
Where We Are

Foundations of Data Systems

Cloud

Machine Learning Systems

Big Data

1980 - 2000

2000 - 2016

2010 - Now

2

Today’s topic: Batch Processing

• Overview

• IO & Unix pipes

• MapReduce

• HDFS - infrastructure

• Programming models

• Job execution

• Workflow

• Beyond MapReduce

3

Historical Context of Map-reduce

For Computation That Accesses 1 TB in 5 minutes

• Data distributed over 100+ disks

• Compute using 100+ processors

• Connected by gigabit Ethernet (or equivalent)

System Requirements

• Lots of disks

• Lots of processors

• Located in close proximity

• Within reach of fast, local-area network

6

Today’s topic: Batch Processing

• Overview

• IO & Unix pipes

• MapReduce

• HDFS - infrastructure

• Programming models (API)

• Job execution (runtime)

• Workflow

• Beyond MapReduce

7

Ideal Cluster Programming Model

• Application programs written in

terms of high-level operations on

data

• User-facing

• Runtime system controls

scheduling, load balancing, …

• System implementations

• After Map-reduce papers:

• Many system research papers

follow this template

Hardware

Machine-Independent
Programming Model

Runtime
System

Application
Programs

8

https://www.newyorker.com/magazine/2018/12/10/the-friendship-that-made-

google-huge

10

11

TF-IDF Examples

12

Count the number of occurrences of word in a large

collection of documents

• Functional programming

• Functions are stateless

• They takes an input, processes

and output a result.

• Pros and Cons?

13

Data models

• Create a word index of set of documents

14

MapReduce Example

Come
and
see.

Come
and
see.

Come,
come.

Come,
Dick

Come
and
see

Spot.

15

• Map: generate word, count pairs for all words in document

• Reduce: sum word counts across documents

Come
and
see.

Come
and
see.

Come,
come.

M Extract

Word-Count
Pairs

dick, 1

see, 1

come, 1

and, 1

come, 1

come, 1

come, 1

M M M M

come, 2

see, 1

and, 1

and, 1

spot, 1

Sum
dick


1

and


3

come


6

see


3

spot


1

Come,
Dick

Come
and
see

Spot.

Discussion:

Other possible way to implement this using map-reduce?

21

Today’s topic: Batch Processing

• Overview

• IO & Unix pipes

• MapReduce

• HDFS - infrastructure

• Programming models

• Job execution

• Workflow

• Beyond MapReduce

MapReduce Execution (Runtime)

Task
Manager

Mapper Mapper Mapper
M Mappers

Input Files (Partitioned into Blocks)

Reducer Reducer Reducer
R Reducers

Shuffle

R Output Files

…

…Why do we need

shuffle?

23

Single Mapper

Hash Function h

• Maps each key K to integer i such that 0 ≤ i < R

Mapper Operation

• Reads input file blocks

• Generates pairs K, V

• Writes to local file h(K)

hK

Local
Files

24

Distributed Mapper
• Dynamically map input file blocks onto mappers

• Each generates key/value pairs from its blocks

• Each writes R files on local file system

Task
Manager

Mapper Mapper Mapper
M Mappers

Input Files (Partitioned into Blocks)

R local files
per mapper

26

Reducer

Each Reducer:

• Executes reducer function for each key

• Writes output values to parallel file system

Reducer Reducer Reducer
R Reducers

R Output Files

…

MapReduce Step

• Reads set of files from file system

• Generates new set of files

Can iterate to do more complex processing

27

MapReduce Effect

Input Files (Partitioned into Blocks)

MapReduce

R Output Files

28

Today’s topic: Batch Processing

• Overview

• IO & Unix pipes

• MapReduce

• HDFS - infrastructure

• Programming models (API)

• Job execution (runtime)

• MapReduce dataflow

• Beyond MapReduce

29

Example: Sparse Matrices with Map/Reduce

• Task: Compute product C = A·B

• Assume most matrix entries are 0

Motivation

• Core problem in scientific computing

• Challenging for parallel execution

10 20

30 40

50 60 70

A

-1

-2 -3

-4

B

-10 -80

-60 -250

-170-460

C

X =

30

Computing Sparse Matrix Product

• Represent matrix as list of nonzero entries

row, col, value, matrixID

• How to represent the computation as map-reduce?

• Phase 1: Compute all products ai,k · bk,j

• Phase 2: Sum products for each entry i,j

• Each phase involves a Map/Reduce

10 20

30 40

50 60 70

A

-1

-2 -3

-4

B1 1
10

A

1 3
20

A

2 2
30

A

2 3
40

A

3 1
50

A

3 2
60

A

3 3
70

A

1 1
-1

B

2 1
-2

B

2 2
-3

B

3 2
-4

B

31

Phase 1 Map of Matrix Multiply

• Group values ai,k and bk,j according to key k

1 1
-1

B

2 1
-2

B

2 2
-3

B

3 2
-4

B

Key = row

1 1
10

A

1 3
20

A

2 2
30

A

2 3
40

A

3 1
50

A

3 2
60

A

3 3
70

A

Key = 2

Key = 3

Key = 1

1 1
10

A

3 1
50

A

2 2
30

A

3 2
60

A

1 3
20

A

2 3
40

A

3 3
70

A

1 1
-1

B

2 1
-2

B

2 2
-3

B

3 2
-4

B

Key = col

32

Phase 1 “Reduce” of Matrix Multiply

• Generate all products ai,k · bk,j

1 1
-10

C

3 1
-50

A

2 1
-60

C

2 2
-90

C

3 1
-120

C

3 2
-180

C

1 2
-80

C

2 2
-160

C

3 2
-280

C

Key = 2

Key = 3

Key = 1

1 1
10

A

3 1
50

A

2 2
30

A

3 2
60

A

1 3
20

A

2 3
40

A

3 3
70

A

1 1
-1

B

2 1
-2

B

2 2
-3

B

3 2
-4

B

X

X

X

33

Phase 2 Map of Matrix Multiply

• Group products ai,k · bk,j with matching values of i and j

1 1
-10

C

3 1
-50

A

2 1
-60

C

2 2
-90

C

3 1
-120

C

3 2
-180

C

1 2
-80

C

2 2
-160

C

3 2
-280

C

Key = 1,2

Key = 1,1

Key = 2,1

Key = 2,2

Key = 3,1

Key = 3,2

1 1
-10

C

3 1
-50

A

2 1
-60

C

2 2
-90

C

3 1
-120

C

3 2
-180

C

1 2
-80

C

2 2
-160

C

3 2
-280

C

Key = row,col

34

Phase 2 Reduce of Matrix Multiply

• Sum products to get final entries

1 1
-10

C

2 1
-60

C

2 2
-250

C

3 1
-170

C

1 2
-80

C

3 2
-460

C

-10 -80

-60 -250

-170-460

C

Key = 1,2

Key = 1,1

Key = 2,1

Key = 2,2

Key = 3,1

Key = 3,2

1 1
-10

C

3 1
-50

A

2 1
-60

C

2 2
-90

C

3 1
-120

C

3 2
-180

C

1 2
-80

C

2 2
-160

C

3 2
-280

C

35

Recap: MapReduce Implementation

Built on Top of Parallel File System

• Google: GFS, Hadoop: HDFS

• Provides global naming

• Reliability via replication (typically 3 copies)

Breaks work into tasks

• Master schedules tasks on workers dynamically

• Typically #tasks >> #processors

Net Effect

• Input: Set of files in reliable file system

• Output: Set of files in reliable file system

36

Analyzing Pros and Cons of Map/Reduce

Characteristics

• Computation broken into many, short-lived tasks

• Mapping, reducing

• Use disk storage to hold intermediate results

Strengths

• Great flexibility in placement, scheduling, and load balancing

• Can access large data sets

Weaknesses

• Higher overhead due to disk read/write

• Lower raw performance (each map / reduce task takes long to invoke)

• Learning Functional programming is non-trivial!

Map

Reduce

Map

Reduce

Map

Reduce

Map

Reduce

Map/Reduce

38

Beyond Map/Reduce: Combiner and Partitioner

Combiners & Partitioners

are optional.

39

Input → Map → Combiner → Partitioner → Reducer →

Output

Input:
What do you mean by Object

What do you know about Java

What is Java Virtual Machine

How Java enabled High Performance

Record reader:
<1, What do you mean by Object>

<2, What do you know about Java>

<3, What is Java Virtual Machine>

<4, How Java enabled High Performance>

40

Combiner (mini-reducer):

optional, to summarize the map output records with the same key

Map output:
<What,1> <do,1> <you,1> <mean,1> <by,1>

<Object,1> <What,1> <do,1> <you,1> <know,1>

<about,1> <Java,1> <What,1> <is,1> <Java,1>

<Virtual,1> <Machine,1> <How,1> <Java,1>

<enabled,1> <High,1> <Performance,1>

Combiner output:
<What,1,1,1> <do,1,1> <you,1,1> <mean,1> <by,1>

<Object,1> <know,1> <about,1> <Java,1,1,1> <is,1>

<Virtual,1> <Machine,1> <How,1> <enabled,1>

<High,1> <Performance,1>

41

Partitioner:

optional, a condition in processing an input dataset

The number of partitioners is equal to the number of
reducers.

Partitioner output:
<What,1,1,1>: long sentence,

<do,1,1>: long sentence,

……

Combiner output:
<What,1,1,1> <do,1,1> <you,1,1> <mean,1> <by,1>

<Object,1> <know,1> <about,1> <Java,1,1,1> <is,1>

<Virtual,1> <Machine,1> <How,1> <enabled,1>

<High,1> <Performance,1>

42

Today’s topic: Batch Processing

• Overview

• IO & Unix pipes

• MapReduce

• HDFS - infrastructure

• Programming models (API)

• Job execution (runtime)

• Workflow

• MapReduce Recap

• Beyond MapReduce

43

MapReduce System architecture (Paper)

44

Fault Tolerance and Straggler Mitigation

• Fault Tolerance

• Assume reliable file system

• Detect failed worker

• Heartbeat mechanism

• Reschedule failed task

• Dealing with Stragglers

• Tasks that take long time to execute

• Might be bug, flaky hardware, or poor partitioning

• When done with most tasks, reschedule any remaining executing tasks

• Keep track of redundant executions

• Significantly reduces overall run time

45

Fault Tolerance

Data Integrity

• Store multiple copies of each file

• Including intermediate results of each Map / Reduce

• Continuous checkpointing

Recovering from Failure

• Simply recompute lost result

• Localized effect

• Dynamic scheduler keeps all processors busy

Map

Reduce

Map

Reduce

Map

Reduce

Map

Reduce

Map/Reduce

46

Map/Reduce Summary

Typical Map/Reduce Applications

• Sequence of steps, each requiring map & reduce

• Series of data transformations

Strengths of Map/Reduce

• User writes simple functions, system manages complexities of mapping,

synchronization, fault tolerance

• Very general

• Good for large-scale data analysis

Map Reduce Summary: Cons

• Disk I/O overhead is super high

• Not flexible enough: Each map/reduce step must complete before next begins

• Not suitable for workloads:

• Iterative processing

• Real-time processing

• Map-reduce is still difficult to program with

48

All Modern Data/ML Systems follow the following arch

Runtime

Manifest

Operators

Executable

A fixed set of operators

A trusted runtime with a small set

of pre-loaded implementations

Executable

Compiler

Syntax

Programs

49

PageRank Computation

Initially

• Assign weight 1.0 to each page

Iteratively

• Select arbitrary node and update its value

Convergence

• Results unique, regardless of selection ordering

R2

R3

R5

R1

R1  0.1 + 0.9 * (½ R2 + ¼ R3 + ⅓ R5)

Q: how to express pagerank using map-reduce?

	Slide 1: Where We Are
	Slide 2: Today’s topic: Batch Processing
	Slide 3: Historical Context of Map-reduce
	Slide 6: Today’s topic: Batch Processing
	Slide 7: Ideal Cluster Programming Model
	Slide 8
	Slide 9
	Slide 10
	Slide 11: TF-IDF Examples
	Slide 12: Count the number of occurrences of word in a large collection of documents
	Slide 13: Data models
	Slide 14: MapReduce Example
	Slide 15
	Slide 16: Discussion: Other possible way to implement this using map-reduce?
	Slide 21: Today’s topic: Batch Processing
	Slide 22: MapReduce Execution (Runtime)
	Slide 23: Single Mapper
	Slide 24: Distributed Mapper
	Slide 26: Reducer
	Slide 27: MapReduce Effect
	Slide 28: Today’s topic: Batch Processing
	Slide 29: Example: Sparse Matrices with Map/Reduce
	Slide 30: Computing Sparse Matrix Product
	Slide 31: Phase 1 Map of Matrix Multiply
	Slide 32: Phase 1 “Reduce” of Matrix Multiply
	Slide 33: Phase 2 Map of Matrix Multiply
	Slide 34: Phase 2 Reduce of Matrix Multiply
	Slide 35: Recap: MapReduce Implementation
	Slide 36: Analyzing Pros and Cons of Map/Reduce
	Slide 38: Beyond Map/Reduce: Combiner and Partitioner
	Slide 39: Input → Map → Combiner → Partitioner → Reducer → Output
	Slide 40: Combiner (mini-reducer): optional, to summarize the map output records with the same key
	Slide 41: Partitioner: optional, a condition in processing an input dataset
	Slide 42: Today’s topic: Batch Processing
	Slide 43: MapReduce System architecture (Paper)
	Slide 44: Fault Tolerance and Straggler Mitigation
	Slide 45: Fault Tolerance
	Slide 46: Map/Reduce Summary
	Slide 47: Map Reduce Summary: Cons
	Slide 48: All Modern Data/ML Systems follow the following arch
	Slide 49: PageRank Computation
	Slide 50: Q: how to express pagerank using map-reduce?

