Where We Are

Machine Learning Systems

Big Data 2010 - Now

Cloud 2000 - 2016

Foundations of Data Systems 1980 - 2000

Recap: Batch Processing

® Batch Processing
® Suitable for latency insensitive tasks
* Map-reduce prog model: mapper, reducer, (combiner, partitioner)
* Many Map-reduce |obs o compose dataflows
* They communicate via disk I/O
®* Pros and Cons
®* Pros: expressive, scalable, and fault tolerant
® Cons: low performance due to disk 1I/O

Today's topic: Stream Processing

* Computation vs. I/O: Arithmetic intensity
®* Loop fusion

* When MapReduce fails

* Spark and RDD

* Why Spark succeeded

Recall: Instruction

Register names

/\

add %»rbx, J%rax
IS

rax += rbx

Recall: Basics of Processors

Q: How does a processor execute machine code¢

®* Types of ISA commands to manipulate register contents:

* Memory access: load (copy bytes from a DRAM address to
reqgister); store (reverse); put constant

* Arithmetic & logic on data items in registers: add/multiply/etc.;
bitwise ops; compare, etc.; handled by ALU

* Control flow (branch, call, etc.); handled by CU
® Caches: Small local memory to bufter instructions/dato

If interested In more detalls: https://www.youtube.com/watch?v=cNN tTXABUA

https://www.youtube.com/watch?v=cNN_tTXABUA

Why arithmeftic
INfensity matterse

Smaller,

faster,

and

costlier

(per byte)

storage L3:
devices

Regs

CPU registers hold words retrieved

from the L1 cache.
11 L1 cache
(SRAM) L1 cache holds cache lines retrieved

from the L2 cache.

L2 cache
(SRAM)

L2 cache holds cache lines

retrieved from L3 cache.

L3 cache
(SRAM)

L3 cache holds cache lines

L4:

Larger,
slower,

retrieved from main memory.

Main memory
(DRAM)

and

cheaper 5.
(per byte)
storage

Local secondary storage
(local disks)

Main memory holds disk blocks
retrieved from local disks.

Local disks hold files
retrieved from disks

devices

L6:

Remote secondary storage
(e.g., Web servers)

on remote servers.

How to measure the impact of I/O

* [/O Is the primary enemy of computer engineers/scientists: it will
always slow down computation in every levels of the memory
hierarchy
®* Processor reads/writes cache or memory
* Map-reduce save and load results from distributed storage

* Q. how we measure such slowdown?e

* Arithmetic intfensity

Arithmetic Intensity

#(Compute Op
Al = ——
#1/0 op

Arithmetic Intensity

void add(intn, float* A, float* B, float* C){
for (int i=0; i<n; i++)

Clil] = A[i] + BJi]; Two loads, one store per math op

1. Read Al
2. Read BJi]
3. Add Ali]+B[i]
4. Store CJi}

10

Which program performs bettere Program 1

void add(intn, float* A, float* B, float* C){
for (int i=0; i<n; i++)
Cli] = A[i] + B[i];
}

void mul(int n, float* A, float* B, float* C) {
for (int i=0; i<n; i++)
Clil] = A[il] * B[i];
}

float* A,*B, *C, *D, *E, *tmp]l, *tmp2;
// assume arrays are allocated here

// compute E =D + ((A + B)* C)
add(n, A, B, tmp1);

mul(n, tmpl1, C,tmp2);

add(n, tmp2, D, E);

Two loads, one store per math op
(arithmetic intensity = 1/3)

Two loads, one store per math op
(arithmetic intensity = 1/3)

Overall arithmetic intensity = 1/3

11

Which program performs bettere Program 2

float™* A,*B, *C, *D, *E, *tmpl, *tmp2;

// assume arrays are allocated here

// compute E =D + ((A + B)* C)

add(n, A, B, tmp1); Overall arithmetic intensity = 1/3
mul(n, tmpl, C,tmp2);

add(n, tmp2, D,E);

void fused(int n, float™ A, float™ B, float* C,float* D,

float* E) {
for (int i=0; i<n; i++)
E[i] = D[i] + (A[i] + B[i]) * Cl[i|; Four loads, one store per 3 math ops
) arithmetic intensity = 3/5

// compute E =D + (A+B)* C
fused(n, A, B,C, D,E);

compvuiation fusion!

Core Problem of Map-reduce

| ow arthmetic intensity
due to Disk [/O

14

PageRank

PageRank Computation

®* Larry Page & Sergey Brinn, 1998

Rank “Importance” of Web Pages

15

PageRank Computation

Initially
* Assign weight 1.0 fo each page R,

iteratively

® Select arbitrary node and update its value

Convergence R, € 0.1+0.9*(%R,+%R;+%Rs)

® Results unique, regardless of selection ordering

16

PageRank with Map/Reduce

. Ri < 01+09*(2R,+ Y4R3+ "3 Rs)
Each lteration: Update all nodes

* Map: Generate values to pass along each edge

° Keyvalue1: (1,2 R,) (1,%R3) (1, V3 Rg)
* Similar for all other keys

® Reduce: Combine edge values to get new rank
° RléO.1+O.9*(1/2R2+1/4R3+%R5)
* Similar for all other nodes

17

'terative algorthms must load from disk each iteration

vold pagerank _mapper{graphnode n, map<string,string> results) {
float val = compute update value for n

for (dst in outgoing links from n)
results.add(dst.node, val);

}

void pagerank reducer{graphnode n, list<float> values, float& result) {
float sum = 8.89;

f 1 1
or (v in values) L OW

result = sum;

} Arithmetic Intensity!

for (i = © to NUM_ITERATIONS) {
input = load graph from last iteration
output = file for this iteration output
runMapReducelob(pagerank_mapper, pagerank reducer, result[i-1], result[i]);

}

18

oar

IN-memory, fault-tolerant distributed computing
NiTp://spark.apache.org/

Goals

® This guy felt UC Grad student salary too low so he decided o

make some money (roughly 1M) via the Netflix challenge.

Netflix Prize A 2 languages v Matei Zaharia

Article Talk Read Edit View history Tools v

Associate Professor, Computer Science
From Wikipedia, the free encyclopedia P

matei@berkeley.edu
The Netflix Prize was an open competition for the best collaborative filtering algorithm to predict user ratings Google Scholar | LinkedIn | Twitter
. _ _ | _ _ o Recommender systems
for films, based on previous ratings without any other information about the users or films, i.e. without the

L . . Concepts , g :
users being identified except by numbers assigned for the contest. R I I'm an associate professor at UC Berkeley (previously Stanford), where | work on computer systems
» _ _ , _ o Star ratings + Long tail and machine learning. I'm also co-founder and CTO of Databricks.
The competition was held by Netflix, a video streaming service, and was open to anyone who is neither
connected with Netflix (current and former employees, agents, close relatives of Netflix employees, etc.) nor - |dMith:d§ a”m; ch?lle:l_lqtes.
. _ . old start - Collaborative filtering - - I'm i i . i
a resident of certain blocked countries (such as Cuba or North Korea).[” On September 21, 2009, the grand Dimensionality reduction - Interests: I'm interested in computer systems for large-scale workloads such as Al, data analytics
prize of US$1,000,000 was given to the BellKor's Pragmatic Chaos team which bested Netflix's own Implicit data collection -
algorithm for predicting ratings by 10.06%.1] Item-item collaborative filtering -

Matrix factorization - Preference elicitation -

Cimilaritu eaarrh

19

20

Goals

* Programming model for cluster-scale computations where there is

significant reuse of infermediate datasets

* [terative machine learning and graph algorithms
* Interactive data mining: load large dataset into aggregate memory of
cluster and then pertorm multiple ad-hoc queries

* Don’t want incur inefficiency of writing infermediates 1o persistent

distributed file system (want to keep it iIn memory)

* Challenge: efficiently implementing fault tolerance for large-scale distributed

IN-Memory computations.

Three Necessary Conditions

* Memory: large (cheap) enough
* Network: fast (cheap) enough

* fault tolerance: at least as good as map-reduce

Typical Server Node

WY

de
Typical Server No

..:.
~
o N g .7:.
- ...
~ Y 2,
- e - 00.... .
0‘.’ - Q..:..:
- LS o...‘. 2
oooooooooo’o‘o’c‘o‘o’.’ pedss
....
oy
.......'
00-0......
.......
LI
-

| alldata: 10s sec
ad alldat '
lImetore
(80 GB/s)

A - T
P _._\.
N
? po.
25
& a3
P &
RN
" ‘). -3
y DR
NG {'13"’
e S o
S
/ ‘\'._."?‘
' P
o b ‘. " .\‘.
- 0 OV 03
< S5 o
_-.. v e
B o
-« v,
R

(1GB/s)*

PCi

SATA

(600 MB/s)*

Ethernet

G
(50-100 MB/s)*

N
* multiple channels

hours

Memory Capacity

DRAM Capacity

1Th

512Gb

256Gb

128Gb

64Gb
32Gb

16Gb
8Gb
4Ghb

2Gh
1Gb

512Mb
256Mb

®m Moore'slLaw

—+—Avg. DRAM Density Shipped
1979 - 2003: 51% CAGR
2003 - 2011: 29% CAGR

DRAM Density Gap is Increasing

io-3.5 years behind

256Mb - 3 years behind Moore's law

+29% peryear

1994 1998 2002 2006

2010

2014

2018

Memory Price/Byte Evolution

*1990-2000: -54% per year
*2000-2010: -51% per year

*2010-2015: -32% per year

*(http://www.|cmit.com/memoryprice.htm)

http://www.jcmit.com/memoryprice.htm

Typical Server Node

WY

Projection 2015-2020 of Capacity Disk & Scale-out Capacity NAND Flash

S500 800%
$470
— A 732%
3 5450 700%
e 5
0
Z »400 600% :—._u
< o
< 2
of 5350 <
X 498% 500% —
L kv
0O $300 %
3 Cost o2
= A
S .
®@ $250 | &
% E $237 CrOSS pOl nt. i T
S 300% 300% o
E $200 $16 E
o - 200% Y
— =
E $150 05151 -Z140 E
S 139% -5113 100% ¥
< $100 591 o
m et
:u $74 =
2 19% N o ®
o 550 262 0% e
-50% & S30
< S16
$0 @59 -100%
2015 2016 2017 2018 2019 2020

@ 4-year Cost/TB SSD includes Packaging, Power, Cooling, Maintenance, Space, SSD Data Reduction & Sharing
“"4-Year Cost/TB Capacity Disk includes Packaging, Power, Cooling, Maintenance, Space & Disk Data Sharing

Ratio Effective Price HDD Disk:NAND Flash
Source: © Wikibon 2015. 4-Year Cost/TB Magnetic Disk & SSD, including Packaging, Power, Maintenance, Space, Data Reduction & Data Sharing

SSDs vs. HDDs

*SSDs has become cheaper than (or as cheap as to) HDDs

eTransition from HDDs to SSDs has accelerate
o Already mostinstancesin AWS have SSDs
» Digital Ocean instances are SSD only

*Going forward we can assume SSD only clusters

Typical Server Node

WY

Ethernet Bandwidth

Speed (b/s)

1T
400G

100G
40G

10G

(HEN
P,

100M

10M

100GE* .

-

4
y

T ,.?""——
@5-2002—

10 Mb/s
Ethernet

1980

100 Mb/s

GbE ‘ e
Etherne

1990 2000 2010
Initial Standard Completed

2020

33-40% peryear

@ Ethernet Speed
O Speed in development

(:l Possible Future Standard

Typical Server Node

PWIBY)

What Does This Meane

* Memory hierarchy has shiftf one

layer up

*HDD Is Vvirt
* We have

ually dead

unlimited space of SSD

* Today’'s RAM space = yesterday's

SSD space

* Today’s SSD space = yesterday’s

HDD space

* Ethernet may become faster than
PCI/SATA bandwidth

Three Necessary Conditions

* Memory: large (cheap) enough &
* Network: fast (cheap) enough &

* Fault tolerance: at least as good as map-reduce

36

Fault tolerance for in-memory calculations

®* Replicate all computations

®* Expensive solution: decreases peak throughput

* Checkpoint and rollback

®* Periodically save state of program to persistent storage

® Restart from last checkpoint on node failure

* Maintain log of updates (commands and data)

* High overhead for maintaining logs

37

Resilient distributed dataset (RDD)

Resilient Distributed Datasets: A Fault-Tolerant Abstraction for
In-Memory Cluster Computing

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,

Murphy McCauley, Michael J. Franklin, Scott Shenker, Ion Stoica
University of California, Berkeley

Abstract

We present Resilient Distributed Datasets (RDDs), a dis-
tributed memory abstraction that lets programmers per-
form in-memory computations on large clusters in a
fault-tolerant manner. RDDs are motivated by two types
of applications that current computing frameworks han-
dle inefficiently: iterative algorithms and interactive data
mining tools. In both cases, keeping data in memory
can improve performance by an order of magnitude.
To achieve fault tolerance efficiently, RDDs provide a
restricted form of shared memory, based on coarse-
grained transformations rather than fine-grained updates
to shared state. However, we show that RDDs are expres-
sive enough to capture a wide class of computations, in-
cluding recent specialized programming models for iter-
ative jobs, such as Pregel, and new applications that these
models do not capture. We have implemented RDDs in a
system called Spark, which we evaluate through a variety
of user applications and benchmarks.

1 Introduction

Cluster computing frameworks like MapReduce [10] and
Dryad [19] have been widely adopted for large-scale data
analytics. These systems let users write parallel compu-
tations using a set of high-level operators, without having
to worry about work distribution and fault tolerance.
Although current frameworks provide numerous ab-
stractions for accessing a cluster’s computational re-
sources, they lack abstractions for leveraging distributed
memory. This makes them inefficient for an important
class of emerging applications: those that reuse interme-
diate results across multiple computations. Data reuse is
common in many iterative machine learning and graph
algorithms, including PageRank, K-means clustering,
and logistic regression. Another compelling use case is
interactive data mining, where a user runs multiple ad-
hoc queries on the same subset of the data. Unfortu-
nately, in most current frameworks, the only way to reuse
data between computations (e.g., between two MapRe-
duce jobs) is to write it to an external stable storage sys-

tion, which can dominate application execution times.

Recognizing this problem, researchers have developed
specialized frameworks for some applications that re-
quire data reuse. For example, Pregel [22] 1s a system for
iterative graph computations that keeps intermediate data
in memory, while HalLoop [7] offers an iterative MapRe-
duce interface. However, these frameworks only support
specific computation patterns (e.g., looping a series of
MapReduce steps), and perform data sharing implicitly
for these patterns. They do not provide abstractions for
more general reuse, e.g., to let a user load several datasets
into memory and run ad-hoc queries across them.

In this paper, we propose a new abstraction called re-
silient distributed datasets (RDDs) that enables efficient
data reuse in a broad range of applications. RDDs are
fault-tolerant, parallel data structures that let users ex-
plicitly persist intermediate results in memory, control
their partitioning to optimize data placement, and ma-
nipulate them using a rich set of operators.

The main challenge in designing RDDs is defining a
programming interface that can provide fault tolerance
efficiently. Existing abstractions for in-memory storage
on clusters, such as distributed shared memory [24], key-
value stores [25], databases, and Piccolo [27], offer an
interface based on fine-grained updates to mutable state
(e.g., cells in a table). With this interface, the only ways
to provide fault tolerance are to replicate the data across
machines or to log updates across machines. Both ap-
proaches are expensive for data-intensive workloads, as
they require copying large amounts of data over the clus-
ter network, whose bandwidth is far lower than that of
RAM, and they incur substantial storage overhead.

In contrast to these systems, RDDs provide an inter-
face based on coarse-grained transformations (e.g., map,
filter and join) that apply the same operation to many
data items. This allows them to efficiently provide fault
tolerance by logging the transformations used to build a
dataset (its lineage) rather than the actual data.! If a parti-
tion of an RDD is lost, the RDD has enough information
about how it was derived from other RDDs to recompute

- [@5/Apr/2016:
- [@5/Apr/2016:
- [@5/Apr/2016:
- [@5/Apr/2016:
- [@5/Apr/2016:
- [@5/Apr/2016:

A log of page views on a web site

223
22:
22°
248
22:
22:

S

44

44:

44:
44:

44:

10
:10
10
10
:10
10

-0400]
-0400]
-0400]
-0400]
-0400]
-0400)

"GET
"GET
"GET
"GET
"GET
"GET

/spring20l16content/lectures/16_synchronization/thumbs/slide_012.jpg HTTP/1.1" 200 20186 "http://1541B.courses.cs.cmu.edu/spring2016/lecture/synchronization" "Mozilla/5.8 (Macintosh; Intel M
/spring2016content/lectures/16_synchronization/thumbs/slide_029.jpg HTTP/1.1" 200 31979 "http://1541B.courses.cs.cmu.edu/spring2016/lecture/synchronization"” "Mozilla/5.@ (Macintosh; Intel M
/spring2016content/lectures/16_synchronization/thumbs/slide_031.jpg HTTP/1.1" 200 8425 "http://15418.courses.cs.cmu.edu/spring2016/lecture/synchronization” "Mozilla/5.8 (Macintosh; Intel Ma
/spring2@16content/lectures/16_synchronization/thumbs/slide_035.jpg HTTP/1.1" 200 29266 "http://15418.courses.cs.cmu.edu/spring2016/lecture/synchronization" "Mozilla/5.@ (Macintosh; Intel M
/spring2@16content/lectures/16_synchronization/thumbs/slide_041.jpg HTTP/1.1" 200 32678 "http://15418.courses.cs.cmu.edu/spring2016/lecture/synchronization"” "Mozilla/5.@ (Macintosh; Intel M
/spring20l16content/lectures/16_synchronization/thumbs/slide_042.jpg HTTP/1.1" 200 32585 "http://1541B.courses.cs.cmu.edu/spring2016/lecture/synchronization” "Mozilla/5.@ (Macintosh; Intel M

- - [85/Apr/2016:22:44:15 -0400] “"GET /spring2016/lecture/snoopimpl/slide_042 HTTP/1.1" 200 3689 "http://15418.courses.cs.cmu.edu/spring2016/lecture/snoopimpl/slide_041" "Mozilla/5.0 (Macintosh; Intel Mac 0S X 10_11_3) AppleWwe
- - [05/Apr/2016:22:44:15 -0400] "GET /spring2@l6content/lectures/12_snoopimpl/images/slide_042.jpg HTTP/1.1" 200 161338 "http://15418.courses.cs.cmu.edu/spring2016/lecture/snoopimpl/slide_042" "Mozilla/5.0 (Macintosh; Intel M
- - [05/Apr/2016:22:44:17 -0400) “"GET /spring2016/lecture/snoopimpl/slide_041 HTTP/1.1" 200 3093 "http://15418.courses.cs.cmu.edu/spring2016/lecture/snoopimpl/slide_042" "Mozilla/5.@ (Macintosh; Intel Mac 0S X 10_11_3) AppleWwe
- [@5/Apr/2016:22:44:17 -0400] "GET /spring2@16/lecture/synchronization/slide_020 HTTP/1.1" 200 3180 "http://15418.courses.cs.cmu.edu/spring2016/lecture/synchronization” "Mozilla/5.0 (Macintosh; Intel Mac 0S X 10_11_4) AppleWw
- - [05/Apr/2016:22:44:18 -0400] “GET /spring2016/keep_alive HTTP/1.1" 200 957 "http://15418.courses.cs.cmu.edu/spring2016/lecture/basicarch/slide_073" "Mozilla/5.0 (Windows NT 10.0; WOW64) ApplewWebKit/537.36 (KHTML, like Geck
-0400] "GET /spring2@l6content/lectures/16_synchronization/images/slide_020.jpg HTTP/1.1" 200 174283 "http://15418.courses.cs.cmu.edu/spring2016/lecture/synchronization/slide_020" "Mozilla/5.0 (Macinto

- [@5/Apr/2016:22:44:

- [@5/Apr/2016:22:44:
- [05/Apr/2016:22:44:
- [@5/Apr/2016:22:44:
- [@5/Apr/2016:22:44:

18

18
18
18
18

-0400]
-0400]
-0400]
-0400]

“"GET
"GET
"GET
"GET

/spring2016content/profile_pictures/sidwad.jpg HTTP/1.1" 200 34712 "http://15418.courses.cs.cmu.edu/spring2016/lecture/synchronization/slide_020" "Mozilla/5.@8 (Macintosh; Intel Mac 0S X 10_
/spring20l16content/profile_pictures/TomoA.jpa HTTP/1.1" 200 40709 "http://1541B.courses.cs.cmu.edu/spring2016/lecture/synchronization/slide_020" "Mozilla/5.0 (Macintosh; Intel Mac 0S X 10_1
/spring20l16content/profile_pictures/eknight7.jpg HTTP/1.1" 200 3132 "http://15418.courses.cs.cmu.edu/spring2016/lecture/synchronization/slide_020" "Mozilla/5.@ (Macintosh; Intel Mac 0S X 10
/spring20l16content/profile_pictures/thomasts.jpg HTTP/1.1" 200 42369 "http://15418.courses.cs.cmu.edu/spring2016/lecture/synchronization/slide_020" "Mozilla/5.0 (Macintosh; Intel Mac 0S X 1

- — [05/Apr/2016:22:44:18 -0400] "GET /spring2016/lecture/snoopimpl/slide_040 HTTP/1.1" 200 4985 "http://15418.courses.cs.cmu.edu/spring2016/lecture/snoopimpl/slide_041" "Mozilla/5.0 (Macintosh; Intel Mac 0S X 10_11_3) AppleWe
- - [B5/Apr/2016:22:44:19 -0400] “"GET /spring2016/lecture/snoopimpl/slide_039 HTTP/1.1" 200 3447 "http://15418.courses.cs.cmu.edu/spring2016/lecture/snoopimpl/slide_040" "Mozilla/5.08 (Macintosh; Intel Mac 0S X 10_11_3) AppleWwe
- - [05/Apr/2016:22:44:19 -0400] “GET /spring2016/lecture/snoopimpl/slide_040 HTTP/1.1" 200 4985 "http://15418.courses.cs.cmu.edu/spring2016/lecture/snoopimpl/slide_039" "Mozilla/5.0 (Macintosh; Intel Mac 0S X 10_11_3) AppleWwe

- [05/Apr/2016:22:44:21 -0400] "GET /spring2@16/users/login HTTP/1.1" 200 2302 "http://15418.courses.cs.cmu.edu/spring2016/lecture/synchronization/slide_020" "Mozilla/5.0 (Macintosh; Intel Mac 0S X 10_11_4) ApplewWebKit/601.5.
- [@5/Apr/2016:22:44:26 -0400] "POST /spring2@16/users/do_login HTTP/1.1" 302 1061 "http://15418.courses.cs.cmu.edu/spring2016/users/login" "Mozilla/5.@ (Macintosh; Intel Mac 0S X 10_11_4) AppleWebKit/601.5.17 (KHTML, like Ge
- [@5/Apr/2016:22:44:26 -0400] "GET /spring2016/ HTTP/1.1" 200 4767 "http://15418.courses.cs.cmu.edu/spring2016/users/login" "Mozilla/5.@ (Macintosh; Intel Mac 0S X 10_11_4) AppleWebKit/601.5.17 (KHTML, like Gecko) Version/9.
- [@5/Apr/2016:22:44:26 -0400] "GET /spring2@l6content/profile_pictures/cmusam.jpg HTTP/1.1" 200 42983 "http://15418.courses.cs.cmu.edu/spring2016/" "Mozilla/5.@8 (Macintosh; Intel Mac 0S X 10_11_4) AppleWebKit/601.5.17 (KHTML
- [05/Apr/2016:22:44:30 -0400) "GET /spring2016/lectures HTTP/1.1" 200 6322 "http://15418.courses.cs.cmu.edu/spring2016/" "Mozilla/5.0 (Macintosh; Intel Mac 0S X 10_11_4) ApplewebKit/601.5.17 (KHTML, like Gecko) Version/9.1 S

- [@5/Apr/2016:22:44:33 -0400] "GET /spring2016/lecture/synchronization HTTP/1.1" 200 2871 "http://15418.courses.cs.cmu.edu/spring2016/lectures"” "Mozilla/5.0 (Macintosh; Intel Mac 0S X 10_11_4) AppleWebKit/601.5.17 (KHTML, 1i

- [@5/Apr/2016:22:44:35 -0400] "GET /spring2@13content/lectures/03_progmodels/images/slide_032.png HTTP/1.1" 304 189 "-" "Mozilla/5.0 (compatible; YandexImages/3.0; +http://yandex.com/bots)"

- [05/Apr/2016:22:44:38 -0400] "GET /spring2@16/lecture/synchronization/slide_020 HTTP/1.1" 200 3852 "http://15418.courses.cs.cmu.edu/spring2016/lecture/synchronization” "Mozilla/5.0 (Macintosh; Intel Mac 0S X 10_11_4) AppleWe
- [05/Apr/2016:22:45:00 -0400] "GET /spring2013/article/26 HTTP/1.1" 200 5900 "http://www.google.co.in/search?ie=UTF-8&g=split+transaction+bus&revid=112973050&sa=X&ved=0ahUKEwio@PfG_vjLAhVinIMKHQO5AdYQ1QIIBQ" "UCWEB/2.0 (Java;
- [85/Apr/2016:22:45:01 -0400] "GET /spring2@13/assets/js/15418_common.js HTTP/1.1" 200 425 "http://15418.courses.cs.cmu.edu/spring2013/article/26" "UCWEB/2.0 (Java; U; MIDP-2.0; Nokia203/20.37) U2/1.0.0 UCBrowser/8.7.0.218 U2/
- [85/Apr/2016:22:45:01 -0400] "GET /spring2013/assets/third_party/jquery/timeago/jquery.timeago.js HTTP/1.1" 200 2026 "http://15418.courses.cs.cmu.edu/spring2013/article/26" "UCWEB/2.0 (Java; U; MIDP-2.0; Nokia203/20.37) U2/1,
- [85/Apr/2016:22:45:01 -0400] "GET /spring2013/assets/third_party/jquery/cookie/jquery.cookie.js HTTP/1.1" 200 1189 "http://15418.courses.cs.cmu.edu/spring2013/article/26" "UCWEB/2.0 (Java; U; MIDP-2.0; Nokia203/20.37) U2/1.0,
- [05/Apr/2016:22:45:01 -0400] "GET /spring2@13/assets/third_party/date/date.js HTTP/1.1" 200 7628 "http://15418.courses.cs.cmu.edu/spring2013/article/26" "UCWEB/2.0 (Java; U; MIDP-2.0; Nokia203/20.37) U2/1.0.0 UCBrowser/8.7.0.
- [85/Apr/2016:22:45:01 -0400] "GET /spring2@13/assets/third_party/codemirror-3.0/mode/markdown/markdown.js HTTP/1.1" 200 4018 "http://15418.courses.cs.cmu.edu/spring2013/article/26" "UCWEB/2.0 (Java; U; MIDP-2.0; Nokia203/20.1
- [@5/Apr/2016:22:45:01 -0400] "GET /spring2013/assets/third_party/google-code-prettify/prettify.js HTTP/1.1" 200 6379 "http://15418.courses.cs.cmu.edu/spring2013/article/26" "UCWEB/2.0 (Java; U; MIDP-2.0; Nokia203/20.37) U2/1,
- [85/Apr/2016:22:45:01 -0400] "GET /spring2013/assets/third_party/jquery/tmpl/jquery.tmpl.min.js HTTP/1.1" 280 3155 "http://15418.courses.cs.cmu.edu/spring2013/article/26" "UCWEB/2.0 (Java; U; MIDP-2.0; Nokia203/20.37) U2/1.0.
- [85/Apr/2016:22:45:01 -0400] "GET /spring2@13/assets/css/main.css HTTP/1.1" 200 3368 "http://15418.courses.cs.cmu.edu/spring2013/article/26" "UCWEB/2.0 (Java; U; MIDP-2.0; Nokia203/20.37) U2/1.0.0 UCBrowser/8.7.0.218 U2/1.0.
- [85/Apr/2016:22:45:01 -0400] "GET /spring2@13/assets/third_party/jquery/1.8.3/jquery.min.js HTTP/1.1" 200 33789 "http://15418.courses.cs.cmu.edu/spring2013/article/26" "UCWEB/2.0 (Java; U; MIDP-2.0; Nokia203/20.37) U2/1.0.0
- [@5/Apr/2016:22:45:01 -0400] "GET /spring2013/assets/third_party/codemirror-3.0/lib/codemirror.css HTTP/1.1" 200 2319 "http://15418.courses.cs.cmu.edu/spring2013/article/26" "UCWEB/2.0 (Java; U; MIDP-2.0; Nokia203/20.37) U2/
- [85/Apr/2016:22:45:01 -0400] "GET /spring2013/assets/third_party/google-code-prettify/prettify.css HTTP/1.1" 200 660 "http://15418.courses.cs.cmu.edu/spring2013/article/26" "UCWEB/2.0 (Java; U; MIDP-2.0; Nokia203/20.37) U2/1
- [@5/Apr/2016:22:45:01 -0400] "GET /spring2013/assets/js/main.js HTTP/1.1" 200 1512 "http://15418.courses.cs.cmu.edu/spring2013/article/26" "UCWEB/2.0 (Java; U; MIDP-2.0; Nokia203/20.37) U2/1.0.0 UCBrowser/8.7.0.218 U2/1.0.0
- [@5/Apr/2016:22:45:01 -0400] "GET /spring2013/assets/third_party/codemirror-3.0/1lib/codemirror.js HTTP/1.1" 200 47855 "http://15418.courses.cs.cmu.edu/spring2013/article/26" "UCWEB/2.0 (Java; U; MIDP-2.0; Nokia203/20.37) U2/
- [05/Apr/2016:22:45:01 -0400] "GET /spring2@13/assets/js/comments.js HTTP/1.1" 200 2413 "http://15418.courses.cs.cmu.edu/spring2013/article/26" "UCWEB/2.0 (Java; U; MIDP-2.0; Nokia203/20.37) U2/1.0.0 UCBrowser/8.7.0.218 U2/1.
- [@5/Apr/2016:22:45:01 -0400] "GET /spring2013//assets/images/favicon/dragon.png HTTP/1.1" 200 3145 "-" "UCWEB/2.0 (Java; U; MIDP-2.0; Nokia203/20.37) U2/1.0.0 UCBrowser/8.7.0.218 U2/1.0.0 Mobile"

- [85/Apr/2016:22:45:01 -0400] "GET /spring2@13content/article_images/26_3.jpg HTTP/1.1" 200 28441 "http://15418.courses.cs.cmu.edu/spring2013/article/26" "UCWEB/2.0 (Java; U; MIDP-2.0; Nokia203/20.37) U2/1.0.0 UCBrowser/8.7.0,
- [85/Apr/2016:22:45:01 -0400] "GET /spring2@13content/article_images/26_2.jpg HTTP/1.1" 200 25683 "http://15418B.courses.cs.cmu.edu/spring2013/article/26" "UCWEB/2.@ (Java; U; MIDP-2.0; Nokia203/20.37) U2/1.0.0 UCBrowser/8.7.0,
- [05/Apr/2016:22:45:01 -0400] "GET /spring2@13content/article_images/26_4.jpg HTTP/1.1" 200 38414 "http://15418B.courses.cs.cmu.edu/spring2013/article/26" "UCWEB/2.0 (Java; U; MIDP-2.0; Nokia203/20.37) U2/1.0.0 UCBrowser/B8.7.0,
- [05/Apr/2016:22:45:01 -0400] "GET /spring2@13content/profile_pictures/lazyplus.jpg HTTP/1.1" 200 40708 "http://15418.courses.cs.cmu.edu/spring2013/article/26" "UCWEB/2.0 (Java; U; MIDP-2.0; Nokia203/20.37) U2/1.0.0 UCBrowser/
- - [@5/Apr/2016:22:45:10 -0400] "GET /spring2016/keep_alive HTTP/1.1" 280 957 "http://15418B.courses.cs.cmu.edu/spring2016/article/9" "Mozilla/5.@ (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/49.0.2627
G&-- [05/Apr/2016:22:46:31 -0400] "GET / HTTP/1.1" 302 564 "-" "Mozilla/5.@8 (Macintosh; Intel Mac 0S X 10_11_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/49.0.2623.110 Safari/537.36"
- - [05/Apr/2016:22:46:31 -0400] “GET /spring2016 HTTP/1.1" 301 584 "-" "Mozilla/5.0 (Macintosh; Intel Mac 0S X 10_11_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/49.0.2623.110 Safari/537.36"

- = [BS/ADr/2016:22:46*31 -04001 "GFT /<orinac?2016/ HTTP/1.1" 200 5254 "-" "Ma2il11a/5.0 (Macintosh: Intel Mac 0S X 10 11 3) AopnleWebKit/537.36 (KHTML . like Gecko) Chrome/49.0.2623.110 Safari/s537. 36"

Example query:

"What type of mobile phone are all the visitors usinge”

l.edu/spring2016/lecture/synchronization"” "Mozilla/5.0 (Macintosh; Intel Mg
J.edu/spring2016/lecture/synchronization” "Mozilla/5.0 (Macintosh; Intel M3
,edu/spring2016/lecture/synchronization"” "Mozilla/5.8 (Macintosh; Intel Mag
J.edu/spring2016/lecture/synchronization” "Mozilla/5.8 (Macintosh; Intel M3
J.edu/spring2016/lecture/synchronization” "Mozilla/5.@8 (Macintosh; Intel Mg
J.edu/spring2016/lecture/synchronization” "Mozilla/5.08 (Macintosh; Intel M3
pimpl/slide_041" "Mozilla/5.0 (Macintosh; Intel Mac 0S X 10_11_3) AppleWet
J/spring2016/lecture/snoopimpl/slide_042" "Mozilla/5.0 (Macintosh; Intel Mg
pimpl/slide_042" "Mozilla/5.0 (Macintosh; Intel Mac 0S X 10_11_3) AppleWel
»/synchronization" "Mozilla/5.8 (Macintosh; Intel Mac 0S X 10_11 4) Applewq
'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Geckqd
nu.edu/sorina?2816/lecture/svnchronization/slide 820" "Mozilla/’S5.080 (Macintod

40

Using MapReduce

// called once per line in input file by runtime
// input: string (line of input file)
// output: adds (user_agent, 1) entry to list
void mapper(string line, multimap<string,string>& results) {
string user_agent = parse_requester_user_agent(line);
if (is_mobile client(user_agent))
results.add(user_agent, 1);

}

// called once per unique key (user _agent) in results
// values is a list of values associated with the given key

void reducer(string key, list<string> values, int& result) {
int sum = 0;
for (v in values)
sum += v;
result = sum;

LineByLineReader input(*hdfs://log.txt");

Writer output(“hdfs://...");
runMapReduceJob(mapper, reducer, input, output);

The code left computes
the count of page
views by each type of
mobille phone.

RDD: Spark’s key programming abstraction:

* Read-only collection of records (immutable)
® RDDs can only be created by deterministic franstormations on

data in persistent storage or on existing RDDs

RDDs J .textFile(...)
// create RDD from file system data lines
var lines = spark.textFile(“hdfs://15418log.txt”);
{ fitter(...

// create RDD using filter() transformation on lines
var mobileViews = lines.filter((x: String) => isMobileClient(x)); mobileViews
// another filter() transformation ; l.ﬁﬂnﬂ"J
var safariViews = mobileViews.filter((x: String) => Xx.contains(“Safari”));

safariViews
// then count number of elements in RDD via count() action
var numViews = safariViews.count(); I-Eﬂllllt[]

int numViews

	幻灯片 1: Where We Are
	幻灯片 2: Recap: Batch Processing
	幻灯片 3: Today’s topic: Stream Processing
	幻灯片 4: Recall: Instruction
	幻灯片 5: Recall: Basics of Processors
	幻灯片 6: Why arithmetic intensity matters?
	幻灯片 7: How to measure the impact of I/O
	幻灯片 8: Arithmetic Intensity
	幻灯片 9: Arithmetic intensity
	幻灯片 10: Which program performs better? Program 1
	幻灯片 11: Which program performs better? Program 2
	幻灯片 12: Core Problem of Map-reduce
	幻灯片 14: PageRank
	幻灯片 15: PageRank Computation
	幻灯片 16: PageRank with Map/Reduce
	幻灯片 17: Iterative algorithms must load from disk each iteration
	幻灯片 18
	幻灯片 19: Goals
	幻灯片 20: Goals
	幻灯片 22: Three Necessary Conditions
	幻灯片 23: Typical Server Node
	幻灯片 24: Typical Server Node
	幻灯片 25: Memory Capacity
	幻灯片 26: Memory Price/Byte Evolution
	幻灯片 27: Typical Server Node
	幻灯片 29: d
	幻灯片 30: SSDs vs. HDDs
	幻灯片 31: Typical Server Node
	幻灯片 32: Ethernet Bandwidth
	幻灯片 33: Typical Server Node
	幻灯片 34: What Does This Mean?
	幻灯片 35: Three Necessary Conditions
	幻灯片 36: Fault tolerance for in-memory calculations
	幻灯片 37: Resilient distributed dataset (RDD)
	幻灯片 38: A log of page views on a web site
	幻灯片 39: Example query:
	幻灯片 40: Using MapReduce
	幻灯片 41: RDD: Spark’s key programming abstraction:

