
Where We Are

Foundations of Data Systems

Cloud

Machine Learning Systems

Big Data

1980 - 2000

2000 - 2016

2010 - Now

2

Weak and Strong Scaling

Number of workers

Runtime speedup (fixed data size)

1 4 8 12

1

4

8

12

Linear

Speedup

Sublinear

Speedup

Q: Is superlinear speedup/scaleup ever possible?

Factor (# workers, data size)

Runtime scaleup

1 4 8 12

1

0.5

2

Linear Scaleup

Sublinear

Scaleup

Speedup plot / Strong scaling Scaleup plot / Weak scaling

Discussion: Is superlinear speedup/scaleup possible?

Number of workers
1 4 8 12

1

4

8

12

Linear

Speedup

Sublinear

Speedup

Factor (# workers, data size)
1 4 8 12

1

0.5

2

Linear Scaleup

Sublinear

Scaleup

4

Some Clarifications on Terms

• These terms almost all refer to the above, but they are slightly different

• Speedup, acceleration -> strong scaling

• Scaling, scale-up -> weak scaling

• Scalability -> both

• “system A is very scalable”

• When you add 1 more workers, the speedup increase by ~1

• “system A is more scalable than system B”

• When you add 1 more worker, the speedup of system A is larger than that

of system B

Speedup =
Completion time given only 1 worker

Completion time given n (>1) workers

5

Idle Times in Task Parallelism

Due to varying task completion times and varying degrees of

parallelism in workload, idle workers waste resources

T1

D

T2 T3

T4 T5

T6

Example:

Given 3

workers

Gantt Chart visualization of

schedule:

15
5

10

20
5

10
W1: T1 T1 T4 T6 T6

W2: T2 T5 T5 T5 T5

W3: T3 T3 T3

0 5 10 15 20 25 30 35

Idle times, or
“bubbles”

6

Idle Times in Task Parallelism

Due to varying task completion times and varying degrees of

parallelism in workload, idle workers waste resources

T1

D

T2 T3

T4 T5

T6

Example:

Given 3

workers

15
5

10

20
5

10

• In general, overall workload’s

completion time on task-parallel

setup is always lower bounded by

the longest path in the task graph

• Possibility: A task-parallel scheduler

can “release” a worker if it knows

that will be idle till the end

• Can saves costs in cloud

7

Calculating Task Parallelism Speedup

Due to varying task completion times and varying degrees of

parallelism in workload, idle workers waste resources

T1

D

T2 T3

T4 T5

T6

Example:

Given 3
workers

15
5

10

20
5

10

Speedup = 65/35 = 1.9x

Completion time

with 1 worker

10+5+15+5+

20+10 = 65

Parallel completion time 35

Ideal/linear speedup is 3x

Q: Why is it only 1.9x?

8

Today’s topic: Parallelism

• Express data processing in abstraction

• Parallelisms

• Task parallelism

• Data parallelism

• Parallel Processing Chips

Recall: Data parallelism in ML (Lecture 10)

Sync

Worker 1 Worker 2

Worker 3 Worker 4

Data

Data

Data

Data

10

Data parallelism: abstraction of SIMD/SIMT/SPMD
“Data Parallel” Multi-core Execution

Q: How to represent data parallelism in dataflow graph notions?

Given 3
workers

T1 T2 T3

T4 T5

T6

D

T1 T2 T3

T4 T5

T6

D1

T1 T2 T3

T4 T5

T6

D2

T1 T2 T3

T4 T5

T6

D3

11

Data parallelism is built in with today’s Processors

• Recall Lecture 2:

• Modern computers often have multiple processors and multiple cores

per processor, with a hierarchy of shared caches

12

Single-Instruction Multiple-Data

Example for SIMD in data science:

13

SIMD Generalizations

• Single-Instruction Multiple Thread (SIMT): Generalizes notion of SIMD to

different threads concurrently doing so

• Each thread may be assigned a core or a whole PU

• Single-Program Multiple Data (SPMD): A higher level of abstraction

generalizing SIMD operations or programs

• Under the hood, may use multiple processes or threads

• Each chunk of data processed by one core/PU

• Applicable to any CPU, not just vectorized PUs

• Most common form of parallel data processing at scale

14

Quantifying Efficiency of Data Parallelism

• As with task parallelism, we measure the speedup:

Speedup =
Completion time given only 1 core

Completion time given n (>1) core

15

Amdahl’s Law:

• Amdahl’s Law: Formula to upper bound possible speedup

• A program has 2 parts: one that benefits from multi-core

parallelism and one that does not

• Non-parallel part could be for control, memory stalls, etc.

Q: But given n cores, can we get a speedup of n?

It depends! (Just like it did with task parallelism)

Tno

Tyes

1 core:

Speedup =

n cores:

Tno

Tyes/n
Tyes + Tno

Tyes/n + Tno

=

n(1 + f)

n + f

Denote Tyes/Tno = f

16

Amdahl’s Law:

Speedup =

n(1 + f)

n + f

f = Tyes/Tno

Parallel portion =

f / (1 + f)

The Problem of Chip Design

Control

Caches

ALU ALU

ALU ALU
Control

Caches

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

If we’re able to reduce to size
of ALU while keeping its power

That’s why you see trends: 70nm -> 60nm -> 50nm -> … -> what is the best now?

Problem: this is not substantiable; there are also power/heat issues when you put

more ALUs in

18

• That’s why you see trends: 70nm -> 60nm -> 50nm -> … -> what is the best now?

• That’s why you see trends: 70nm ->

60nm -> 50nm -> … -> what is the best

now?

• Takeaway from hardware trends: it is

hard for general-purpose CPUs to

sustain FLOPs-heavy programs like

deep nets

• Motivated the rise of “accelerators”

for some classes of programs

Idea: How about we use a lot of weak/specialized cores

20

Hardware Accelerators: GPUs

• Graphics Processing Unit (GPU): Tailored for matrix/tensor ops

• Basic idea: Use tons of ALUs (but weak and more specialized); massive

data parallelism (SIMD on steroids); now H100 offers ~980 TFLOPS for

FP16!

• Popularized by NVIDIA in early 2000s for video games, graphics, and

multimedia; now ubiquitous in DL

• CUDA released in 2007; later wrapper APIs on top: CuDNN, CuSparse,

CuDF (RapidsAI), NCCL, etc.

21

Other Hardware Accelerators
Other Hardware Accelerators

• Tensor Processing Unit (TPU):

• An “application-specific integrated

circuit” (ASIC) created by Google

in mid 2010s; used for AlphaGo

• Field-Programmable Gate Array

(FPGA):

• Configurable for any class of

programs; ~0.5-3 TFLOPS but very

low power consumption

• Cheaper; new hardware-software

integrated stacks for ML/DL

22

Comparing Modern Parallel Hardware

https://www.embedded.com/leveraging-fpgas-for-deep-learning/

Multi-core CPU GPU FPGA
ASICs

(e.g., TPUs)

Peak FLOPS

Power
Consumption

Cost

Generality /
Flexibility

Fitness for
DL Training?

Fitness for
DL Inference?

Cloud Vendor
Support

Moderate High High Very High

High Very High Very Low Low-Very Low

Low High Very High Highest

Highest Medium Very High Lowest

Poor Fit Best Fit Poor Fit
Potential exists but

not mass market

Moderate Moderate Good Fit Best Fit

All All All GCP

https://www.embedded.com/leveraging-fpgas-for-deep-learning/

23

Practice: Let’s try reading the Latest Apple M3 Max

Specialized Hardware for DS/ML is a really good business

Emerging business (numbers are speculations)

~4B ~2.8B

~1B

Summary

• Dataflow Graph

• Two major parallelisms:

• Task parallelism -> partitioning the dataflow graph

• Data parallel -> partitioning the data

• Data parallelism is ubiquitous, built in modern chips and

everywhere.

27

Let’s Focus On: Multi-node Distributed Systems

• Different ways of implementing parallelisms in distributed systems:

• Shared-nothing parallelism

• Shared-disk parallelism

• Share-memory parallelism

• How to Distribute Data

• How to Coordinate

• How to Distribute Compute

28

3 Paradigms of Multi-Node Parallelism Implementations

Shared-Nothing

Parallelism

Shared-Memory

Parallelism

Shared-Disk

Parallelism

Interconnect

Interconnect

Interconnect

29

Shared-memory parallelism (vertical scaling)

Shared-Memory

Parallelism

Interconnect

• CPUs, RAM chips, Disks are joined under

one OS.

• Advantage:

• Simple, High performance.

• Disadvantage:

• Expensive.

• Cost grows faster super-linearly.

• Performance grows sub-linearly.

• Limited fault tolerance

• Note hot-swappable

• Geolocation

30

Shared-Disk Parallelism (data warehouse)

Interconnect

• Machines with independent CPUs

and RAM

• But stores data on an array of

disks

• Advantage:

• Low-cost

• Disadvantage:

• Overhead of locking limit the

scalability

32

Shared-Nothing Parallelism (horizontal scaling)

Interconnect

• Most popular approach!

• Each node uses its CPUs, RAM, and

disks independently.

• Any coordination, software level,

through a conventional network.

• The vanilla (and most complex!)

distributed systems

• Consistency

• Communication

• Coordination

33

Shared-Nothing Parallelism (horizontal scaling)

Interconnect

• Advantage:

• Performance

• Cost

• Disadvantage

• Complexity.

• Involves many constraints and

trade-offs.

• Database cannot magically hide

all these from you.

	幻灯片 1: Where We Are
	幻灯片 2: Weak and Strong Scaling
	幻灯片 3: Discussion: Is superlinear speedup/scaleup possible?
	幻灯片 4: Some Clarifications on Terms
	幻灯片 5: Idle Times in Task Parallelism
	幻灯片 6: Idle Times in Task Parallelism
	幻灯片 7: Calculating Task Parallelism Speedup
	幻灯片 8: Today’s topic: Parallelism
	幻灯片 9: Recall: Data parallelism in ML (Lecture 10)
	幻灯片 10: Data parallelism: abstraction of SIMD/SIMT/SPMD
	幻灯片 11: Data parallelism is built in with today’s Processors
	幻灯片 12: Single-Instruction Multiple-Data
	幻灯片 13: SIMD Generalizations
	幻灯片 14: Quantifying Efficiency of Data Parallelism
	幻灯片 15: Amdahl’s Law:
	幻灯片 16: Amdahl’s Law:
	幻灯片 17: The Problem of Chip Design
	幻灯片 18
	幻灯片 19: Idea: How about we use a lot of weak/specialized cores
	幻灯片 20: Hardware Accelerators: GPUs
	幻灯片 21: Other Hardware Accelerators
	幻灯片 22: Comparing Modern Parallel Hardware
	幻灯片 23: Practice: Let’s try reading the Latest Apple M3 Max
	幻灯片 24: Specialized Hardware for DS/ML is a really good business
	幻灯片 25: Emerging business (numbers are speculations)
	幻灯片 26: Summary
	幻灯片 27: Let’s Focus On: Multi-node Distributed Systems
	幻灯片 28: 3 Paradigms of Multi-Node Parallelism Implementations
	幻灯片 29: Shared-memory parallelism (vertical scaling)
	幻灯片 30: Shared-Disk Parallelism (data warehouse)
	幻灯片 32: Shared-Nothing Parallelism (horizontal scaling)
	幻灯片 33: Shared-Nothing Parallelism (horizontal scaling)

