
Where We Are

Foundations of Data Systems

Cloud

Machine Learning Systems

Big Data

1980 - 2000

2000 - 2016

2010 - Now

2

Recap: Batch Processing

• Batch Processing

• Suitable for latency insensitive tasks

• Map-reduce prog model: mapper, reducer, (combiner, partitioner)

• Many Map-reduce jobs to compose dataflows

• They communicate via disk I/O

• Pros and Cons

• Pros: expressive, scalable, and fault tolerant

• Cons: low performance due to disk I/O

3

Today’s topic: Stream Processing

• Computation vs. I/O: Arithmetic intensity

• Loop fusion

• When MapReduce fails

• Spark and RDD

• Why Spark succeeded

4

Recall: Instruction

add %rbx, %rax

Register names

add %rbx, %rax

rax += rbx

is

5

Recall: Basics of Processors

• Types of ISA commands to manipulate register contents:

• Memory access: load (copy bytes from a DRAM address to

register); store (reverse); put constant

• Arithmetic & logic on data items in registers: add/multiply/etc.;

bitwise ops; compare, etc.; handled by ALU

• Control flow (branch, call, etc.); handled by CU

• Caches: Small local memory to buffer instructions/data

If interested in more details: https://www.youtube.com/watch?v=cNN_tTXABUA

Q: How does a processor execute machine code?

https://www.youtube.com/watch?v=cNN_tTXABUA

6

Why arithmetic

intensity matters? Regs

L1 cache
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,
slower,
and
cheaper
(per byte)
storage
devices

Remote secondary storage
(e.g., Web servers)

Local disks hold files
retrieved from disks
on remote servers.

L2 cache
(SRAM)

L1 cache holds cache lines retrieved
from the L2 cache.

CPU registers hold words retrieved
from the L1 cache.

L2 cache holds cache lines
retrieved from L3 cache.

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and
costlier
(per byte)
storage
devices

L3 cache
(SRAM)

L3 cache holds cache lines
retrieved from main memory.

L6:

Main memory holds disk blocks
retrieved from local disks.

How to measure the impact of I/O

• I/O is the primary enemy of computer engineers/scientists: it will

always slow down computation in every levels of the memory

hierarchy

• Processor reads/writes cache or memory

• Map-reduce save and load results from distributed storage

• Q: how we measure such slowdown?

• Arithmetic intensity

Arithmetic Intensity

𝐴𝐼 =
#𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑂𝑝

#I/O 𝑜𝑝

9

Arithmetic intensity

void add(int n, float* A, float* B, float* C) {

for (int i=0; i<n; i++)

C[i] = A[i] + B[i];

}
Two loads, one store per math op

1. Read A[i]

2. Read B[i]

3. Add A[i]+B[i]

4. Store C[i]

10

Which program performs better? Program 1

void add(int n, float* A, float* B, float* C) {

for (int i=0; i<n; i++)

C[i] = A[i] + B[i];

}

void mul(int n, float* A, float* B, float* C) {

for (int i=0; i<n; i++)

C[i] = A[i] * B[i];

}

float* A, *B, *C, *D, *E, *tmp1, *tmp2;

// assume arrays are allocated here

// compute E = D + ((A + B) * C)

add(n, A, B, tmp1);

mul(n, tmp1, C, tmp2);

add(n, tmp2, D, E);

Two loads, one store per math op

(arithmetic intensity = 1/3)

Two loads, one store per math op

(arithmetic intensity = 1/3)

Overall arithmetic intensity = 1/3

11

Which program performs better? Program 2

float* A, *B, *C, *D, *E, *tmp1, *tmp2;

// assume arrays are allocated here

// compute E = D + ((A + B) * C)

add(n, A, B, tmp1);

mul(n, tmp1, C, tmp2);

add(n, tmp2, D, E);

void fused(int n, float* A, float* B, float* C, float* D,

float* E) {

for (int i=0; i<n; i++)

E[i] = D[i] + (A[i] + B[i]) * C[i];

}

// compute E = D + (A+ B) * C

fused(n, A, B,C, D, E);

Overall arithmetic intensity = 1/3

Four loads, one store per 3 math ops

arithmetic intensity = 3/5

computation fusion!

Core Problem of Map-reduce

Low arithmetic intensity

due to Disk I/O

14

PageRank

PageRank Computation

• Larry Page & Sergey Brinn, 1998

Rank “Importance” of Web Pages

0.79

1.51

1.14

0.42

1.20

0.78

1.16

15

PageRank Computation

Initially

• Assign weight 1.0 to each page

Iteratively

• Select arbitrary node and update its value

Convergence

• Results unique, regardless of selection ordering

R2

R3

R5

R1

R1  0.1 + 0.9 * (½ R2 + ¼ R3 + ⅓ R5)

16

PageRank with Map/Reduce

Each Iteration: Update all nodes

• Map: Generate values to pass along each edge

• Key value 1: (1, ½ R2) (1, ¼ R3) (1, ⅓ R5)

• Similar for all other keys

• Reduce: Combine edge values to get new rank

• R1  0.1 + 0.9 * (½ R2 + ¼ R3 + ⅓ R5)

• Similar for all other nodes

R1  0.1 + 0.9 * (½ R2 + ¼ R3 + ⅓ R5)

17

Iterative algorithms must load from disk each iteration

Low

Arithmetic Intensity!

18

in-memory, fault-tolerant distributed computing

http://spark.apache.org/

19

Goals

• This guy felt UC Grad student salary too low so he decided to

make some money (roughly 1M) via the Netflix challenge.

20

Goals

• Programming model for cluster-scale computations where there is

significant reuse of intermediate datasets

• Iterative machine learning and graph algorithms

• Interactive data mining: load large dataset into aggregate memory of

cluster and then perform multiple ad-hoc queries

• Don’t want incur inefficiency of writing intermediates to persistent

distributed file system (want to keep it in memory)

• Challenge: efficiently implementing fault tolerance for large-scale distributed

in-memory computations.

Three Necessary Conditions

• Memory: large (cheap) enough

• Network: fast (cheap) enough

• fault tolerance: at least as good as map-reduce

Typical Server Node

RAM

SSD

HDD

CPU

Memory Bus

PCI

SATA

Et
h

er
n

et

Typical Server Node

RAM

SSD

HDD

CPU

Memory Bus

PCI

SATA

Et
h

er
n

et

(80 GB/s)

(1 GB/s)*

(600 MB/s)*

(1
 G

B
/s

)

(50-100 MB/s)*

(100s GB)

(TBs)

(10s TBs)

* multiple channels

Time to read all data: 10s sec

hours

10s of hours

Memory Capacity

2002

2017

+29% per year
D

RA
M

 C
ap

ac
ity

•1990-2000: -54% per year

•2000-2010: -51% per year

•2010-2015: -32% per year

•(http://www.jcmit.com/memoryprice.htm)

Memory Price/Byte Evolution

http://www.jcmit.com/memoryprice.htm

Typical Server Node

RAM

SSD

HDD

CPU

Memory Bus

PCI

SATA

Et
h

er
n

et

30%

d

Cost
crosspoint!

SSDs vs. HDDs

•SSDs has become cheaper than (or as cheap as to) HDDs

•Transition from HDDs to SSDs has accelerate
• Already most instances in AWS have SSDs
• Digital Ocean instances are SSD only

•Going forward we can assume SSD only clusters

Typical Server Node

RAM

SSD

HDD

CPU

Memory Bus

PCI

SATA

Et
h

er
n

et

30%

>30%

Ethernet Bandwidth

1998

1995

2002

2017

33-40% per year

Typical Server Node

RAM

SSD

HDD

CPU

Memory Bus

PCI

SATA

Et
h

er
n

et

30%

33
-4

0%
>30%

What Does This Mean?

•Memory hierarchy has shift one

layer up

•HDD is virtually dead

•We have unlimited space of SSD

•Today’s RAM space = yesterday’s

SSD space

•Today’s SSD space = yesterday’s

HDD space

•Ethernet may become faster than

PCI/SATA bandwidth

RAM

SSD

HDD

CPU

Memory Bus

PCI

SATA

Et
h
e

rn
e

t

30%

3
3
-4

0
% >30%

Three Necessary Conditions

•Memory: large (cheap) enough

•Network: fast (cheap) enough

•Fault tolerance: at least as good as map-reduce

36

Fault tolerance for in-memory calculations

• Replicate all computations

• Expensive solution: decreases peak throughput

• Checkpoint and rollback

• Periodically save state of program to persistent storage

• Restart from last checkpoint on node failure

• Maintain log of updates (commands and data)

• High overhead for maintaining logs

37

Resilient distributed dataset (RDD)

38

A log of page views on a web site

39

Example query:

“What type of mobile phone are all the visitors using?”

40

Using MapReduce

The code left computes

the count of page

views by each type of

mobile phone.

LineByLineReader input(“hdfs://log.txt”);

Writer output(“hdfs://…”);

runMapReduceJob(mapper, reducer, input, output);

41

RDD: Spark’s key programming abstraction:

• Read-only collection of records (immutable)

• RDDs can only be created by deterministic transformations on

data in persistent storage or on existing RDDs

• Actions on RDDs return data to application

	幻灯片 1: Where We Are
	幻灯片 2: Recap: Batch Processing
	幻灯片 3: Today’s topic: Stream Processing
	幻灯片 4: Recall: Instruction
	幻灯片 5: Recall: Basics of Processors
	幻灯片 6: Why arithmetic intensity matters?
	幻灯片 7: How to measure the impact of I/O
	幻灯片 8: Arithmetic Intensity
	幻灯片 9: Arithmetic intensity
	幻灯片 10: Which program performs better? Program 1
	幻灯片 11: Which program performs better? Program 2
	幻灯片 12: Core Problem of Map-reduce
	幻灯片 14: PageRank
	幻灯片 15: PageRank Computation
	幻灯片 16: PageRank with Map/Reduce
	幻灯片 17: Iterative algorithms must load from disk each iteration
	幻灯片 18
	幻灯片 19: Goals
	幻灯片 20: Goals
	幻灯片 22: Three Necessary Conditions
	幻灯片 23: Typical Server Node
	幻灯片 24: Typical Server Node
	幻灯片 25: Memory Capacity
	幻灯片 26: Memory Price/Byte Evolution
	幻灯片 27: Typical Server Node
	幻灯片 29: d
	幻灯片 30: SSDs vs. HDDs
	幻灯片 31: Typical Server Node
	幻灯片 32: Ethernet Bandwidth
	幻灯片 33: Typical Server Node
	幻灯片 34: What Does This Mean?
	幻灯片 35: Three Necessary Conditions
	幻灯片 36: Fault tolerance for in-memory calculations
	幻灯片 37: Resilient distributed dataset (RDD)
	幻灯片 38: A log of page views on a web site
	幻灯片 39: Example query:
	幻灯片 40: Using MapReduce
	幻灯片 41: RDD: Spark’s key programming abstraction:

