
Where We Are

Foundations of Data Systems

Cloud

Machine Learning Systems

Big Data

1980 - 2000

2000 - 2016

2010 - Now



2

Today’s topic: Stream Processing

• Computation vs. I/O: Arithmetic intensity

• Loop fusion

• When MapReduce fails

• Spark and RDD

• Spark Ecosystem and Beyond

• Early ML systems: parameter server



3

RDD: Spark’s key programming abstraction:

• Read-only collection of records (immutable)

• RDDs can only be created by deterministic transformations on 

data in persistent storage or on existing RDDs

• Actions on RDDs return data to application



Predefined Set of Operators 

Transformation Action



5

RDD transformations and actions



6

Repeating the map-reduce example

// 1. create RDD from file system data 

// 2. create RDD with only lines from mobile clients 

// 3. create RDD with elements of type (String,Int) from line string 

// 4. group elements by key 

// 5. call provided reduction function on all keys to count views 

var perAgentCounts = spark.textFile(“hdfs://log.txt”) 

.filter(x => isMobileClient(x)) 

.map(x => (parseUserAgent(x),1)); 

.reduceByKey((x,y) => x+y) 

.collect();

Array [String,int]

“Lineage”: Sequence of RDD 

operations needed to compute 

output

log.txt



7

Another Spark program

// create RDD from file system data 

var lines = spark.textFile(“hdfs://log.txt”); 

// create RDD using filter() transformation on lines 

var mobileViews = lines.filter((x: String) => isMobileClient(x)); 

// instruct Spark runtime to try to keep mobileViews in memory 

mobileViews.persist(); 

// create a new RDD by filtering mobileViews 

// then count number of elements in new RDD via count() action 

var numViews = mobileViews.filter(_.contains(“Safari”)).count(); 

// 1. create new RDD by filtering only Chrome views 

// 2. for each element, split string and take timestamp of // page view 

// 3. convert RDD to a scalar sequence (collect() action) 

var timestamps = mobileViews.filter(_.contains(“Chrome”)) 

.map(_.split(“ ”)(0)) 

.collect();



Discussion

• How do you like this programming model?

• v.s. map reduce

• Flexibility and Expressiveness?

• Simplicity?

• Scalability?

• Fault tolerance?



9

How do we implement RDDs?

• In particular, how should they be stored?

• var lines = spark.textFile(“hdfs://log.txt”); 

• var lower = lines.map(_.toLower()); 

• var mobileViews = lower.filter(x => isMobileClient(x)); 

• var howMany = mobileViews.count();

Question: should we think of RDD’s like arrays?

CPU

DRAM
？？？

log.txt

block0

log.txt

block1

node 0 node 1 node 2 node 3

CPU

DRAM
？？？

log.txt

block0

log.txt

block1

CPU

DRAM
？？？

log.txt

block0

log.txt

block1

CPU

DRAM
？？？

log.txt

block0

log.txt

block1



10

How do we implement RDDs?

• In particular, how should they be stored?

• var lines = spark.textFile(“hdfs://log.txt”); 

• var lower = lines.map(_.toLower()); 

• var mobileViews = lower.filter(x => isMobileClient(x)); 

• var howMany = mobileViews.count();

Question: Array -> In-memory representation would be huge! (larger than original flie on disk)



11

RDD partitioning and dependencies
var lines = spark.textFile(“hdfs://log.txt”); 

var lower = lines.map(_.toLower()); 

var mobileViews = lower.filter(x => isMobileClient(x)); 

var howMany = mobileViews.count();



12

Implementing sequence of RDD ops efficiently
var lines = spark.textFile(“hdfs://log.txt”); 

var lower = lines.map(_.toLower()); 

var mobileViews = lower.filter(x => isMobileClient(x)); 

var howMany = mobileViews.count();

• Recall “loop fusion” from start of lecture
• The following code stores only a line of the log file in memory, 

and only reads input data from disk once (“streaming” 
solution)

int count = 0; 
while (inputFile.eof()) { 

string line = inputFile.readLine(); 
string lower = line.toLower; 
if (isMobileClient(lower)) 

count++; 
}



13

A simple interface for RDDs

var lines = spark.textFile(“hdfs://log.txt”); 

var lower = lines.map(_.toLower()); 

var mobileViews = lower.filter(x => isMobileClient(x)); 

var howMany = mobileViews.count();



14

Narrow dependencies

var lines = spark.textFile(“hdfs://log.txt”); 

var lower = lines.map(_.toLower()); 

var mobileViews = lower.filter(x => isMobileClient(x)); 

var howMany = mobileViews.count();

“Narrow dependencies” = each partition of parent RDD referenced by at 

most one child RDD partition

- Allows for fusing of operations 

(here: can apply map and then filter all at once on input element) 

- In this example: no communication between nodes of cluster 

(communication of one int at end to perform count() reduction)



15

Wide dependencies
groupByKey: RDD[(K,V)] → RDD[(K,Seq[V])]

“Make a new RDD where each element is a sequence containing all 

values from the parent RDD with the same key.”

Wide dependencies = each partition of parent RDD referenced by multiple 

child RDD partitions



16

Wide dependencies
Wide dependencies = each partition of parent RDD referenced by multiple 

child RDD partitions

Challenges: 
- Must compute all of RDD_A before computing RDD_B 

- Example: groupByKey() may induce all-to-all communication as shown 
above 

- May trigger significant recompilation of ancestor lineage upon node failure (will 
address resilience in a few slides)



17

Scheduling Spark computations

• Actions (e.g., save()) trigger evaluation of Spark lineage graph.

• Stage 1 Computation: do nothing since input already materialized in memory 

• Stage 2 Computation: evaluate map in fused manner, only actually materialize RDD F

• Stage 3 Computation: execute join (could stream the operation to disk, do not need to materialize )



18

Implementing resilience via lineage

• RDD transformations are bulk, deterministic, and functional

• Implication: runtime can always reconstruct contents of RDD from its lineage (the 

sequence of transformations used to create it)

• Lineage is a log of transformations

• Efficient: since log records bulk data-parallel operations, overhead of logging is low 

(compared to logging fine-grained operations, like in a database)

// create RDD from file system data

var lines = spark.textFile(“hdfs://15418log.txt”); 

// create RDD using filter() transformation on lines 

var mobileViews = lines.filter((x: String) => isMobileClient(x)); 

// 1. create new RDD by filtering only Chrome views 

// 2. for each element, split string and take timestamp of // page view (first element) 

// 3. convert RDD To a scalar sequence (collect() action) 

var timestamps = mobileView.filter(_.contains(“Chrome”)) .map(_.split(“ ”)(0));



19

Upon node failure: recompute lost RDD partitions from 

lineage

Must reload required subset of data from disk and 

recompute entire sequence of operations given by lineage 

to regenerate partitions 2 and 3 of RDD timestamps.

Note: (not shown): file system data is replicated so assume 

blocks 2 and 3 remain accessible to all nodes



20

Spark Performance



Spark Improves MapReduce Over

• Easy for programmers because you express your computation by 

chaining atomic operators 

• Much fewer I/O -> very improved AI



Spark Cons?

• Debuggability

• Bulky

• Map-reduce is not bulky as it works well if you only have one 

worker. That’s why now every PL has a “map” function



23

Caution: “scale out” is not the entire story

• Distributed systems designed for cloud execution address many difficult challenges, and 

have been instrumental in the explosion of “big-data” computing and large-scale 

analytics 

• Scale-out parallelism to many machines

• Resiliency in the face of failures

• Complexity of managing clusters of machines

• But scale out is not the whole story:

[“Scalability! At what COST?” McSherry et al. HotOS 20



24

Modern Spark ecosystem



Story time: Spark and Databricks

• Initially just an open-source project by a few students

• The community grows because of advantages over Hadoop 

and Map-reduce

• Students were about to graduate and could not commit time to 

those projects, what’s next?

• “We asked Hortonworks if they wanted to take over Spark…They 

were not willing… We started Databricks.”

• Hortonworks -> later merged with Cloudera at 2019



Spark and Databricks

• Cloudera: data platform company, founded by Hadoop authors

• Used to be a unicorn / high-profile / high-tech company

• Was beat hard by Databricks / Snowflake

• Went to public 2017, stock price keeps declining…, merged with 

Hortonworks in 2018, went to private in 2021 after being acquired by 

investment companies.

• Databricks: 7 cofounders, Initial CEO is Prof. Ion Stoica. 

• They tried to sell Spark but were unsuccessful

• Switched to Ali Ghodsi: Iranian-Swedish, visitor to UC Berkeley, no US-

born nor US-educated



Spark and Databricks

• Databricks struggled for quite a few years

• Raised up to Series I (Seed, A, B, C, D, E, F, G, H, I)

• Almost failed during 2018 – 2020

• Data warehousing and OLAP gradually become a business, why?

• Competitors all failed

• Customer Education 

• Data indeed bigger and bigger

• Intended to go public in 2022, but hit covid

• Valued at 43B today (is there any bubble? No one knows)

• Create 3 billionaires

• Competitions with Snowflake are intense



28

After Spark:

All Modern Data/ML Systems follow a similar architecture

Runtime

Manifest

Operators

Executable

A fixed set of operators

A trusted runtime with a small set 

of pre-loaded implementations

Executable

Compiler

Syntax

Programs



After Spark: Many new systems

Naiad



Where We Are

Foundations of Data Systems

Cloud

Machine Learning Systems

Big Data

1980 - 2000

2000 - 2016

2010 - Now

2012 - Now



ML Era starts (roughly 2012, when Spark starts to take off)

• ML was still a mess in 2012

XGBOOST Spark mllib

LDA Torch (lua) / Theano / distbelief



Diversity -> Good News or Bad New?

• ML is so diverse 

• Cons:

• There is no unified model / computation

• Hard to build a programming model / interface that cover a 

diverse range of applications

• No idea where the system bottlenect is

• Pros:

• A lot of opportunities: Gold mining era



33

Gradient descent is what people find very common first

• The first unification:

• Most ML algorithms are iterative-convergent

• Gradient descent is the master equation behind

Petuum AI

dataobjective

Gradient / backward computation



How to Distribute this Equation?

dataobjective

Gradient / backward computation

How to perform this sum?



Problems if expressing this in Spark

• ML is too diverse; hard to express their computation in coarse-

grained data transformations.



Problems if expressing this in Spark

• Very heavy communication per iteration

• Compute : communication = 1:10 in the era of 2012



Consistency

Device A

Device B

Device C

1 2 3 4

Global Synchronization Barrier

Δ𝐿()

Δ𝐿()

Δ𝐿()

Δ𝐿()

Δ𝐿()

Δ𝐿()

𝐹() 𝐹()



38

BSP’s Weakness: Stragglers

• BSP suffers from stragglers

• Slow devices (stragglers) force all devices to 

wait

• More devices → higher chance of having a 

straggler

• Stragglers are usually transient, e.g.

• Temporary compute/network load in multi-user 

environment

• Fluctuating environmental conditions 

(temperature, vibrations)

• BSP’s throughput is greatly decreased in large 

clusters/clouds, where stragglers are unavoidable

Time

Device A

Device B

Device C



An interesting property of Gradient Descent (ascent)



Machine Learning is Error-tolerant (under certain 

conditions)



41

Background: Asynchronous Communication

(No Consistency)

• Asynchronous (Async): removes all communication barriers

• Maximizes computing time

• Transient stragglers will cause messages to be extremely stale

• Ex: Device 2 is at 𝑡 = 6, but Device 1 has only sent message for 𝑡 = 1

• Some Async software: messages can be applied while computing 𝐹(), Δ𝐿()

• Unpredictable behavior, can hurt statistical efficiency!

1

1

1

1

Device 1

Device 2

Device 3

Device 4

2

2

2

3

3

3

4

4

4

5

5

5 6

6

6



42

Background: Strict Consistency 

• Baseline: Bulk Synchronous Parallel (BSP)

• MapReduce, Spark, many DistML Systems

• Devices compute updates Δ𝐿() between 

global barriers (iteration boundaries)

• Messages ℳ exchanged only during 

barriers

• Advantage: Execution is serializable

• Same guarantees as sequential algo!

• Provided that aggregation 𝐹() is agnostic 

to order of messages ℳ (e.g. in SGD)

Device A

Device B

Device C

1 2 3 4

Global Synchronization Barrier

Δ𝐿()

Δ𝐿()

Δ𝐿()

Δ𝐿()

Δ𝐿()

Δ𝐿()

𝐹() 𝐹()



43

Background: Bounded Consistency

Clock

Device A

Device B

Device C

1 2 3 4

Staleness s= 3 

5 6

Delay = 3

Block

[Ho et al., 2013; Dai et al., 2015; Wei et al., 2015]

Bounded consistency models: Middle ground between BSP and fully-asynchronous (no-barrier)

e.g. Stale Synchronous Parallel (SSP): Devices allowed to iterate at different speeds
• Fastest & slowest device must not drift > 𝑠 iterations apart (in this example, 𝑠 = 3)

• 𝑠 is the maximum staleness



44

SSP: “Lazy” Communication

Clock

Device A

Device B

Device C

1 2 3 4

Staleness = 3 

5 6

Delay = 2Updates received by Device B

Not communicated, but still 
satisfy SSP

SSP [Ho et al., 2013]: devices avoid communicating unless necessary

• i.e. when staleness condition is about to be violated

• Favors throughput at the expense of statistical efficiency



45

Impacts of Consistency/Staleness:

Unbounded Staleness

Divergence under high delay



46

Theory: (E)SSP Expectation Bound

• Goal: minimize convex 𝑓(𝐱) =
1

𝑇
σ𝑡=1
𝑇 𝑓𝑡(𝐱)

(Example: Stochastic Gradient)

• 𝐿-Lipschitz, problem diameter bounded by 𝐹2

• Staleness 𝑠, using 𝑃 parallel devices

• Use step size 𝜂𝑡 =
𝜎

𝑡
with 𝜎 =

𝐹

𝐿 2 𝑠+1 𝑃

• (E)SSP converges according to

• Where 𝑇 is the number of iterations

Difference between

SSP estimate and true optimum



Parameter Server


	幻灯片 1: Where We Are
	幻灯片 2: Today’s topic: Stream Processing
	幻灯片 3: RDD: Spark’s key programming abstraction:
	幻灯片 4: Predefined Set of Operators 
	幻灯片 5: RDD transformations and actions
	幻灯片 6: Repeating the map-reduce example
	幻灯片 7: Another Spark program
	幻灯片 8: Discussion
	幻灯片 9: How do we implement RDDs?
	幻灯片 10: How do we implement RDDs?
	幻灯片 11: RDD partitioning and dependencies
	幻灯片 12: Implementing sequence of RDD ops efficiently
	幻灯片 13: A simple interface for RDDs
	幻灯片 14: Narrow dependencies
	幻灯片 15: Wide dependencies
	幻灯片 16: Wide dependencies
	幻灯片 17: Scheduling Spark computations
	幻灯片 18: Implementing resilience via lineage
	幻灯片 19: Upon node failure: recompute lost RDD partitions from lineage
	幻灯片 20: Spark Performance
	幻灯片 21: Spark Improves MapReduce Over
	幻灯片 22: Spark Cons?
	幻灯片 23: Caution: “scale out” is not the entire story
	幻灯片 24: Modern Spark ecosystem
	幻灯片 25: Story time: Spark and Databricks
	幻灯片 26: Spark and Databricks
	幻灯片 27: Spark and Databricks
	幻灯片 28: After Spark: All Modern Data/ML Systems follow a similar architecture
	幻灯片 29: After Spark: Many new systems
	幻灯片 30: Where We Are
	幻灯片 31: ML Era starts (roughly 2012, when Spark starts to take off)
	幻灯片 32: Diversity -> Good News or Bad New?
	幻灯片 33: Gradient descent is what people find very common first
	幻灯片 34: How to Distribute this Equation?
	幻灯片 35: Problems if expressing this in Spark
	幻灯片 36: Problems if expressing this in Spark
	幻灯片 37: Consistency
	幻灯片 38: BSP’s Weakness: Stragglers
	幻灯片 39: An interesting property of Gradient Descent (ascent)
	幻灯片 40: Machine Learning is Error-tolerant (under certain conditions)
	幻灯片 41: Background: Asynchronous Communication (No Consistency)
	幻灯片 42: Background: Strict Consistency 
	幻灯片 43: Background: Bounded Consistency
	幻灯片 44: SSP: “Lazy” Communication
	幻灯片 45: Impacts of Consistency/Staleness: Unbounded Staleness
	幻灯片 46: Theory: (E)SSP Expectation Bound
	幻灯片 47: Parameter Server

