Where We Are

Machine Learning Systems

Big Data 2010 - Now

Cloud 2000 - 2016

Foundations of Data Systems 1980 - 2000

Today’s fopic: Batch Processing

* Overview
* [O & Unix pipes
* MapReduce

® HDFS - infrastructure
®* Programming models
* Job execution

* Workflow

* Beyond MapReduce

Historical Context of Map-reduce

For Computation That Accesses 1 TB In 5 minutes

* Data distributed over 100+ disks
* Compute using 100+ processors

* Connected by gigabit Ethernet (or equivalent)

Local Network

System Requirements f ;

® | otfs of disks

® | ofs of processors % %

* Located in close proximity Node 1 Node 2
* Within reach of fast, local-area network

Node n

Today’s fopic: Batch Processing

* Overview
* [O & Unix pipes
* MapReduce

® HDFS - Infrastructure

* Programming models (API)
* Job execution (runtime)

* Workflow

* Beyond MapReduce

|deal Cluster Programming Model

* Application programs written in

terms of high-level o
dato

* User-facing

perations on

® Runtime system controls

scheduling, load ba

ancing, ...

* System implemen

ations

* After Map-reduce papers:

* Many system research papers
follow this template

Machine-Independent
Programming Model

Application
Programs

—_—

Runtime
System

Hardware

MAPREDUCE: SIMPLIFIED DATA PROCESSING
ON LARGE CLUSTERS

by Jeffrey Dean and Sanjay Ghemawat

Abstract

apReduce is a programming model and an associated implementation for processing
M and generating large datasets that is amenable to a broad variety of real-world tasks.

Users specity the computation in terms of a map and a reduce tunction, and the under-
lying runtime system automatically parallelizes the computation across large-scale clusters ot
machines, handles machine failures, and schedules inter-machine communication to make efti-
cient use of the network and disks. Programmers find the system easy to use: more than ten
thousand distinct MapReduce programs have been implemented internally at Google over the
past four years, and an average of one hundred thousand MapReduce jobs are executed on
Google’s clusters every day, processing a total of more than twenty petabytes of data per day.

ANNALS OF TECHNOLOGY

THE FRIENDSHIP THAT MADE GOOGLE HUGE

Coding together at the same computer, Jeff Dean and Sanjay Ghemawat changed the course of the company—and the

Internet.

By James Somers

December 3, 2018

ﬁﬂ/qﬂﬁ/““q
¥ J MERU R AU T RS i
f] /

0000100000400001000°
" e, .ﬂ l] j d ~t—~kr} "'*If “J " N e ""'"" J J e E\L' iy J j St
/ é 2 'é é A At \

NANNNNM 4R

1

nnnd ahnnt nnnnt nnnann

< e
x/ .. s,
XY A
h ¢ A
; Wi ‘0
r A A" -
= R, e
\ \ 3 P fv‘.‘
A TAE O TRy A A
3 ; i:r"‘v\\" CHT T Z
TR NN v, i
I Y ¥,
% ‘ ’
i f
s "
AJATERL U L) N ‘

1000100360564

os.//www.newyorker.com/magazine/2018/12/10/the-inendship-that-made-
google-huge

10

TF-1DF Is a measvre of aru‘sina\ihs of o word
Fhe romben of Himes a word appears in a doc

of docS the woed a.ppmrs n.

TF-IDF = TF

b‘é ComFQn‘ﬂﬁ
w‘ﬂ] ‘H"C numbér

(-9 x 1DF(Y

TCY‘m fﬂe%ocncﬁ \nv erse docomeni'

‘Ff‘e%ve,nus & of

documents
.j_ -+ oNysE .

¢ el df(d,ﬂ,)

Document ‘Frtfvwo:)
of theterm T

TF-IDF Examples

Text 1l ilove natural language processing but i hate python
Text 2 ilike image processing
Text 3 ilike signal processing and image processing

lerm and but hote : image langquage xe love natural processing . python signal
IDF 047712 047712 04771 0 01760913 0.477121 0.1760913 0.477121 0.47712125 0 0.477121 0.477121
and but hate : imoge language ke love natural processing python signal
rext 1 0 047712 04771 0 0 0.477121 0 0.477121 0.47712125 0 0.477121 0
rext 2 0 0 0 0 0.1760913 0 0.1760913 0 0 0 0 0
exts 047712 0 0 0 0.1760913 0 0.1760913 0 0 0 0 0477121

11

12

Count the number of occurrences of word in a large

collection of documents

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:
EmitIintermediate(w, “17);

reduce(String key, Iterator values):

/] key: a word

// values: a list of counts

int result = O;

for each v in values:
result += Parselnt(v);

Emit(AsString(result));

®* Functional programming
® Functions are stateless

* They takes an input, processes
and output a result.

® Pros and Conse

13

Data models

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:
EmitIntermediate(w, “17);

reduce(String key, Iterator values):

/] key: a word

// values: a list of counts

int result = O;

for each v in values:
result += Parselnt(v);

Emit(AsString(result));

—

map
reduce

k1,v1)
(k2,list(v2))

— 1ist(kR,v_)
— 1list(va&)

14

MapReduce Example

* Create a word index of set of documents

Come,
Dick

Come
and
see.

Come,
come.

Come
and
see.

Come
and
see

Spot.

Come, Dick.

Come andd see.
Come, come.
Come amnd see,

Come and see Spot.

Sum

Word-Count
Pairs

ORNORONEEE

Come, Come Come, Come Come
Dick and come. and and
see. see. see

Spot.

* Map: generate (word, count) pairs for all words in document

® Reduce: sum word counts across documents

Discussion:
Other possible way to implement this using map-reduce?

2]

Today’s fopic: Batch Processing

* Overview
* [O & Unix pipes
* MapReduce

* HDFS - infrastructure

®* Programming models
* Job execution

* Workflow

* Beyond MapReduce

MapReduce Execution (Runtime)

Why do we need
shuffle<

Task
Manager

R Output Files

Reducer | | Reducer °oo Reducer R Reducers
<
Shuffle
J
Mapper Mapper ceooe Mapper | M Mappers

Input Files (Partitioned into Blocks)

23

Single Mapper

K

N
-

Hash Function h

* Maps each key K to integerisuch that0O<i<R
Mapper Operation

® Reads input file blocks

® Generates pairs (K, V)

* Writes to local file h(K])

> hK)E{0.,..., R-1}

01

Mapper

Block

Local
Files

Distributed Mapper

* Dynamically map input file blocks onto mappers
®* Fach generates key/value pairs from its blocks

® Each writes R files on local file system

R local files
per mapper

M Mappers

Menager ‘V&

Input Files (Partitioned into Blocks)

20

Reducer

FEach Reducer:

® Executes reducer function for each key

* Writes output values to parallel file system

R Output Files

Reducer

Reducer

Reducer

R Reducers

27

MapReduce Effect

MapReduce Step

® Reads set of files from file system

® Generates new set of files

Can Iterate to do more complex processing
R Output Files

MapReduce

Input Files (Partitioned into Blocks)

28

Today’s fopic: Batch Processing

* Overview
* [O & Unix pipes
* MapReduce

* HDFS - infrastructure
* Programming models (API)
* Job execution (runtime)
* MapReduce dataflow
* Beyond MapReduce

29

Example: Sparse Matrices with Map/Reduce

A B
10 20 -1

30 40 X |2 -3
50 60 70 -4

®* Task: Compute product C = AB

® Assume most mairix entries are O

Moftivation

® Core problem in scientific computing

* Challenging for parallel execution

C

-10 -80
-60 -250

-170-460

Computing Sparse Matrix Product

10

A 1 = 1 _B _
1o 20 | 1 io >3 -1
30 40 2 io > 2 ~2 -3
50 60 70 2 io >3 -4
- T 32—] _
3 2—2
3 >3

® Represent mairix as list of nonzero entries
{row, col, value, matrixID)

* How to represent the computation as map-reducee

®* Phase 1: Compute all products ax - by
®* Phase 2: Sum products for each entry i,
®* Fach phase involves a Map/Reduce

Phase 1 M
ap of Matrix Multiply

, Lo)
A "1
, 20
A ~ 3
, 30
= 2
, 40
a 3 |Key =
3 y = col
A "1
3 60
A > 2
5 10
= 3
(1)t
B "1
Key =row| [° o
, -3
B > 2
3 -4
s 2

* Group Vv
alues g
S Qix and by ; according fo k
ey k

32

Phase 1 "Reduce” of Matrix Multiply

-10

-50

-60

-90

-120

-180

-80

-160

-280

* Generate all products ay - by;

33

~10 (;f\
C

-50

A 1
-60

c 1
-90

= 2
~120

a 1
~180

o 2
-80

= 2
~160

= 2
-280 | ,,
C _/

Key =row,col

Phase 2 Map of Matrix Multiply

Key=11 1 ==—1 l

-80
Key=12 1 & > 2

Key=2,1 » (-:60 -4 l

* Group products gk - by; with mafching values of i and |

34

Phase 2 Reduce of Matrix Multiply

Key=11 1 ==—1 l

-80
Key=12 1 5 > 2

Key=2,1 » (-:60 = l

® Sum products to get final entries

-10

C
-80

C

:10 —80-
-60 -250
-170 -460

35

Recap: MapReduce Implementation

Built on Top of Parallel File System
* Google: GFS, Hadoop: HDFS
®* Provides global naming
® Reliablility via replication (typically 3 copies)
Breaks work info tasks
* Master schedules tasks on workers dynamically
* Typically #tasks >> #processors
Net Effect
* [nput: Set of files In reliable file system

* Qutput: Set of tiles Iin reliable file system

Analyzing Pros and Cons of Map/Reduce

Map/Reduce
Map
Reduce
IEEEEERINIINY
Reduce
FEEEEERERIEN I
Reduce
IEEEEERINIINI
Reduce

36

Characteristics

* Computation broken into many, short-lived tasks
°* Mapping, reducing

®* Use disk storage to hold intermediate results

Strengths

* Great flexiblility in placement, scheduling, and load balancing

® Can access large data sets
Weaknesses

* Higher overhead due to disk read/write

®* |ower raw performance (each map / reduce task takes long to invoke)

®* [earning Functional programming is non-triviall

33

Beyond Map/Reduce: Combiner and Partitfioner

Node 1

Input (k, v) pairs ¢

'

map

map

'

map

Cambinar

substitute intermediate (K, v)
pairs

Intermediate (k, v) pﬂnﬁ.\ l /

Node

2z

“Shuffling” procass

E—

Intermediate (k, v)
pairs exchanged

Combinear |

Y

Partitionas

by all nodes

Input (K, v) pairs

Intermediate (k, v} pairs

Substitute intermediate (k, v)

pairs

Combiners & Partitioners
are optional.

39

Input — Map — Combiner — Partitioner — Reducer —

Qutput

Node 1

Input (k, v) pairs ¢

¢ |

map

map map

pairs

Intermediate (k, v) ﬁﬂnﬁ.\‘ l /

Cambinear

Substitute intermediata (K, v)

Input:

What do you mean by Object

What do you know about Java
What is Java Virtual Machine

How Java enabled High Performance

Record reader:
<1, What do you mean by Object>
<2, What do you know about Java>

<3, What is Java Virtual Machine>
<4, How Java enabled High Performance>

Combiner (mini-reducer):
optional, to summarize the map output records with the same key

Node 1 Map output:
. <What, 1> <do,1> <you,1> <mean,1> <by,1>
ot (k] i i i ¢ <Obiject,1> <What,1> <do,1> <you,1> <know,1>
<about, 1> <Java,1> <What, 1> <is,1> <Java,1>
- - - <Virtual,1> <Machine,1> <How,1> <lJavag,1>

Cambinear

Intermediate (k, v) pﬂnﬁ.\‘ l / <enc1b|ed,1 > <ngh,] > <Performcmce,1 >

Substitute intermediate (k, v) Combiner output:
Palrs <What,1,1,1> <do,1,1> <youy,1,1> <mean,1> <by,1>
<Obiject, 1> <know,1> <about,1> <Javq,1,1,1> <is,1>
| <Virtual,1> <Machine,1> <How, 1> <enabled,1>
<High,1> <Performance,1>

4]

Partitfioner:
optional, a condifion in processing an input dataset

Node 1

Input (k, v) pairs ¢

¢ |

map

map map

pairs

Intermediate (k, v) ﬁﬂnﬁ.\‘ l /

Cambinear

Substitute intermediata (K, v)

Combiner output:

<What,1,1,1> <do,1,1> <youy,1,1> <mean,1> <by,1>
<Obiject,1> <know,1> <about, 1> <Javag,1,1,1> <is, 1>
<Virtual,1> <Machine,1> <How, 1> <enabled,1>
<High,1> <Performance,1>

The number of partitioners is equal to the number of
reducers.

Partitioner output:
<What,1,1,1>: long sentence,
<do,1,1>: long sentence,

42

Today’s fopic: Batch Processing

* Overview
* [O & Unix pipes
* MapReduce

* HDFS - infrastructure
* Programming models (API)
* Job execution (runfime)
* Workflow
* MapReduce Recap
* Beyond MapReduce

MapReduce System architecture (Paper)

split 0

split 1

split 2

(3)re

split 3

split 4

Input
files

43

User
Program
(1) fc-r%:_ . " f.:,ir}; : €1) fork
. (2
(2) " Assign
.as’aign reduce . .
 map
(5) remote read
a@ (4) local write _
Map Intermediate files
phase (on local disks)

(6) write

Reduce
phase

output
file 0

output
file 1

Output
files

44

Fault Tolerance and Straggler Mitigation

* Fault Tolerance
* Assume reliable file system
* Detect falled worker
* Heartbeat mechanism
®* Reschedule failed task
®* Dealing with Stragglers
®* Tasks that take long fime to execute
* Might be bug, flaky hardware, or poor partitfioning
* When done with most tasks, reschedule any remaining executing tasks
®* Keep track of redundant executions
* Significantly reduces overall run time

Fault Tolerance

Map/Reduce .
D Data Infegrity
Map
reduce * Store multiple copies of each file
Ma
Yt Redpuce * Including intermediate results of each Map / Redu
lllllllllllll Map * Continuous checkpointing
Reduce
Recovering from Failure
IERERRRNREINTN.,

Reduce

* Simply recompute |lost result
* Localized effect

Dynamic scheduler keeps all processors busy

46

Map/Reduce Summary

Typical Map/Reduce Applications

® Sequence of steps, each requiring map & reduce
® Series of data fransformations

Strengths of Map/Reduce

® User writes simple functions, system manages complexities of mapping,

synchronization, fault tolerance
®* Very generadl

* Good for large-scale data analysis

Map Reduce Summary: Cons

* Disk I/O overhead is super high
* Not flexible enough: Each map/reduce step must complete before next begins
* Not suitable for workloads:

® |[terative processing

® Real-time processing

* Map-reduce is still difficult to program with

48

All Modern Data/ML Systems follow the following arch

Programs Manifest

Syntax Operators A fixed set of operators

A frusted runtime with a small set

Runtime . .
of pre-loaded implementafions

Compller

Executable Executable

49

PageRank Computation

Initially
* Assign weight 1.0 fo each page R,

iteratively

® Select arbitrary node and update its value

Convergence R, € 0.1+09*(%R,+YRs+ "Ry

® Results unique, regardless of selection ordering

Q: how to express pagerank using map-reduce?

	Slide 1: Where We Are
	Slide 2: Today’s topic: Batch Processing
	Slide 3: Historical Context of Map-reduce
	Slide 6: Today’s topic: Batch Processing
	Slide 7: Ideal Cluster Programming Model
	Slide 8
	Slide 9
	Slide 10
	Slide 11: TF-IDF Examples
	Slide 12: Count the number of occurrences of word in a large collection of documents
	Slide 13: Data models
	Slide 14: MapReduce Example
	Slide 15
	Slide 16: Discussion: Other possible way to implement this using map-reduce?
	Slide 21: Today’s topic: Batch Processing
	Slide 22: MapReduce Execution (Runtime)
	Slide 23: Single Mapper
	Slide 24: Distributed Mapper
	Slide 26: Reducer
	Slide 27: MapReduce Effect
	Slide 28: Today’s topic: Batch Processing
	Slide 29: Example: Sparse Matrices with Map/Reduce
	Slide 30: Computing Sparse Matrix Product
	Slide 31: Phase 1 Map of Matrix Multiply
	Slide 32: Phase 1 “Reduce” of Matrix Multiply
	Slide 33: Phase 2 Map of Matrix Multiply
	Slide 34: Phase 2 Reduce of Matrix Multiply
	Slide 35: Recap: MapReduce Implementation
	Slide 36: Analyzing Pros and Cons of Map/Reduce
	Slide 38: Beyond Map/Reduce: Combiner and Partitioner
	Slide 39: Input → Map → Combiner → Partitioner → Reducer → Output
	Slide 40: Combiner (mini-reducer): optional, to summarize the map output records with the same key
	Slide 41: Partitioner: optional, a condition in processing an input dataset
	Slide 42: Today’s topic: Batch Processing
	Slide 43: MapReduce System architecture (Paper)
	Slide 44: Fault Tolerance and Straggler Mitigation
	Slide 45: Fault Tolerance
	Slide 46: Map/Reduce Summary
	Slide 47: Map Reduce Summary: Cons
	Slide 48: All Modern Data/ML Systems follow the following arch
	Slide 49: PageRank Computation
	Slide 50: Q: how to express pagerank using map-reduce?

