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Today’s topic: Batch Processing

• Overview

• IO & Unix pipes

• MapReduce

• HDFS - infrastructure

• Programming models 

• Job execution

• Workflow

• Beyond MapReduce
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Historical Context of Map-reduce

For Computation That Accesses 1 TB in 5 minutes

• Data distributed over 100+ disks

• Compute using 100+ processors

• Connected by gigabit Ethernet (or equivalent)

System Requirements

• Lots of disks

• Lots of processors

• Located in close proximity

• Within reach of fast, local-area network
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Today’s topic: Batch Processing

• Overview

• IO & Unix pipes

• MapReduce

• HDFS - infrastructure

• Programming models (API)

• Job execution (runtime)

• Workflow

• Beyond MapReduce
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Ideal Cluster Programming Model

• Application programs written in 

terms of high-level operations on 

data

• User-facing

• Runtime system controls 

scheduling, load balancing, …

• System implementations

• After Map-reduce papers:

• Many system research papers 

follow this template

Hardware

Machine-Independent
Programming Model

Runtime
System

Application
Programs
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https://www.newyorker.com/magazine/2018/12/10/the-friendship-that-made-

google-huge
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TF-IDF Examples
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Count the number of occurrences of word in a large 

collection of documents

• Functional programming

• Functions are stateless

• They takes an input, processes 

and output a result.

• Pros and Cons?
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Data models



• Create a word index of set of documents
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MapReduce Example

Come 
and 
see.

Come 
and 
see.

Come, 
come.

Come,
Dick

Come 
and 
see 

Spot.
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• Map: generate word, count pairs for all words in document

• Reduce: sum word counts across documents

Come 
and 
see.

Come 
and 
see.

Come, 
come.

M Extract

Word-Count
Pairs

dick, 1

see, 1

come, 1

and, 1

come, 1

come, 1

come, 1

M M M M

come, 2

see, 1

and, 1

and, 1

spot, 1

Sum
dick


1

and


3

come


6

see


3

spot


1

Come,
Dick

Come 
and 
see 

Spot.



Discussion:

Other possible way to implement this using map-reduce?
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Today’s topic: Batch Processing

• Overview

• IO & Unix pipes

• MapReduce

• HDFS - infrastructure

• Programming models 

• Job execution

• Workflow

• Beyond MapReduce



MapReduce Execution (Runtime)

Task 
Manager

Mapper Mapper Mapper
M Mappers

Input Files (Partitioned into Blocks)

Reducer Reducer Reducer
R Reducers

Shuffle

R Output Files

…

…Why do we need 

shuffle?
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Single Mapper

Hash Function h

• Maps each key K to integer i such that 0 ≤ i < R

Mapper Operation

• Reads input file blocks

• Generates pairs K, V

• Writes to local file h(K)

hK

Local
Files
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Distributed Mapper
• Dynamically map input file blocks onto mappers

• Each generates key/value pairs from its blocks

• Each writes R files on local file system

Task 
Manager

Mapper Mapper Mapper
M Mappers

Input Files (Partitioned into Blocks)

R local files
per mapper
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Reducer

Each Reducer:

• Executes reducer function for each key

• Writes output values to parallel file system

Reducer Reducer Reducer
R Reducers

R Output Files

…



MapReduce Step

• Reads set of files from file system

• Generates new set of files

Can iterate to do more complex processing

27

MapReduce Effect

Input Files (Partitioned into Blocks)

MapReduce

R Output Files
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Today’s topic: Batch Processing

• Overview

• IO & Unix pipes

• MapReduce

• HDFS - infrastructure

• Programming models (API)

• Job execution (runtime)

• MapReduce dataflow

• Beyond MapReduce
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Example: Sparse Matrices with Map/Reduce

• Task: Compute product C = A·B

• Assume most matrix entries are 0

Motivation

• Core problem in scientific computing

• Challenging for parallel execution

10 20

30 40

50 60 70

A

-1

-2 -3

-4

B

-10 -80

-60 -250

-170-460

C

X =



30

Computing Sparse Matrix Product

• Represent matrix as list of nonzero entries

row, col, value, matrixID

• How to represent the computation as map-reduce?

• Phase 1: Compute all products ai,k · bk,j

• Phase 2: Sum products for each entry i,j

• Each phase involves a Map/Reduce

10 20
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B

3 2
-4

B



31

Phase 1 Map of Matrix Multiply

• Group values ai,k and bk,j according to key k
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Phase 1 “Reduce” of Matrix Multiply

• Generate all products ai,k · bk,j
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Phase 2 Map of Matrix Multiply

• Group products ai,k · bk,j with matching values of i and j

1 1
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Phase 2 Reduce of Matrix Multiply

• Sum products to get final entries
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Recap: MapReduce Implementation

Built on Top of Parallel File System

• Google: GFS, Hadoop: HDFS

• Provides global naming

• Reliability via replication (typically 3 copies)

Breaks work into tasks

• Master schedules tasks on workers dynamically

• Typically #tasks >> #processors

Net Effect

• Input: Set of files in reliable file system

• Output: Set of files in reliable file system
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Analyzing Pros and Cons of Map/Reduce 

Characteristics

• Computation broken into many, short-lived tasks

• Mapping, reducing

• Use disk storage to hold intermediate results

Strengths

• Great flexibility in placement, scheduling, and load balancing

• Can access large data sets

Weaknesses

• Higher overhead due to disk read/write

• Lower raw performance (each map / reduce task takes long to invoke)

• Learning Functional programming is non-trivial!

Map

Reduce

Map

Reduce

Map

Reduce

Map

Reduce

Map/Reduce
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Beyond Map/Reduce: Combiner and Partitioner

Combiners & Partitioners 

are optional.
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Input → Map → Combiner → Partitioner → Reducer → 

Output

Input: 
What do you mean by Object

What do you know about Java 

What is Java Virtual Machine 

How Java enabled High Performance

Record reader: 
<1, What do you mean by Object>

<2, What do you know about Java>

<3, What is Java Virtual Machine> 

<4, How Java enabled High Performance>
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Combiner (mini-reducer): 

optional, to summarize the map output records with the same key

Map output: 
<What,1> <do,1> <you,1> <mean,1> <by,1> 

<Object,1> <What,1> <do,1> <you,1> <know,1> 

<about,1> <Java,1> <What,1> <is,1> <Java,1> 

<Virtual,1> <Machine,1> <How,1> <Java,1> 

<enabled,1> <High,1> <Performance,1>

Combiner output: 
<What,1,1,1> <do,1,1> <you,1,1> <mean,1> <by,1> 

<Object,1> <know,1> <about,1> <Java,1,1,1> <is,1> 

<Virtual,1> <Machine,1> <How,1> <enabled,1> 

<High,1> <Performance,1>
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Partitioner: 

optional, a condition in processing an input dataset

The number of partitioners is equal to the number of 
reducers. 

Partitioner output:
<What,1,1,1>: long sentence,

<do,1,1>: long sentence, 

……

Combiner output: 
<What,1,1,1> <do,1,1> <you,1,1> <mean,1> <by,1> 

<Object,1> <know,1> <about,1> <Java,1,1,1> <is,1> 

<Virtual,1> <Machine,1> <How,1> <enabled,1> 

<High,1> <Performance,1>
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Today’s topic: Batch Processing

• Overview

• IO & Unix pipes

• MapReduce

• HDFS - infrastructure

• Programming models (API)

• Job execution (runtime)

• Workflow

• MapReduce Recap

• Beyond MapReduce
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MapReduce System architecture (Paper)
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Fault Tolerance and Straggler Mitigation

• Fault Tolerance

• Assume reliable file system

• Detect failed worker

• Heartbeat mechanism

• Reschedule failed task

• Dealing with Stragglers

• Tasks that take long time to execute

• Might be bug, flaky hardware, or poor partitioning

• When done with most tasks, reschedule any remaining executing tasks

• Keep track of redundant executions

• Significantly reduces overall run time
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Fault Tolerance

Data Integrity

• Store multiple copies of each file

• Including intermediate results of each Map / Reduce

• Continuous checkpointing

Recovering from Failure

• Simply recompute lost result

• Localized effect

• Dynamic scheduler keeps all processors busy

Map

Reduce

Map

Reduce

Map

Reduce

Map

Reduce

Map/Reduce
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Map/Reduce Summary

Typical Map/Reduce Applications

• Sequence of steps, each requiring map & reduce

• Series of data transformations

Strengths of Map/Reduce

• User writes simple functions, system manages complexities of mapping, 

synchronization, fault tolerance

• Very general

• Good for large-scale data analysis



Map Reduce Summary: Cons

• Disk I/O overhead is super high

• Not flexible enough: Each map/reduce step must complete before next begins

• Not suitable for workloads:

• Iterative processing

• Real-time processing

• Map-reduce is still difficult to program with
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All Modern Data/ML Systems follow the following arch

Runtime

Manifest

Operators

Executable

A fixed set of operators

A trusted runtime with a small set 

of pre-loaded implementations

Executable

Compiler

Syntax

Programs
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PageRank Computation

Initially

• Assign weight 1.0 to each page

Iteratively

• Select arbitrary node and update its value

Convergence

• Results unique, regardless of selection ordering

R2

R3

R5

R1

R1  0.1 + 0.9 * (½ R2 + ¼ R3 + ⅓ R5)



Q: how to express pagerank using map-reduce?
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