
Where We Are

Foundations of Data Systems

Cloud

Machine Learning Systems

Big Data

1980 - 2000

2000 - 2016

2010 - Now

2

Logistics

• PA2 released

• 2 Weeks to finish

• Please participate in guest talk discussion

• Will initiate discussion threads after every guest talk

• Develop an understand of technological trend is the most important

outcome of this course

• Next guest talk: Ray by Stephanie Wang

• Reading summary

• The 2 page limit is meant to reduce your workload, but if you

want to go over 2 pages, just do it.

3

Logistics

• PA3 will be released in end of week 8

• Scribe duties

• The scribe scheduling was tentative

• Please do scribe the day you signed up, even if the topic was

changed from the schedule

• If you really dislike the topic – write an email to instructors

Problems Distributed Systems Need to Solve

• How to Distribute Data?

• Replicate / Partition the data

• Replicate -> redundancy -> fault tolerance

• Partition -> scalability -> hot partition problem

• How to Distribute Compute?

• Batch processing

• Streaming processing

• How to Coordinate/Synchronize?

5

Partitioning challenges

Shared-Nothing

Parallelism

Interconnect
• How to partition and how to index?

• How to add or remove nodes?

• How to route the requests and execute

queries?

6

Routing paradigm #1

• Contact any node (e.g., a

round-robin load balancer),

• If the node has the data copy,

respond.

• If not, forward, receives the

reply, and passes the reply along

to the client.

7

Routing paradigm #2

• Send all requests to a routing tier

first.

• The routing tier forward all the

requests.

8

Routing paradigm #3

• The client is aware of the

partitioning and the assignment

of partitions to nodes.

• No intermediary.

9

ZooKeeper

10

ZooKeeper

• Each node registers itself in

ZooKeeper.

• ZooKeeper maintains the mapping.

• Other actors (different in three

paradigms) subscribe to ZooKeeper.

• Whenever the partition mapping

changes, ZooKeeper notifies actors.

11

Takeaway

• The benefits of Partitioning and Replication.

• The challenges of Partitioning and Replication.

• The tradeoffs of different strategies.

• Replication: single-leader, multiple-leader, leaderless

• Partition: Key range, hash, hybrid.

• Partition rebalancing strategies: fixed, dynamic

• Partition routing

Problems Distributed Systems Need to Solve

• How to Distribute Data?

• Replicate / Partition the data

• Replicate -> redundancy -> fault tolerance

• Partition -> scalability

• How to Distribute Compute?

• Batch processing

• Streaming processing

• How to Coordinate/Synchronize?

13

Today’s topic: Batch Processing

• Overview

• IO & Unix pipes

• MapReduce

• Beyond MapReduce

14

Basic Computing System Paradigm

Computing systems

(Processing!)

Input, Requests, Queries Output, Responses, Results

15

Processing latency

Online system: handle request ASAP

Stream processing systems

(near-real-time systems)

Batch processing systems

(Offline systems)

Interactive data science!

Figure from https://publishup.uni-potsdam.de/opus4-ubp/frontdoor/deliver/index/docId/10090/file/mueller_diss.pdf

16

Today’s topic: Batch Processing

• Overview

• IO & Unix pipes

• MapReduce

• Beyond MapReduce

17

The shell

A command line interpreter that

provides the interface to Unix OS.

18

Shell example

“.****rc”

Run commands

19

Useful shell commands

• Shell already has a collection of rich commands

• Some Useful commands

• uptime, cut, date, cat, finger, hexdump, man, md5sum,

quota,

• mkdir, rmdir, rm, mv, du, df, find, cp, chmod, cd

• uname, zip, unzip, gzip, tar

• tr, sed, sort, uniq, ascii

• Type “man command” to read about shell commands

20

What do these shell commands do?

• cat dups.txt | sort | uniq

• cat dups.txt | sort -V| uniq

• cat dups.txt | sort -V| uniq > outfile.txt

• tr "a" "e" < z.txt

• cat z.txt | tr a e

21

Batch processing with Unix Tools

• Read the log file.

• Split each line into fields by white

space, output only the 7th element

(requested URL).

• Alphabetically sort

• Filter out repeated lines.

• Sort it again based on the line number

(-n)

• Out put the first five lines.

22

Unix philosophy

23

Unix philosophy

• Make each program do one thing well. To do a new job, build

afresh rather than complicate old programs by adding new

“features”.

• Expect the output of every program to become the input to

another, as yet unknown, program. Don’t clutter output with

extraneous information. Avoid stringently columnar or binary input

formats. Don’t insist on interactive input.

• Design and build software, even operating systems, to be tried

early, ideally within weeks. Don’t hesitate to throw away the clumsy

parts and rebuild them.

• Use tools in preference to unskilled help to lighten a programming

task, even if you have to detour to build the tools and expect to

throw some of them out after you’ve finished using them.

24

Unix philosophy

• Make each program do one thing well. To do a new job, build

afresh rather than complicate old programs by adding new

“features”.

• Expect the output of every program to become the input to

another, as yet unknown, program. Don’t clutter output with

extraneous information. Avoid stringently columnar or binary input

formats. Don’t insist on interactive input.

• Design and build software, even operating systems, to be tried

early, ideally within weeks. Don’t hesitate to throw away the clumsy

parts and rebuild them.

• Use tools in preference to unskilled help to lighten a programming

task, even if you have to detour to build the tools and expect to

throw some of them out after you’ve finished using them.

25

Unix philosophy

• Make each program do one thing well. To do a new job, build

afresh rather than complicate old programs by adding new

“features”.

• Expect the output of every program to become the input to

another, as yet unknown, program. Don’t clutter output with

extraneous information. Avoid stringently columnar or binary input

formats. Don’t insist on interactive input.

• Design and build software, even operating systems, to be tried

early, ideally within weeks. Don’t hesitate to throw away the clumsy

parts and rebuild them.

• Use tools in preference to unskilled help to lighten a programming

task, even if you have to detour to build the tools and expect to

throw some of them out after you’ve finished using them.

26

Unix philosophy

• Make each program do one thing well. To do a new job, build

afresh rather than complicate old programs by adding new

“features”.

• Expect the output of every program to become the input to

another, as yet unknown, program. Don’t clutter output with

extraneous information. Avoid stringently columnar or binary input

formats. Don’t insist on interactive input.

• Design and build software, even operating systems, to be tried

early, ideally within weeks. Don’t hesitate to throw away the clumsy

parts and rebuild them.

• Use tools in preference to unskilled help to lighten a programming

task, even if you have to detour to build the tools and expect to

throw some of them out after you’ve finished using them.

27

Transparency and experimentation

• The input files to Unix commands are normally treated as

immutable.

• Run most commands without damaging the input files.

• You can end the pipeline at any point, pipe the output into less,

and look at it to see if it has the expected form.

• Great for debugging.

• You can write the output of one pipeline stage to a file and use

that file as input to the next stage.

• Restart process.

28

The biggest limitation of Unix tools is that they run only

on a single machine — and that’s where tools like

Hadoop come in.

29

Today’s topic: Batch Processing

• Overview

• IO & Unix pipes

• MapReduce

• HDFS - infrastructure

• Job execution

• Programming models

• Workflow

• Beyond MapReduce

30

Batch processing with Unix Tools

• Read the log file.

• Split each line into fields by white

space, output only the 7th element

(requested URL).

• Alphabetically sort

• Filter out repeated lines.

• Sort it again based on the line number

(-n)

• Output the first five lines.

31

Today’s topic: Batch Processing

• Overview

• IO & Unix pipes

• MapReduce

• HDFS - infrastructure

• Programming models

• Job execution

• Workflow

• Beyond MapReduce

32

Google Data Centers

• Dalles, Oregon

■Hydroelectric power @ 2¢ / KW Hr

■50 Megawatts

●Enough to power 60,000 homes

■Engineered for maximum modularity & power
efficiency

■Container: 1160 servers, 250KW

■Server: 2 disks, 2 processors

33

Typical Cluster Machine

Compute + Storage Nodes

• Medium-performance processors

• Modest memory

• 1-2 disks

Network

• Conventional Ethernet switches

• 10 Gb/s within rack

• 100 Gb/s across racks

Network

Compute + Storage Nodes

• • •
CPU

Mem

CPU

Mem

CPU

Mem

34

Machines with Disks

Lots of storage for cheap

• 3 TB @ $150

(5¢ / GB)

• Compare 2007:

0.75 TB @ $266

35¢ / GB

Drawbacks

• Long and highly variable delays

• Not very reliable

Not included in HPC Nodes

35

Oceans of Data, Skinny Pipes

1 Terabyte

• Easy to store

• Hard to move

Disks MB / s Time

Seagate Barracuda 115 2.3 hours

Seagate Cheetah 125 2.2 hours

Networks MB / s Time

Home Internet < 0.625 > 18.5 days

Gigabit Ethernet < 125 > 2.2 hours

PSC Teragrid
Connection

< 3,750 > 4.4 minutes

36

Data-Intensive System Challenge

For Computation That Accesses 1 TB in 5 minutes

• Data distributed over 100+ disks

• Assuming uniform data partitioning

• Compute using 100+ processors

• Connected by gigabit Ethernet (or equivalent)

System Requirements

• Lots of disks

• Lots of processors

• Located in close proximity

• Within reach of fast, local-area network

37

Hadoop Project

File system with files distributed across nodes

• Store multiple (typically 3 copies of each file)

• If one node fails, data still available

• Logically, any node has access to any file

• May need to fetch across network (ideally, leverage locality for perf.)

Map / Reduce programming environment

• Software manages execution of tasks on nodes

Local Network

CPU

Node 1

CPU

Node 2

CPU

Node n

• • •

	幻灯片 1: Where We Are
	幻灯片 2: Logistics
	幻灯片 3: Logistics
	幻灯片 4: Problems Distributed Systems Need to Solve
	幻灯片 5: Partitioning challenges
	幻灯片 6: Routing paradigm #1
	幻灯片 7: Routing paradigm #2
	幻灯片 8: Routing paradigm #3
	幻灯片 9: ZooKeeper
	幻灯片 10: ZooKeeper
	幻灯片 11: Takeaway
	幻灯片 12: Problems Distributed Systems Need to Solve
	幻灯片 13: Today’s topic: Batch Processing
	幻灯片 14: Basic Computing System Paradigm
	幻灯片 15: Processing latency
	幻灯片 16: Today’s topic: Batch Processing
	幻灯片 17: The shell
	幻灯片 18: Shell example
	幻灯片 19: Useful shell commands
	幻灯片 20: What do these shell commands do?
	幻灯片 21: Batch processing with Unix Tools
	幻灯片 22: Unix philosophy
	幻灯片 23: Unix philosophy
	幻灯片 24: Unix philosophy
	幻灯片 25: Unix philosophy
	幻灯片 26: Unix philosophy
	幻灯片 27: Transparency and experimentation
	幻灯片 28
	幻灯片 29: Today’s topic: Batch Processing
	幻灯片 30: Batch processing with Unix Tools
	幻灯片 31: Today’s topic: Batch Processing
	幻灯片 32: Google Data Centers
	幻灯片 33: Typical Cluster Machine
	幻灯片 34: Machines with Disks
	幻灯片 35: Oceans of Data, Skinny Pipes
	幻灯片 36: Data-Intensive System Challenge
	幻灯片 37: Hadoop Project

