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Logistics

• PA2 released

• 2 Weeks to finish

• Please participate in guest talk discussion

• Will initiate discussion threads after every guest talk

• Develop an understand of technological trend is the most important 

outcome of this course

• Next guest talk: Ray by Stephanie Wang

• Reading summary

• The 2 page limit is meant to reduce your workload, but if you 

want to go over 2 pages, just do it.



3

Logistics

• PA3 will be released in end of week 8

• Scribe duties

• The scribe scheduling was tentative 

• Please do scribe the day you signed up, even if the topic was 

changed from the schedule

• If you really dislike the topic – write an email to instructors



Problems Distributed Systems Need to Solve

• How to Distribute Data?

• Replicate / Partition the data

• Replicate -> redundancy -> fault tolerance

• Partition -> scalability -> hot partition problem

• How to Distribute Compute?

• Batch processing 

• Streaming processing

• How to Coordinate/Synchronize?
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Partitioning challenges

Shared-Nothing 

Parallelism

Interconnect
• How to partition and how to index?

• How to add or remove nodes?

• How to route the requests and execute 

queries?
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Routing paradigm #1

• Contact any node (e.g., a 

round-robin load balancer), 

• If the node has the data copy, 

respond.

• If not, forward, receives the 

reply, and passes the reply along 

to the client.  



7

Routing paradigm #2

• Send all requests to a routing tier 

first.

• The routing tier forward all the 

requests.
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Routing paradigm #3

• The client is aware of the 

partitioning and the assignment 

of partitions to nodes. 

• No intermediary. 
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ZooKeeper
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ZooKeeper

• Each node registers itself in 

ZooKeeper.

• ZooKeeper maintains the mapping. 

• Other actors (different in three 

paradigms) subscribe to ZooKeeper.

• Whenever the partition mapping 

changes, ZooKeeper notifies actors. 
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Takeaway

• The benefits of Partitioning and Replication. 

• The challenges of Partitioning and Replication.

• The tradeoffs of different strategies.

• Replication: single-leader, multiple-leader, leaderless

• Partition: Key range, hash, hybrid.

• Partition rebalancing strategies: fixed, dynamic

• Partition routing
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Today’s topic: Batch Processing

• Overview

• IO & Unix pipes

• MapReduce

• Beyond MapReduce
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Basic Computing System Paradigm

Computing systems

(Processing!)

Input, Requests, Queries Output, Responses, Results
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Processing latency

Online system: handle request ASAP

Stream processing systems 

(near-real-time systems)

Batch processing systems 

(Offline systems)

Interactive data science!

Figure from https://publishup.uni-potsdam.de/opus4-ubp/frontdoor/deliver/index/docId/10090/file/mueller_diss.pdf
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Today’s topic: Batch Processing

• Overview

• IO & Unix pipes

• MapReduce

• Beyond MapReduce
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The shell

A command line interpreter that 

provides the interface to Unix OS.
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Shell example

“.****rc”

Run commands
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Useful shell commands

• Shell already has a collection of rich commands

• Some Useful commands  

• uptime, cut, date, cat, finger, hexdump, man, md5sum, 

quota, 

• mkdir, rmdir, rm, mv, du, df, find, cp, chmod, cd  

• uname, zip, unzip, gzip, tar  

• tr, sed, sort, uniq, ascii  

• Type “man command” to read about shell commands
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What do these shell commands do?

• cat dups.txt | sort | uniq 

• cat dups.txt | sort -V| uniq 

• cat dups.txt | sort -V| uniq > outfile.txt

• tr "a" "e" < z.txt

• cat z.txt | tr a e
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Batch processing with Unix Tools

• Read the log file.

• Split each line into fields by white 

space, output only the 7th element 

(requested URL).

• Alphabetically sort

• Filter out repeated lines.

• Sort it again based on the line number 

(-n)

• Out put the first five lines. 
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Unix philosophy 
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Unix philosophy 

• Make each program do one thing well. To do a new job, build 

afresh rather than complicate old programs by adding new 

“features”.

• Expect the output of every program to become the input to 

another, as yet unknown, program. Don’t clutter output with 

extraneous information. Avoid stringently columnar or binary input 

formats. Don’t insist on interactive input. 

• Design and build software, even operating systems, to be tried 

early, ideally within weeks. Don’t hesitate to throw away the clumsy 

parts and rebuild them. 

• Use tools in preference to unskilled help to lighten a programming 

task, even if you have to detour to build the tools and expect to 

throw some of them out after you’ve finished using them.
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Transparency and experimentation

• The input files to Unix commands are normally treated as 

immutable.

• Run most commands without damaging the input files.

• You can end the pipeline at any point, pipe the output into less, 

and look at it to see if it has the expected form.

• Great for debugging.

• You can write the output of one pipeline stage to a file and use 

that file as input to the next stage.

• Restart process. 
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The biggest limitation of Unix tools is that they run only 

on a single machine — and that’s where tools like 

Hadoop come in.
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Today’s topic: Batch Processing

• Overview

• IO & Unix pipes

• MapReduce

• HDFS - infrastructure

• Job execution

• Programming models 

• Workflow

• Beyond MapReduce
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Batch processing with Unix Tools

• Read the log file.

• Split each line into fields by white 

space, output only the 7th element 

(requested URL).

• Alphabetically sort

• Filter out repeated lines.

• Sort it again based on the line number 

(-n)

• Output the first five lines. 
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Today’s topic: Batch Processing

• Overview

• IO & Unix pipes

• MapReduce

• HDFS - infrastructure

• Programming models 

• Job execution

• Workflow

• Beyond MapReduce
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Google Data Centers

• Dalles, Oregon

■Hydroelectric power @ 2¢ / KW Hr

■50 Megawatts

●Enough to power 60,000 homes

■Engineered for maximum modularity & power 
efficiency

■Container: 1160 servers, 250KW

■Server: 2 disks, 2 processors
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Typical Cluster Machine

Compute + Storage Nodes

• Medium-performance processors

• Modest memory

• 1-2 disks

Network

• Conventional Ethernet switches

• 10 Gb/s within rack

• 100 Gb/s across racks

Network

Compute + Storage Nodes

• • •
CPU

Mem

CPU

Mem

CPU

Mem
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Machines with Disks

Lots of storage for cheap

• 3 TB @ $150

(5¢ / GB)

• Compare 2007:

0.75 TB @ $266

35¢ / GB

Drawbacks

• Long and highly variable delays

• Not very reliable

Not included in HPC Nodes
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Oceans of Data, Skinny Pipes

1 Terabyte

• Easy to store

• Hard to move

Disks MB / s Time

Seagate Barracuda 115 2.3 hours

Seagate Cheetah 125 2.2 hours

Networks MB / s Time

Home Internet < 0.625 > 18.5 days

Gigabit Ethernet < 125 > 2.2 hours

PSC Teragrid 
Connection

< 3,750 > 4.4 minutes
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Data-Intensive System Challenge

For Computation That Accesses 1 TB in 5 minutes

• Data distributed over 100+ disks

• Assuming uniform data partitioning

• Compute using 100+ processors

• Connected by gigabit Ethernet (or equivalent)

System Requirements

• Lots of disks

• Lots of processors

• Located in close proximity

• Within reach of fast, local-area network
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Hadoop Project

File system with files distributed across nodes

• Store multiple (typically 3 copies of each file)

• If one node fails, data still available

• Logically, any node has access to any file

• May need to fetch across network (ideally, leverage locality for perf.) 

Map / Reduce programming environment

• Software manages execution of tasks on nodes

Local Network

CPU

Node 1

CPU

Node 2

CPU

Node n

•   •  •
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