
Where We Are

Foundations of Data Systems

Cloud

Machine Learning Systems

Big Data

1980 - 2000

2000 - 2016

2010 - Now

2

3 Paradigms of Multi-Node Parallelism Implementations

Shared-Nothing

Parallelism

Shared-Memory

Parallelism

Shared-Disk

Parallelism

Interconnect

Interconnect

Interconnect

3

Shared-Nothing Parallelism (horizontal scaling)

Interconnect

• Most popular approach!

• Each node uses its CPUs, RAM, and

disks independently.

• Any coordination, software level,

through a conventional network.

• The vanilla (and most complex!)

distributed systems

• Consistency

• Communication

• Coordination

4

Shared-Nothing Parallelism (horizontal scaling)

Interconnect

• Advantage:

• Performance

• Cost

• Disadvantage

• Complexity.

• Involves many constraints and

trade-offs.

• Database cannot magically hide

all these from you.

5

Metrics to Evaluate Distributed Big Data Systems

• Scalability

• Data volume

• Read/Write/Compute load

• Consistency and correctness

• Read / Write sees consistency data

• Compute produce correct results

• Fault tolerance / high availability

• When one fails, another can take over.

• Latency

• Distribute machines worldwide.

• Reduce network latency.

Problems Distributed Systems Need to Solve

• Communication (covered)

• How to Distribute Data?

• How to Distribute Compute?

• How to Coordinate/Synchronize?

Problems Distributed Systems Need to Solve

• How to Distribute Data?

• Replicate / Partition the data

• How to Distribute Compute?

• Batch Processing / Steaming processing

• How to Coordinate/Synchronize?

• Distributed decision making and consensus

8

Replication versus Partitioning

9

Challenge: How to handle changes to replicated data?

10

Leaders and Followers

• Clients send requests to the leader to write to the db. The leader saves locally

• The leader then sends the data change to all of its followers.

• Clients read data from the leader or followers.

• One of the big ideas in CS (leader-follower). Distributed msg brokers (e.g., Kafka).

11

Single-leader replication

• Advantages:

• Simplicity (easy-to-understand)

• Conflicts across nodes (consistency)

• Disadvantages:

• Single point of failure

12

Multi-leader replication (Multi-datacenter operation)

13

Multi-leader replication

• Advantages:

• Performance (i.e., network latency).

• Tolerance of data center outages.

• Tolerance of network problems.

• Asynchronous syncing.

• Disadvantages:

• Potential write conflicts.

• The same data may be concurrently modified in two different

data centers.

• Only use it if necessary.

14

Google Doc Undo-Redo

15

Leaderless replication

16

Challenge: How to handle changes to replicated data?

• Three main approaches:

• Single-leader replication

• Multi-leader replication

• Leaderless replication

• Tradeoffs

• Simplicity (easy-to-understand)

• Conflicts across nodes (consistency)

• Faulty nodes

• Network interruption

• Latency spikes

17

Replication (assuming a small dataset)

• Scalability

• Data volume

• Read load

• Write load

• Fault tolerance | high availability

• When one fails, another can take

over.

• Latency

• Distribute machines worldwide.

• Reduce network latency.

18

Replication (assuming a small dataset)

• Scalability

• Data volume

• Read load

• Write load

• Fault tolerance | high availability

• When one fails, another can take

over.

• Latency

• Distribute machines worldwide.

• Reduce network latency.

19

Partitioning (what if the dataset is too big for a single

machine?)

20

Combining replication and partitioning

21

Intuitions behind partitioning (why?)

Shared-Nothing

Parallelism

Interconnect
• A large dataset can be distributed

across many disks.

• The query load can be distributed across

many processors.

22

Partitioning challenges

Shared-Nothing

Parallelism

Interconnect
• How to partition and how to index?

• How to add or remove nodes?

• How to route the requests and execute

queries?

23

How to partition?

• Ideally:

• Spread the data and the query load evenly across

nodes.

• Reality:

• Hot spot: a partition with disproportionately high load.

• Straw-man solution:

• Distribute randomly.

• Problem:

• When you read a data, you do not know which

node you should request. You have to request all

the nodes.

24

Partition solution #1: by Key Range

25

Partition solution #1: by Key Range

• Advantage: can do range queries

• Problems:

• The ranges of keys are not necessarily

evenly spaced.

• Volume 12 contains words starting

with T - Z.

• Manual process. Require domain

expertise.

• Hard to rebalance.

• Hot spot issues.

• One letter is popular.

• Common keys: names, titles, dates.

26

Partition solution #2: by Hash of Key

Recall bloom filter.

27

Partition solution #2: by Hash of Key

Recall bloom filter.

• Advantages:

• Automatic.

• Easy to balance.

• Problems:

• Do not support efficient range

queries.

28

Partition solution #3: Hash of Key + Key Range

user_id update_timestamp

29

Partitioning challenges

Shared-Nothing

Parallelism

Interconnect
• How to partition and how to index?

• How to add or remove nodes?

• How to route the requests and execute

queries?

30

Rebalance

• Move the load from one node in a cluster to another

• The query throughput increases → more CPUs

• The dataset size increases → more disks and RAM

• Machine failure

• Rebalancing goals

• Share the load fairly after rebalancing.

• Continue accepting reads and writes while

rebalancing.

• Minimize data moving (i.e., network and disk I/O load)

31

Strawman solution: Hash mod N

32

Consistent hashing ring

Learn more in https://www.youtube.com/watch?v=UF9Iqmg94tk

33

Rebalancing solution #1: Fixed number of partitions

34

Rebalancing solution #1: Fixed number of partitions

• The total number of partitions is fixed.

• The # of nodes can be adaptive for different machines.

• Partitions should have similar sizes => why?

• Easier for management.

• Each partition grows proportionally to the total amount of data.

• Challenges:

• Need to choose the right number of partitions.

• Too high → too much overhead

• Too low → Migration will be very expensive.

• Wrong index system.

• Very unbalanced distributions.

• Only work with hash partitioned database. => Why?

35

Rebalancing solution #2: Dynamic partitions

• Similar idea as the B-tree.

• Split ← When a partition grows to exceed a configured size (e.g., 10

GB).

• Merge ← When lots of data is deleted and a partition shrinks.

• One node → multiple partitions.

• One partition → one node.

• A caveat:

• By default, start → an empty database → one partition → only one

node.

• Some systems allow pre-splitting.

• Dynamic partition works for both key range and hash partitioned data.

36

Automatic or Manual Rebalancing

• Mostly manual → Why?

• Rebalancing is very expensive!

• Some suggestive interfaces exist.

37

Partitioning challenges

Shared-Nothing

Parallelism

Interconnect
• How to partition and how to index?

• How to add or remove nodes?

• How to route the requests and execute

queries?

38

Two questions

• Which node to connect to?

• Where to maintain the knowledge of rebalanced results?

39

Routing paradigm #1

• Contact any node (e.g., a

round-robin load balancer),

• If the node has the data copy,

respond.

• If not, forward, receives the

reply, and passes the reply along

to the client.

40

Routing paradigm #2

• Send all requests to a routing tier

first.

• The routing tier forward all the

requests.

41

Routing paradigm #3

• The client is aware of the

partitioning and the assignment

of partitions to nodes.

• No intermediary.

42

Two questions

• Which node to connect to?

• Where to maintain the knowledge of rebalanced results?

43

ZooKeeper

44

ZooKeeper

• Each node registers itself in

ZooKeeper.

• ZooKeeper maintains the mapping.

• Other actors (different in three

paradigms) subscribe to ZooKeeper.

• Whenever the partition mapping

changes, ZooKeeper notifies actors.

45

Takeaway

• The benefits of Partitioning and Replication.

• The challenges of Partitioning and Replication.

• The tradeoffs of different strategies.

• Replication: single-leader, multiple-leader, leaderless

• Partition: Key range, hash, hybrid.

• Partition rebalancing strategies: fixed, dynamic

• Partition routing, ZooKeeper

	幻灯片 1: Where We Are
	幻灯片 2: 3 Paradigms of Multi-Node Parallelism Implementations
	幻灯片 3: Shared-Nothing Parallelism (horizontal scaling)
	幻灯片 4: Shared-Nothing Parallelism (horizontal scaling)
	幻灯片 5: Metrics to Evaluate Distributed Big Data Systems
	幻灯片 6: Problems Distributed Systems Need to Solve
	幻灯片 7: Problems Distributed Systems Need to Solve
	幻灯片 8: Replication versus Partitioning
	幻灯片 9: Challenge: How to handle changes to replicated data?
	幻灯片 10: Leaders and Followers
	幻灯片 11: Single-leader replication
	幻灯片 12: Multi-leader replication (Multi-datacenter operation)
	幻灯片 13: Multi-leader replication
	幻灯片 14: Google Doc Undo-Redo
	幻灯片 15: Leaderless replication
	幻灯片 16: Challenge: How to handle changes to replicated data?
	幻灯片 17: Replication (assuming a small dataset)
	幻灯片 18: Replication (assuming a small dataset)
	幻灯片 19: Partitioning (what if the dataset is too big for a single machine?)
	幻灯片 20: Combining replication and partitioning
	幻灯片 21: Intuitions behind partitioning (why?)
	幻灯片 22: Partitioning challenges
	幻灯片 23: How to partition?
	幻灯片 24: Partition solution #1: by Key Range
	幻灯片 25: Partition solution #1: by Key Range
	幻灯片 26: Partition solution #2: by Hash of Key
	幻灯片 27: Partition solution #2: by Hash of Key
	幻灯片 28: Partition solution #3: Hash of Key + Key Range
	幻灯片 29: Partitioning challenges
	幻灯片 30: Rebalance
	幻灯片 31: Strawman solution: Hash mod N
	幻灯片 32: Consistent hashing ring
	幻灯片 33: Rebalancing solution #1: Fixed number of partitions
	幻灯片 34: Rebalancing solution #1: Fixed number of partitions
	幻灯片 35: Rebalancing solution #2: Dynamic partitions
	幻灯片 36: Automatic or Manual Rebalancing
	幻灯片 37: Partitioning challenges
	幻灯片 38: Two questions
	幻灯片 39: Routing paradigm #1
	幻灯片 40: Routing paradigm #2
	幻灯片 41: Routing paradigm #3
	幻灯片 42: Two questions
	幻灯片 43: ZooKeeper
	幻灯片 44: ZooKeeper
	幻灯片 45: Takeaway

