Amdahl’s Law:

• Amdahl’s Law: Formula to upper bound possible speedup

• A program has 2 parts: one that benefits from multi-core 

parallelism and one that does not

• Non-parallel part could be for control, memory stalls, etc.

Q: But given n cores, can we get a speedup of n?

It depends! (Just like it did with task parallelism)

Tno

Tyes

1 core:

Speedup = 

n cores:

Tno

Tyes/n
Tyes + Tno

Tyes/n + Tno

=

n(1 + f)

n + f

Denote Tyes/Tno = f
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Amdahl’s Law:

Speedup = 

n(1 + f)

n + f

f = Tyes/Tno

Parallel portion =

f / (1 + f)



The Problem of Chip Design

Control

Caches

ALU ALU

ALU ALU
Control

Caches

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

If we’re able to reduce to size 
of ALU while keeping its power

That’s why you see trends: 70nm -> 60nm -> 50nm -> … -> what is the best now?

Problem: this is not substantiable; there are also power/heat issues when you put 

more ALUs in 
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• That’s why you see trends: 70nm -> 60nm -> 50nm -> … -> what is the best now?

• That’s why you see trends: 70nm -> 

60nm -> 50nm -> … -> what is the best 

now?

• Takeaway from hardware trends: it is 

hard for general-purpose CPUs to 

sustain FLOPs-heavy programs like 

deep nets

• Motivated the rise of “accelerators” 

for some classes of programs



Idea: How about we use a lot of weak/specialized cores
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Hardware Accelerators: GPUs

• Graphics Processing Unit (GPU): Tailored for matrix/tensor ops

• Basic idea: Use tons of ALUs (but weak and more specialized); massive 

data parallelism (SIMD on steroids); now H100 offers ~980 TFLOPS for 

FP16!

• Popularized by NVIDIA in early 2000s for video games, graphics, and 

multimedia; now ubiquitous in DL

• CUDA released in 2007; later wrapper APIs on top: CuDNN, CuSparse, 

CuDF (RapidsAI), NCCL, etc.



21

Other Hardware Accelerators
Other Hardware Accelerators

• Tensor Processing Unit (TPU): 

• An “application-specific integrated 

circuit” (ASIC) created by Google 

in mid 2010s; used for AlphaGo

• Field-Programmable Gate Array 

(FPGA): 

• Configurable for any class of 

programs; ~0.5-3 TFLOPS but very 

low power consumption

• Cheaper; new hardware-software 

integrated stacks for ML/DL
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Comparing Modern Parallel Hardware

https://www.embedded.com/leveraging-fpgas-for-deep-learning/

Multi-core CPU GPU FPGA
ASICs 

(e.g., TPUs)

Peak FLOPS

Power 
Consumption

Cost

Generality / 
Flexibility

Fitness for 
DL Training?

Fitness for 
DL Inference?

Cloud Vendor 
Support

Moderate High High Very High

High Very High Very Low Low-Very Low

Low High Very High Highest

Highest Medium Very High Lowest

Poor Fit Best Fit Poor Fit
Potential exists but 

not mass market

Moderate Moderate Good Fit Best Fit

All All All GCP

https://www.embedded.com/leveraging-fpgas-for-deep-learning/
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Practice: Let’s try reading the Latest Apple M3 Max 



Specialized Hardware for DS/ML is a really good business



Emerging business (numbers are speculations) 

~4B ~2.8B

~1B



Summary

• Dataflow Graph

• Two major parallelisms:

• Task parallelism -> partitioning the dataflow graph

• Data parallel -> partitioning the data

• Data parallelism is ubiquitous, built in modern chips and 

everywhere. 
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Let’s Focus On: Multi-node Distributed Systems

• Different ways of implementing parallelisms in distributed systems:

• Shared-nothing parallelism

• Shared-disk parallelism

• Share-memory parallelism

• How to Distribute Data

• How to Coordinate

• How to Distribute Compute



28

3 Paradigms of Multi-Node Parallelism Implementations

Shared-Nothing 

Parallelism

Shared-Memory 

Parallelism

Shared-Disk 

Parallelism

Interconnect

Interconnect

Interconnect
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Shared-memory parallelism (vertical scaling)

Shared-Memory 

Parallelism

Interconnect

• CPUs, RAM chips, Disks are joined under 

one OS. 

• Advantage:

• Simple, High performance.

• Disadvantage:

• Expensive. 

• Cost grows faster super-linearly. 

• Performance grows sub-linearly.

• Limited fault tolerance  

• Note hot-swappable

• Geolocation
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Shared-Disk Parallelism (data warehouse)

Interconnect

• Machines with independent CPUs 

and RAM

• But stores data on an array of 

disks

• Advantage:

• Low-cost

• Disadvantage:

• Overhead of locking limit the 

scalability
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Shared-Nothing Parallelism (horizontal scaling)

Interconnect

• Most popular approach!

• Each node uses its CPUs, RAM, and 

disks independently. 

• Any coordination, software level, 

through a conventional network.

• The vanilla (and most complex!) 

distributed systems

• Consistency

• Communication

• Coordination 
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Shared-Nothing Parallelism (horizontal scaling)

Interconnect

• Advantage:

• Performance

• Cost

• Disadvantage

• Complexity.

• Involves many constraints and 

trade-offs. 

• Database cannot magically hide 

all these from you.
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