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Recap: Batch Processing

• Batch Processing

• Suitable for latency insensitive tasks

• Map-reduce prog model: mapper, reducer, (combiner, partitioner)

• Many Map-reduce jobs to compose dataflows

• They communicate via disk I/O

• Pros and Cons

• Pros: expressive, scalable, and fault tolerant

• Cons: low performance due to disk I/O
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Today’s topic: Stream Processing

• Computation vs. I/O: Arithmetic intensity

• Loop fusion

• When MapReduce fails

• Spark and RDD

• Why Spark succeeded
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Recall: Instruction

add %rbx,  %rax

Register names

add %rbx,  %rax

rax += rbx

is
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Recall: Basics of Processors

• Types of ISA commands to manipulate register contents:

• Memory access: load (copy bytes from a DRAM address to 

register); store (reverse); put constant

• Arithmetic & logic on data items in registers: add/multiply/etc.; 

bitwise ops; compare, etc.; handled by ALU

• Control flow (branch, call, etc.); handled by CU

• Caches: Small local memory to buffer instructions/data

If interested in more details: https://www.youtube.com/watch?v=cNN_tTXABUA

Q: How does a processor execute machine code?

https://www.youtube.com/watch?v=cNN_tTXABUA
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Why arithmetic 

intensity matters? Regs

L1 cache 
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,  
slower, 
and 
cheaper 
(per byte)
storage
devices

Remote secondary storage
(e.g., Web servers)

Local disks hold files 
retrieved from disks 
on remote servers.

L2 cache 
(SRAM)

L1 cache holds cache lines retrieved 
from the L2 cache.

CPU registers hold words retrieved 
from the L1 cache.

L2 cache holds cache lines
retrieved from L3 cache.

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and 
costlier
(per byte)
storage 
devices

L3 cache 
(SRAM)

L3 cache holds cache lines
retrieved from main memory.

L6:

Main memory holds disk blocks 
retrieved from local disks.



How to measure the impact of I/O

• I/O is the primary enemy of computer engineers/scientists: it will 

always slow down computation in every levels of the memory 

hierarchy

• Processor reads/writes cache or memory

• Map-reduce save and load results from distributed storage

• Q: how we measure such slowdown?

• Arithmetic intensity



Arithmetic Intensity 

𝐴𝐼 =
#𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑂𝑝

#I/O 𝑜𝑝
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Arithmetic intensity

void add(int n, float* A, float* B, float* C) { 

for (int i=0; i<n; i++) 

C[i] = A[i] + B[i]; 

} 
Two loads, one store per math op 

1. Read A[i] 

2. Read B[i]

3. Add A[i]+B[i]

4. Store C[i]
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Which program performs better? Program 1

void add(int n, float* A, float* B, float* C) { 

for (int i=0; i<n; i++) 

C[i] = A[i] + B[i]; 

} 

void mul(int n, float* A, float* B, float* C) { 

for (int i=0; i<n; i++) 

C[i] = A[i] * B[i]; 

} 

float* A, *B, *C, *D, *E, *tmp1, *tmp2; 

// assume arrays are allocated here 

// compute E = D + ((A + B) * C) 

add(n, A, B, tmp1); 

mul(n, tmp1, C, tmp2); 

add(n, tmp2, D, E);

Two loads, one store per math op 

(arithmetic intensity = 1/3)

Two loads, one store per math op 

(arithmetic intensity = 1/3)

Overall arithmetic intensity = 1/3
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Which program performs better? Program 2

float* A, *B, *C, *D, *E, *tmp1, *tmp2; 

// assume arrays are allocated here 

// compute E = D + ((A + B) * C) 

add(n, A, B, tmp1); 

mul(n, tmp1, C, tmp2); 

add(n, tmp2, D, E);

void fused(int n, float* A, float* B, float* C, float* D,

float* E) { 

for (int i=0; i<n; i++) 

E[i] = D[i] + (A[i] + B[i]) * C[i]; 

} 

// compute E = D + (A+ B) * C 

fused(n, A, B,C, D, E);

Overall arithmetic intensity = 1/3

Four loads, one store per 3 math ops 

arithmetic intensity = 3/5

computation fusion!



Core Problem of Map-reduce

Low arithmetic intensity 

due to Disk I/O
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PageRank

PageRank Computation

• Larry Page & Sergey Brinn, 1998

Rank “Importance” of Web Pages

0.79

1.51

1.14

0.42

1.20

0.78

1.16
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PageRank Computation

Initially

• Assign weight 1.0 to each page

Iteratively

• Select arbitrary node and update its value

Convergence

• Results unique, regardless of selection ordering

R2

R3

R5

R1

R1  0.1 + 0.9 * (½ R2 + ¼ R3 + ⅓ R5)
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PageRank with Map/Reduce

Each Iteration: Update all nodes

• Map: Generate values to pass along each edge

• Key value 1: (1, ½ R2) (1, ¼ R3) (1, ⅓ R5)

• Similar for all other keys

• Reduce: Combine edge values to get new rank

• R1  0.1 + 0.9 * (½ R2 + ¼ R3 + ⅓ R5)

• Similar for all other nodes

R1  0.1 + 0.9 * (½ R2 + ¼ R3 + ⅓ R5)
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Iterative algorithms must load from disk each iteration

Low 

Arithmetic Intensity!
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in-memory, fault-tolerant distributed computing

http://spark.apache.org/



19

Goals

• This guy felt UC Grad student salary too low so he decided to 

make some money (roughly 1M) via the Netflix challenge.
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Goals

• Programming model for cluster-scale computations where there is 

significant reuse of intermediate datasets 

• Iterative machine learning and graph algorithms

• Interactive data mining: load large dataset into aggregate memory of 

cluster and then perform multiple ad-hoc queries

• Don’t want incur inefficiency of writing intermediates to persistent 

distributed file system (want to keep it in memory) 

• Challenge: efficiently implementing fault tolerance for large-scale distributed 

in-memory computations.



Three Necessary Conditions

• Memory: large (cheap) enough

• Network: fast (cheap) enough

• fault tolerance: at least as good as map-reduce
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Typical Server Node
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•1990-2000: -54% per year

•2000-2010: -51% per year

•2010-2015: -32% per year

•(http://www.jcmit.com/memoryprice.htm)

Memory Price/Byte Evolution

http://www.jcmit.com/memoryprice.htm
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Cost 
crosspoint!



SSDs vs. HDDs

•SSDs has become cheaper than (or as cheap as to) HDDs

•Transition from HDDs to SSDs has accelerate
• Already most instances in AWS have SSDs
• Digital Ocean instances are SSD only

•Going forward we can assume SSD only clusters
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Ethernet Bandwidth

1998

1995

2002

2017

33-40% per year
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What Does This Mean?

•Memory hierarchy has shift one 

layer up

•HDD is virtually dead

•We have unlimited space of SSD

•Today’s RAM space = yesterday’s 

SSD space

•Today’s SSD space = yesterday’s 

HDD space

•Ethernet may become faster than 

PCI/SATA bandwidth

RAM
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CPU

Memory Bus
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Three Necessary Conditions

•Memory: large (cheap) enough

•Network: fast (cheap) enough

•Fault tolerance: at least as good as map-reduce
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Fault tolerance for in-memory calculations

• Replicate all computations 

• Expensive solution: decreases peak throughput

• Checkpoint and rollback 

• Periodically save state of program to persistent storage

• Restart from last checkpoint on node failure

• Maintain log of updates (commands and data)

• High overhead for maintaining logs
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Resilient distributed dataset (RDD)
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A log of page views on a web site
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Example query:

“What type of mobile phone are all the visitors using?”
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Using MapReduce

The code left computes 

the count of page 

views by each type of 

mobile phone.

LineByLineReader input(“hdfs://log.txt”); 

Writer output(“hdfs://…”); 

runMapReduceJob(mapper, reducer, input, output);
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RDD: Spark’s key programming abstraction:

• Read-only collection of records (immutable)

• RDDs can only be created by deterministic transformations on 

data in persistent storage or on existing RDDs

• Actions on RDDs return data to application
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