

DSC 204A: Scalable Data Systems Winter 2024

Hao Zhang ♥ @haozhangml ♥ haozhang@ucsd.e du

Bio

- Hao Zhang (https://cseweb.ucsd.edu/~haozhang/)
- Now: Asst. Prof @ HDSI, Affiliated with CSE, UCSD
- Ph.D. from CMU CS, 2020
- Project: Parameter servers, Data parallel ML, etc.
- Project: Petuum
- 2023
- Project: Alpa, vLLM, Vicuna, Imsys.org

- Took 4-year leave to work for a startup (raised 100M+), 2016-2021

- Then postdoc at UC Berkeley working on LLM+systems, 2021 -

My Lab: Hao Al Lab

Research Area: Machine Learning + Systems Recent topics:

- Fast LLM Inference and Serving
- Large-scale distributed ML, Model parallelism, etc.
- Open source LLMs, data curation, evaluation
- Security + ML

Some ongoing projects:

What is this course about: data-centric system course

Computer Designer

Gates, clocks, circuit layout,

C programmer

Assembly

Data science

What is this course about: data

DATA

How to store and access the data?

- Computer Organizations
- OS
- Databases
- Data encoding

What is this course about: drawing values from data

BIG DATA

How to store and access **big** data?

- Cloud
- Distributed storage
- Parallelisms, partitioning
- Networking

One classic example: Dataframe API

EVER

Company's 1000-table database on data lake with 100k attributes

2

MALLAN

What is this course about: access and process big data

BIG E

How to process big data?

- Distributed computing
- Batch and stream processors, dataflow systems, programming models
- Big data tools: Hadoop, Spark, Ray

One Modern example: LLMs AI: new ways of drawing values from big data LLMs: powerful AI that can scale with data size

Figure 1: Exponential growth of number of parameters in DL models

Figure 1: Training loss over train tokens for the 7B, 13B, 33B, and 65 models. LLaMA-33B and LLaMA-65B were trained on 1.4T tokens. The smaller models were trained on 1.0T tokens. All models are trained with a batch size of 4M tokens.

What is this course about: drawing values from data

BIG DATA+AI

Al: New ways of drawing values from Big data

- ML frameworks, dataflow graphs
- Distributed ML systems, ML parallelisms
- Large language model systems

Hence the course is organized into four parts

- Foundations of data systems: OS, storage, compute
- Cloud: Cloud storage, network, parallelism, etc.
- Big Data: data processing and programming
- ML systems: ML frameworks, parallelism, LLM training and serving

- Foundations of data systems
 - Data models, big data storage and retrieval, and how to encode information when you store data, etc.
 - Transactions, synchronization, consistency, consensus

- Cloud and Distributed Systems
 - Cluster, cloud, network, replication, partition, consistency, etc.
 - RPC, Caching, Fault tolerance, Paxos, Concurrency

- Big Data Processing and Programming model
 - Hadoop, Spark, Ray, etc.

Batch processing, stream processing, MapReduce,

ML Systems

parallelism, LLMs, LLM training and serving

optimizations, NLP

 ML frameworks, dataflow graph representation of ML, ML ML architecture details, learning algorithms/theory,

Suggested Textbooks

- Chapter 3. Storage and retrieval
- Chapter 4. Encoding and evolution
- Chapter 10. Batch processing
- Chapter 11. Stream processing
- Chapter 12. The future of data systems
- The other chapters

Suggested Textbooks

Computer systems are about carefully layering levels of abstraction.

Scalable data flows

Low-level system software

Learning outcomes of this course

- **Explain** the basic principles of data systems, distributed systems, and data programming model.
- **Identify** the abstract data access patterns of, and opportunities for parallelism and efficiency gains in data processing at scale.
- Gain hands-on experience in creating end-to-end pipelines for data preparation, feature engineering, and distributed model training.
- Reason critically about practical tradeoffs between accuracy, runtimes, scalability, usability, and total cost.
- Enter the current trends of Big data + Big Models

What this course is NOT about

- Not a course on database, relational model, or SQL
 - Take DSC 202 instead (pre-requisite)
- Not a course on how to build scalable data systems
 - Take Distributed Systems, Operating Systems, Cloud Computing, ...
- Not a training module for how to use Spark or PyTorch
 - We focus more on principles
 - But you'll need to study how to use them by yourself
- Not a machine learning course
 - We focus more on system and data

Big Deltas of this year offering

- The pace will be faster: less basics, more advanced stuffs Take DSC 202 or DSC102 instead if you expect more
 - basics (pre-requisite)
- ~1/4 will be about new systems developed between 16 22 Data + ML systems: TensorFlow, PyTorch, Ray

 - Machine learning parallelism
 - LLM systems
- Homework redesigned to be based on Ray
- No midterm exam, more paper readings, scribe notes

Why bother learning such low-level system-related stuff in Data Science?

"Statisticians"/"Analysts" 20 years ago

- Methods: Sufficed to learn just math/stats, maybe some SQL
- Types: Mostly tabular (relational), maybe some time series
- Scale: Mostly small (KBs to few GBs)
- Tools: Simple GUIs for both analysis and deployment; maybe an R-like console

https://www.jmp.com/en au/offers/jmp-pro-for-academic-research.html

https://www.technologymagazine.com/data-and-data-analytics/sas-tops-worldwide-advanced-and-predictive-analytics-market-share

In the era of 2020s:

Data acquisition Data preparation Feature Engineering Training & Inference Model Selection

Serving Monitoring

US\$ --

US\$ --

US\$ --

Level Name	Total
L3 (Entry Level)	US\$
L4	US\$570K
L5	US\$914.5K
L6	US\$

Another Perspective

models.

Fastest-growing data companies

databricks

The fastest growing companies in SV is either data or model companies: they operate on either big model or big

Fastest-growing model companies

Questions?

Prerequisites

- DSC 200, 202 (or equivalent).
- Proficiency in Python programming & Unix Terminals
- Network basics
- Deep learning basics: pytorch, tensorflow, For all other cases, email me with proper justification; a
- waiver can be considered

Components and Grading

- 3 Programming Assignments: **44%** (12% + 16% + 16%)
 - No late days! Plan your work well ahead.
- No Midterm (cheers!)
- Final Exam (03/22/2024 8am-11am): **36%**
- Scribe Duties: 8%
- Reading summary: 12%
- Extra Credit: 5%

Grading Scheme (grade is the better of the two)

Grade	Absolute
A+	95
A	90
A-	85
B+	80
B	75
B-	70
C+	65
C	60
C-	55
D	50
F	< 50

Relative Bin (Use strictest) e Cutoff (>=) Highest 5% Next 10% (5-15) Next 15% (15-30) Next 15% (30-45) Next 15% (45-60) Next 15% (60-75) Next 5% (75-80) Next 5% (80-85) Next 5% (85-90) Next 5% (90-95) Lowest 5%

Grading Scheme (grade is the better of the two)

	Grade	Abso
	A+	95
	A	90
	A-	85
	B+	80
	B	75
Example. 82 and 33%.		70
	C+	65
Kel: R-	CADS: B+;	60
Final: E	inal: B4	
	D	50
	F	< 50

olute Cutoff (>=)

Relative Bin (Use strictest) Highest 5% Next 10% (5-15) Next 15% (15-30) Next 15% (30-45) Next 15% (45-60) Next 15% (60-75) Next 5% (75-80) Next 5% (80-85) Next 5% (85-90) Next 5% (90-95) Lowest 5%

The structure of the course

Topics

Single Machine: CompOrg, OS, Storage

Cloud: Storage, network, parallelism, etc.

Big Data Processing, dataflow, Programming models

MLSys: GPUs, ML libs, ML parallelism, LLM training/serving

Programming Assignments

- Three newly designed PAs
- Will be based on Ray: https://www.ray.io/
 Topics: exploring distributed data exploration, processing, and
- Topics: exploring distribute distributed ML
- The school be allocating \$50 AWS credits to each student
 You only have \$50 AWS credit! Close the instance when you
- You only have \$50 AWS creating finish.

Expectations on the PAs

- Expectations on the PAs:
- Individual projects; see webpage on academic integrity tools' APIs using their documentation on your own!
- TAs will explain and demo the tools; handle all Q&A You are expected to put in the effort to learn the details of the

Respecting TAs' time

- Use piazza first, seeking helps from your peers
- Students answering questions on Piazza will be rewarded
- Office hours are for getting ideas on how to debug or better approach your homework.
- Write a description! Try to narrow down your problem area as much as possible.
- If you don't have a description, TA can reject your questions.
- Respect TA's working hours.
 - Respond in 24 hours.
 - Members may send msgs at night or on weekends, but only expect to receive a reply on weekday.

Course website

DSC 204A

Home

Syllabus

Assignments

Schedule Overview

Resources

FAQs

Staff

Q Search DSC 204A

DSC 204A: Scalable Data Systems

Instructor: Hao Zhang, UC San Diego, Winter 2024

Toggle Dark Mode

Announcements

Week 0 Announcements

Jan 8 · 0 min read

- Welcome to the Winter 2024 offering of DSC 204A!
- We're excited to work with you throughout the quarter!
- Check back here for more updates soon!
- We'll be updating the pages of this site regularly in the first few weeks!

Week 1 1 Introduction Jan 8: Reading: N/A **SURVEY** Beginning of Quarter Survey

Slides • Recording

Exploring Contents at website

General Dos and Do NOTs

- Do:
 - Follow all announcements on Piazza
 - Try to join the lectures/discussions live
 - Participate in discussions in class / on Piazza
 - Raise your hand before speaking
 - View/review podcast videos asynchronously by yourself
 - To contact me/TAs, use piazza first; if you really need to email, use "DSC 204:" as subject prefix

General Dos and Do NOTs

- Do NOT:
 - Harass, intimidate, or intentionally talk over others

Violate academic integrity on the PAs, exams, or other components; I (and the school) am very strict on this matter!

Questions?