Where We Are

Machine Learning Systems

Big Data 2010 - Now

Cloud 2000 - 2016

Foundations of Data Systems 1980 - 2000

3 Paradigms of Multi-Node Parallelism Implementations

Interconnect
TR . TTTRNIIIT . —_— .

llll‘llv“lrlllzlll I llll‘ll‘llllzl llllllllllllllll

Interconnect

Shared-Nothing Shared-Disk Shared-Memory

Parallelism Parallelism Parallelism

Shared-Nothing Parallelism (horizontal scaling)

* Most popular approach!
® Fach node uses its CPUs, RAM, and

disks independently.

* Any coordination, software level,
through a conventional network.

®* The vanilla (and most complex!)
distributed systems

® Consistency
- B e Communication
* Coordination

Shared-Nothing Parallelism (horizontal scaling)

* Advantage:
* Performance
® Cost
* Disadvanfage
* Complexity.
®* [nvolves many constraints and
frade-offs.

= = = * Database cannot magically hide
all these from you.

Metrics to Evaluate Distributed Big Data Systems

* Scalability
* Data volume
* Read/Write/Compute load

® Consistency and correctness
* Read / Write sees consistency data
* Compute produce correct results

* Fault tolerance / high availability
* When one fails, another can take over.

* Latency
* Distribute machines worldwide.
® Reduce network latency.

Problems Distributed Systems Need to Solve

* Communication (covered)
* How to Distribute Datae
* How to Distribute Compute?

* How to Coordinate/Synchronizee

Problems Distributed Systems Need to Solve

* How to Distribute Data?

* Replicate / Partition the data
* How to Distribute Compute?

® Batch Processing / Steaming processing
* How to Coordinate/Synchronizee

® Distributed decision making and consensus

Replication versus Parfitioning

Partition 1, Replica 1 Partition 2, Replica 1
136 — B 211 — 377 — 629 — 696 — B 858 —
Four score Johannes Whereas Die Wurde Whereas We hold
and seven Dei gracia recognition des Men- the Lords these truths

years ago Rex Anglie, of the schen ist Spiritual to be self-
our fathers Dominus inherent unantastbar and Tempo- evident

. copy of . copy of
' the same ! the same
Partition 1, Replica 2 +data Partition 2, Replica 2 ;data

136 — B 211 — 377 — 629 — 696 — 858 —
Four score Johannes Whereas Die Wiirde Whereas We hold
and seven Dei gracia recognition des Men- the Lords these truths
years ago Rex Anglie, of the schen ist Spiritual to be self-
our fathers Dominus inherent unantastbar and Tempo- evident

Challenge: How to handle changes to replicated datae

10

Leaders and Followers

User 1234

configures new
profile picture

read-write queries

—)..

update users
set picture_url ='me-new.jpg’
where user_id = 1234

Leader
replica

<

table:
primary key:
column:

old value:
new value;
transaction:

Replication streams

Data change

> Follower
replica

read-only queries

select * from users

— where user _id=1234
LISers (
1234
picture_url ~—— FG' |0WEF U 2345
me-old.jpg replica >l
me—new.jpg VIEWS UsSer

08765432 1234's profile

* Clients send requests to the leader to write to the db. The leader saves locally

* The leader then sends the data change

* Clients read data from the leader or-

to all of its followers.

‘ollowers.

* One of the big ideas in CS (leader-tollower). Distributed msg brokers (e.g., Kaftka).

11

Single-leader replication

* Advantages:

* Simplicity (easy-to-understand)

* Conflicts across nodes (consistency)
* Disadvantages:

* Single point of failure

12

Multi-leader replication (Multi-datacenter operation)

conflict

resolution

!

Datacenter 1

_ > _ >
changes
leader » follower
S— I — _
read-write
queries
O
/\

- 2

changes

conflict
resolution

follower [€

v

- >

leader

read-write
queries

@
A

13

Multi-leader replication

* Advantages:
®* Performance (i.e., network latency).
®* Tolerance of data center outages.
®* Tolerance of network problems.
® Asynchronous syncing.
®* Disadvantages:
* Potential write conflicts.

* The same data may be concurrently modified in two different
data cenfters.

®* Only use It It necessary.

14

Google Doc Undo-Redo

E File

A .

Edit View Insert Format Data

v~ Undo Ctrl+7 |

~ Redo Ctri+Y

A
| 8¢ cut Ctri+X

15

Leaderless replication

Client

PUTK, A

The client sends the Write
operation to all 5 data nodes
and waits for ACK from at least
3 of them.

Data Node

Data Node

Data Node

Data Node

Data Node

16

Challenge: How to handle changes to replicated datae

* Three main approaches:
* Single-leader replication
* Multi-leader replication
* L eaderless replication
* Tradeoffs
* Simplicity (easy-to-understand)
* Conflicts across nodes (consistency)
* Faulty nodes
* Network interruption
* [atency spikes

17

Replication (assuming a small dataset)

* Scalability

* Fault folerance | high availabillity

* When one fails, another can take
over.

®* |lafency
* Distribute machines worldwide.
® Reduce network latency.

18

Replication (assuming a small dataset)

* Scalability

* Data volume
* Read load
* Write load

19

Partifioning (what if the dataset is oo big for a single

mMmachine?)

Bigtable: A distributed storage system for structured data
F Chang, J Dean, S Ghemawat, WC Hsieh... - ACM Transactions on ..., 2008 - dl.acm.org

... Despite these varied demands, Bigtable has ... Bigtable, which gives clients dynamic

control over data layout and format, and we describe the design and implementation of Bigtable. ..

vr Save YUY Cite Cited by 7813 Related articles All 229 versions

[PoF] The Google file system
S Ghemawat, H Gobioff, ST Leung - ... symposium on Operating systems ..., 2003 - dl.acm.org

... the Google File System, a scalable distributed file system for ... goals as previous distributed

file systems, our design has ... departure from some earlier file system assumptions. This has led ...

r Save YU Cite Cited by 10064 Related articles All 305 versions

MapReduce: simplified data processing on large clusters
J Dean, S Ghemawat - Communications of the ACM, 2008 - dl.acm.org

... pairs, and then applying a reduce operation to all the values ... with user-specified map and
reduce operations allows us to ... implementation of the Map Reduce interface tailored towards ...

wr Save Y Cite Cited by 22507 Related articles All 96 versions

[PDF] acm.org

[PDF] acm.org

[PDF] acm.org

20

Node 1

Combining replication and partitioning

Node 2

Partition 1
Leader

Partition 2
Follower

Partition 3
Follower

"

Partition 2
Follower

Partition 3
Leader

Partition 4
Follower

Partition 1
Follower

Partition 2
Leader

Partition 4
Follower

Node 3

» =replication streams (per partition)

Partition 1
Follower

Partition 3
Follower

Partition 4
Leader

Writing to
partition 4

X

Node 4

21

Intuitions behind partitioning (whye)

* A large dataset can be distributed
ACross many disks.

* The query load can be distributed across
MAany Processors.

Interconnect

Shared-Nothing
Parallelism

Partitioning challenges

* How to partfition and how o indexe

Interconnect

* How tO add or remove nodese

®* How fo route the requests and execute
queriese

ll

Shared-Nothing
Parallelism

22

23

How to partitfione

* [deally:

* Spread the data and the query load evenly across
nodes.

®* Reality:

* Hot spot: a partition with disproportionately high load.
* Straw-man solution:

* Distribute randomly.

®* Problem:

* When you read a data, you do not know which
node you should request. You have to request all
the nodes.

by Key Range

Partition solution #1

ﬂ|
V >3IMAZ — neapni) N

ﬂ|
v ¥oni] — AOAAO|OS

1

1

v S19A0j0G — 119y ©

uouwiylisy — 1810 o

]

emel10 — abeusapy oo

ﬂ|
v RIPRUSN — YSweqousesy N~

ﬂl
v afousesy] — SSaUIBPIOH O

UIJJSP|OH — UO3l{ N

U3ssual{ — uolIsn|a(

dN|3(] — elied)

sNYjouea) — nakeyg

sakeg —e-y —

l/

24

25

Partitfion solution #1: by Key Range

* Advantage: can do range gueries

* Problems:

®* The ranges of keys are not necessarily

even
* Vo

with T - 7.
* Manual process. Reguire domain
expertise.

* Hard to rebalance.

® Hot spoft Issues.

y spaced.
ume 12 contains words startfing

— A-ak — Bayes

N Bayeu — Ceanothus

w Ceara — Deluc

A Delusion — Frenssen

(w1 Freon — Holderlin

o Holderness — Krasnoje

< Krasnokamsk — Menadra

oo Menage — Ottawa

Otter — Rethimnon

\O

Reti — Solovets

Y
-

Solovyov — Truck

—
—

—_
N

Trudeau — Zywiec

* One letteris popular.

* Common keys: names, fitles, dates.

26

Parfition solution #2: by Hash of Key

"2014-04-19 17:08:10"
“2014-04-1917:08:11"
“2014-04-19 17:08:12"
“2014-04-19 17:08:13"
“2014-04-19 17:08:14"
“2014-04-19 17:08:15"

» /,372

» 18,805

» 50,537

» 31,579
» 62,253

» 24,510

hash

(here: first 2 bytes
of MD5 hash)

0

Y Y Y Y
PO | p1T | P2 | P3 | P4 | PSS | pP6 | p/
16,383 32,767 49 151 65,535

Recall bloom filter.

27

Parfition solution #2: by Hash of Key

* Advantages:

* Automatic.

®* Fasy fo balance.
®* Problems:

®* Do not support efficient range
queries.

“2014-04-19 17:08:10" ——> 7,372
“2014-04-1917:08:11" —> 18,805
“2014-04-1917:08:12" —> 50,537
"2014-04-1917:08:13" —> 31,579
“2014-04-1917:08:14" —> 62,253
“2014-04-1917:08:15" —> 24,510

hash

(here: first 2 bytes
of MD5 hash)

h 4

Y

A 4

1

pl | p2

p3 | p4

P> | pb

p/

0

16,383

32,767

49,151

65,535

Recall bloom filter.

28

Partition solution #3: Hash of Key + Key Range

Composite Primary Key

user_id update_timestamp

Partitioning challenges

* How to parfition and how to indexe

Interconnect

* How to add orremove nodese

®* How fo route the requests and execute
queriese

ll

Shared-Nothing
Parallelism

29

30

Rebalance

* Move the load from one node In a cluster to another
* The query throughput increases — more CPUs
®* The dataset size increases — more disks and RAM
* Machine failure

®* Rebalancing goals
* Share the load fairly after rebalancing.

®* Continue accepfting reads and writes while
rebalancing.

* Minimize data moving (i.e., network and disk I/O load)

31

Strawman solution: Hash mod N

Load
Balancing

key=foo
key=bar——| hash(foo) % 3 = 2
key=baz hash(bar) % 3 =0

hash(baz) % 3 = 2

I—» Node O

bar

Node 1

foo

32

Consistent hashing ring

16 1
15

14

13

12

11

10

1 3 5 7 10 ::SgrvgrA‘}

13 15

2)(4)(8)[0)[12) 4 B
. Server B |

14 16 ‘ '

5)(4)(6)(@107) 4R
. Server C |

13 (15 ‘ ‘

1 3 5 7.9 Server D

12 114 16

3 LA 18N Server E |

Mapping Vnodes to physical nodes on a Consistent Hashing ring

Learn more in https:/ /www.youtube.com /watch2v=UF9lgmg 94tk

33

Rebalancing solufion #1: Fixed number of partitions

Before rebalancing (4 nodes in cluster)

Node O Node 1

9 — — —_— - = _— §

PO | p8 |pl12|plb6 pl | p5S |pl13|pl/

P2 | p6 [pl10 | p18 P3 | p/7 | p11|pl15 p4

Node O Node 1 Node 2 Node 3

After rebalancing (5 nodes in cluster) Legend:

[= - O . . = -

partition remains on the same node

P» partition migrated to another node

34

Rebalancing solution #1: Fixed number of partitions

®* The total number of partitions is fixed.
* The # of nodes can be adaptive tor different machines.
* Partitfions should have similar sizes => whye

® Easier for management.
®* EFach partition grows proportionally to the total amount of data.
* Challenges:

®* Need to choose the right number of partitions.

® Too high —» too much overhead

* Too low — Migration will be very expensive.
* Wrong index system.
* Very unbalanced distributions.

* Only work with hash parfitioned database. => Why?¢

35

Rebalancing solufion #2: Dynamic partifions

® Similar idea as the B-tree.

* Split — When a partition grows 1o exceed a configured size (e.g., 10
GB).

* Merge — When lots of data is deleted and a partition shrinks.

* One node — multiple partitions.

* One partition — one node.

* A cavear:

* By default, start — an empty database — one partition — only one
node.

®* Some systems allow pre-splitting.
* Dynamic partition works for both key range and hash partitioned data.

36

Automatic or Manual Rebalancing

* Mostly manual — Why?¢
®* Rebalancing is very expensive!
® Some suggestive interfaces exist.

37

Partitioning challenges

* How to parfition and how to indexe
* How to add or remove nodese

®* How fo route the requests and execute
queriese

Interconnect

Hcruf

Shared-Nothing
Parallelism

33

Two questions

* Which node to connect to?
* Where to maintain the knowledge of rebalanced results?

Routing paradigm #1

* Contact any node (e.g., © @

: client
round-robin load balancer),

choose node 0
randomly

* [f the hode has the data copy,
respond.

* [f not, forward, recelves the
reply, and passes the reply along
to the client.

“foo” lives on node 2

-

node 0 node 1 node 2

A
\
A
\

e

“foo”

e = the knowledge of which partition is assigned to which node

Routing paradigm #2

@ client
®* Send all requests to a routing tier

first get o0’
routing tier

®* The routing tier forward all the

requests.
A “foo” lives on node 2

e = the knowledge of which partition is assigned to which node

4]

Routing paradigm #3

* The client is aware of the @
partitfioning and the assignment
of partitions to nodes.

client

get “foo”
connect directly

° ' '
No infermediary. to node 2

e = the knowledge of which partition is assigned to which node

42

Two questions

* Where to maintain the knowledge of rebalanced resultse

43

[ooKeeper

client

get ”Z)anube"i

routing tier

ZooKeeper

node 2

Key range

A-ak — Bayes

Bayeu — Ceanothus
Ceara — Deluc
Delusion — Frenssen
Freon — Holderlin
Holderness — Krasnoje
Krasnokamsk — Menadra
Menage — Ottawa
Otter — Rethimnon
Reti — Solovets
Solovyov — Truck
Trudeau — Zywiec

Partition

partition O
partition 1

partition 2
partition 3
partition 4
partition 5
partition 6

nartition 7
partition 8
nartition 9

nartition 11

e = the knowledge of which partition is assigned to which node

partition 10

Node

node 0
node 1
node 2
node 0
node 1
node 2
node 0
node 1

node 2
node 0
node 1
node 2

IP address

W
W
W

. OEEEEEe

—)

0.20.30.
0.20.30.
0.20.30.
10.20.30.
10.20.30.
0.20.30.
0.20.30.
10.20.30.
10.20.30.
0.20.30.°
0.20.30.
10.20.30.

00

101
102
100
107
102
100
107
102

00

101
102

44

[ooKeeper

®* Fach node registers itself in
[ooKeeper.

® /ooKeeper maintains the mapping.

®* Other actors (different in three

paradigms) subscribe to ZooKeeper. .-

* Whenever the partition mapping

changes, ZooKeeper notifies OCTOI’@ Ej Ej

client

get “Danube”l

routing tier
ANNNNNNNNNANNNNNNNN Y - = = = =

node 0

node 1

node 2

ZooKeeper

Key range

A-ak — Bayes

Bayeu — Ceanothus
Ceara — Deluc
Delusion — Frenssen
Freon — Holderlin
Holderness — Krasnoje
Krasnokamsk — Menadra
Menage — Ottawa
Otter — Rethimnon
Reti — Solovets
Solovyov — Truck
Trudeau — Zywiec

Partition
partition 0
partition 1
partition 2
partition 3
partition 4
partition 5
partition 6
partition 7
partition 8
partition 9
partition 10
partition 11

e = the knowledge of which partition is assigned to which node

Node

node 0
node 1
node 2
node 0
node 1
node 2
node 0
node 1
node 2
node 0
node 1
node 2

IP address
10.20.30.100
10.20.30.101
10.20.30.102
10.20.30.100
10.20.30.101
10.20.30.102
10.20.30.100
10.20.30.101
10.20.30.102
10.20.30.100
10.20.30.101
10.20.30.102

45

Takeaway

®* The benetfits of Partitioning and Replication.
®* The challenges of Partitioning and Replication.
®* The fradeoffs of different strategies.
®* Replication: single-leader, multiple-leader, leaderless
® Partition: Key range, hash, hybrid.
® Partition rebalancing strategies: fixed, dynamic
® Partition routing, ZooKeeper

	幻灯片 1: Where We Are
	幻灯片 2: 3 Paradigms of Multi-Node Parallelism Implementations
	幻灯片 3: Shared-Nothing Parallelism (horizontal scaling)
	幻灯片 4: Shared-Nothing Parallelism (horizontal scaling)
	幻灯片 5: Metrics to Evaluate Distributed Big Data Systems
	幻灯片 6: Problems Distributed Systems Need to Solve
	幻灯片 7: Problems Distributed Systems Need to Solve
	幻灯片 8: Replication versus Partitioning
	幻灯片 9: Challenge: How to handle changes to replicated data?
	幻灯片 10: Leaders and Followers
	幻灯片 11: Single-leader replication
	幻灯片 12: Multi-leader replication (Multi-datacenter operation)
	幻灯片 13: Multi-leader replication
	幻灯片 14: Google Doc Undo-Redo
	幻灯片 15: Leaderless replication
	幻灯片 16: Challenge: How to handle changes to replicated data?
	幻灯片 17: Replication (assuming a small dataset)
	幻灯片 18: Replication (assuming a small dataset)
	幻灯片 19: Partitioning (what if the dataset is too big for a single machine?)
	幻灯片 20: Combining replication and partitioning
	幻灯片 21: Intuitions behind partitioning (why?)
	幻灯片 22: Partitioning challenges
	幻灯片 23: How to partition?
	幻灯片 24: Partition solution #1: by Key Range
	幻灯片 25: Partition solution #1: by Key Range
	幻灯片 26: Partition solution #2: by Hash of Key
	幻灯片 27: Partition solution #2: by Hash of Key
	幻灯片 28: Partition solution #3: Hash of Key + Key Range
	幻灯片 29: Partitioning challenges
	幻灯片 30: Rebalance
	幻灯片 31: Strawman solution: Hash mod N
	幻灯片 32: Consistent hashing ring
	幻灯片 33: Rebalancing solution #1: Fixed number of partitions
	幻灯片 34: Rebalancing solution #1: Fixed number of partitions
	幻灯片 35: Rebalancing solution #2: Dynamic partitions
	幻灯片 36: Automatic or Manual Rebalancing
	幻灯片 37: Partitioning challenges
	幻灯片 38: Two questions
	幻灯片 39: Routing paradigm #1
	幻灯片 40: Routing paradigm #2
	幻灯片 41: Routing paradigm #3
	幻灯片 42: Two questions
	幻灯片 43: ZooKeeper
	幻灯片 44: ZooKeeper
	幻灯片 45: Takeaway

