Where We Are

Machine Learning Systems

Big Data

Cloud

Foundations of Data Systems

2010 - Now

2000 - 2016

1980 - 2000

Today's topic: Stream Processing

- Computation vs. I/O: Arithmetic intensity
 - Loop fusion
- When MapReduce fails
- Spark and RDD
- Spark Ecosystem and Beyond
- Early ML systems: parameter server

RDD: Spark's key programming abstraction:

- Read-only collection of records (immutable)
- RDDs can only be created by deterministic transformations on data in persistent storage or on existing RDDs

RDDs

Predefined Set of Operators

Transformation

Action

RDD transformations and actions

Transformations: (data parallel operators taking an input RDD to a new RDD)

$map(f: T \Rightarrow U)$:	RDD[7
$filter(f: T \Rightarrow Bool)$:	RDD[7
$flatMap(f: T \Rightarrow Seq[U])$:	RDD[7
<pre>sample(fraction : Float)</pre>	:	RDD[7
groupByKey()	:	RDD[(
$reduceByKey(f:(V,V) \Rightarrow V)$:	RDD[(
union()	:	(RDD[
join()	:	(RDD[
cogroup()	:	(RDD[
crossProduct()	:	(RDD[
$mapValues(f : V \Rightarrow W)$:	RDD[(
<pre>sort(c : Comparator[K])</pre>	:	RDD[(
partitionBy(p:Partitioner[K])	:	RDD[(

Actions: (provide data back to the "host" application)

- count() : RDD[T] \Rightarrow Long
- collect() : $RDD[T] \Rightarrow Seq[T]$
- $reduce(f:(T,T) \Rightarrow T) : RDD[T] \Rightarrow T$
 - lookup(k:K) : RDD[(K, V)] \Rightarrow Seq[V] (On hash/range partitioned RDDs)
 - save(path : String) : Outputs RDD to a storage system, e.g., HDFS

- $T] \Rightarrow RDD[U]$
- $T] \Rightarrow RDD[T]$
- $T] \Rightarrow RDD[U]$
- $T] \Rightarrow RDD[T]$ (Deterministic sampling)
- (K, V)] \Rightarrow RDD[(K, Seq[V])]
- (K, V)] \Rightarrow RDD[(K, V)]
- $[T], RDD[T]) \Rightarrow RDD[T]$
- $[(K, V)], RDD[(K, W)]) \Rightarrow RDD[(K, (V, W))]$
- $[(K, V)], RDD[(K, W)]) \Rightarrow RDD[(K, (Seq[V], Seq[W]))]$
- $[T], RDD[U]) \Rightarrow RDD[(T, U)]$
- (K, V)] \Rightarrow RDD[(K, W)] (Preserves partitioning)
- (K, V)] \Rightarrow RDD[(K, V)]
- $D[(K, V)] \Rightarrow RDD[(K, V)]$

Repeating the map-reduce example

// 1. create RDD from file system data // 2. create RDD with only lines from mobile clients // 3. create RDD with elements of type (String, Int) from line string // 4. group elements by key // 5. call provided reduction function on all keys to count views var perAgentCounts = spark.textFile("hdfs://log.txt") .collect();

Array [String, int]

.filter(x => isMobileClient(x)) .map(x => (parseUserAgent(x), 1));.reduceByKey((x,y) => x+y)

> "Lineage": Sequence of RDD. operations needed to compute output

Another Spark program

// create RDD from file system data
var lines = spark.textFile("hdfs://log.txt");

// create RDD using filter() transformation on lines
var mobileViews = lines.filter((x: String) => isMobileClient(x));

// instruct Spark runtime to try to keep mobileViews in memory
mobileViews.persist();

// create a new RDD by filtering mobileViews
// then count number of elements in new RDD via count() action
var numViews = mobileViews.filter(_.contains("Safari")).count();

Discussion

- How do you like this programming model?
- v.s. map reduce
 - Flexibility and Expressiveness?
 - Simplicity?
 - Scalability?
 - Fault tolerance?

How do we implement RDDs?

- In particular, how should they be stored?
 - var lines = spark.textFile("hdfs://log.txt");
 - var lower = lines.map(_.toLower());
 - var mobileViews = lower.filter(x => isMobileClient(x));
 - var howMany = mobileViews.count();

Question: should we think of RDD's like arrays?

node 1

node 0

node 2

node 3

How do we implement RDDs?

- In particular, how should they be stored?
 - var lines = spark.textFile("hdfs://log.txt");
 - var lower = lines.map(_.toLower());
 - var mobileViews = lower.filter(x => isMobileClient(x));
 - var howMany = mobileViews.count();

Question: Array -> In-memory representation would be huge! (larger than original flie on disk)

RDD partitioning and dependencies

var lines = spark.textFile("hdfs://log.txt");

var lower = lines.map(_.toLower());

var mobileViews = lower.filter(x => isMobileClient(x));

var howMany = mobileViews.count();

Black lines show dependencies between RDD partitions.

Implementing sequence of RDD ops efficiently

```
var lines = spark.textFile("hdfs://log.txt");
var lower = lines.map(\_.toLower());
var mobileViews = lower.filter(x =  isMobileClient(x);
var howMany = mobileViews.count();
```

- Recall "loop fusion" from start of lecture
- and only reads input data from disk once ("streaming" solution)

```
int count = 0;
while (inputFile.eof()) {
  string line = inputFile.readLine();
  string lower = line.toLower;
 if (isMobileClient(lower))
    count++;
```

The following code stores only a line of the log file in memory,

A simple interface for RDDs

```
var lines = spark.textFile("hdfs://log.txt");
                                                       var lower = lines.map(\_.toLower());
                                                       var mobileViews = lower.filter(x => isMobileClient(x));
                                                       var howMany = mobileViews.count();
                                                            RDD::hasMoreElements() {
// create RDD by mapping fun onto input (parent) RDD
                                                               parent.hasMoreElements();
RDD::map(RDD parent, func) {
   return new RDDFromMap(parent, func);
                                                            // overloaded since no parent exists
                                                            RDDFromTextFile::hasMoreElements() {
// create RDD from text file on disk
                                                               return !inputFile.eof();
RDD::textFile(string filename) {
   return new RDDFromTextFile(open(filename));
                                                           RDDFromTextFile::next() {
                                                               return inputFile.readLine();
// count action (forces evaluation of RDD)
RDD::count() {
   int count = 0;
                                                           RDDFromMap::next() {
   while (hasMoreElements()) {
                                                               var el = parent.next();
      var el = next();
                                                               return el.toLower();
      count++;
                                                            RDDFromFilter::next() {
                                                              while (parent.hasMoreElements()) {
                                                                var el = parent.next();
                                                                if (isMobileClient(el))
                                                                  return el;
```

Narrow dependencies

"Narrow dependencies" = each partition of parent RDD referenced by at most one child RDD partition - Allows for fusing of operations (here: can apply map and then filter all at once on input element) - In this example: no communication between nodes of cluster (communication of one int at end to perform count() reduction)

- var lines = spark.textFile("hdfs://log.txt");
- var lower = lines.map(_.toLower());
- var mobileViews = lower.filter(x = isMobileClient(x);
- var howMany = mobileViews.count();

Wide dependencies groupByKey: $RDD[(K,V)] \rightarrow RDD[(K,Seq[V])]$

"Make a new RDD where each element is a sequence containing all values from the parent RDD with the same key."

Wide dependencies = each partition of parent RDD referenced by multiple child RDD partitions

Wide dependencies

child RDD partitions

Challenges:

- Must compute all of RDD_A before computing RDD_B

above

address resilience in a few slides)

Wide dependencies = each partition of parent RDD referenced by multiple

- Example: groupByKey() may induce all-to-all communication as shown
- May trigger significant recompilation of ancestor lineage upon node failure (will

Scheduling Spark computations

- Actions (e.g., save()) trigger evaluation of Spark lineage graph.
 - Stage 1 Computation: do nothing since input already materialized in memory
 - Stage 2 Computation: evaluate map in fused manner, only actually materialize RDD F
 - Stage 3 Computation: execute join (could stream the operation to disk, do not need to materialize)

Implementing resilience via lineage

- RDD transformations are bulk, deterministic, and functional
 - Implication: runtime can always reconstruct contents of RDD from its lineage (the sequence of transformations used to create it)
 - Lineage is a log of transformations
 - (compared to logging fine-grained operations, like in a database)

// create RDD from file system data var lines = spark.textFile("hdfs://15418log.txt"); // create RDD using filter() transformation on lines var mobileViews = lines.filter((x: String) => isMobileClient(x)); // 1. create new RDD by filtering only Chrome views // 2. for each element, split string and take timestamp of // page view (first element) // 3. convert RDD To a scalar sequence (collect() action) var timestamps = mobileView.filter(_.contains("Chrome")) .map(_.split(" ")(0));

Efficient: since log records bulk data-parallel operations, overhead of logging is low

lineage

Must reload required subset of data from disk and recompute entire sequence of operations given by lineage to regenerate partitions 2 and 3 of RDD timestamps.

Note: (not shown): file system data is replicated so assume blocks 2 and 3 remain accessible to all nodes

Spark Performance

Spark Improves MapReduce Over

- chaining atomic operators
- Much fewer I/O -> very improved AI

Easy for programmers because you express your computation by

Spark Cons?

- Debuggability
- Bulky

 Map-reduce is not bulky as it works well if you only have one worker. That's why now every PL has a "map" function

Caution: "scale out" is not the entire story

- have been instrumental in the explosion of "big-data" computing and large-scale analytics
 - Scale-out parallelism to many machines
 - Resiliency in the face of failures
 - Complexity of managing clusters of machines \bullet
- But scale out is not the whole story:

scalable s GraphChi Stratosph X-Stream Spark [8] Giraph [8 GraphLal GraphX Single the Single th

Distributed systems designed for cloud execution address many difficult challenges, and

20 Iterations of Page Rank

system	cores	twitter	uk-2007-05	na	ame	twitter_rv [11]	uk-20	07-05 [4]	
i [10]	2	3160s	6972s	no	odes	41,652,230	105,896,555		
nere [6]	16	2250s	-	ec	lges	1,468,365,182	3,738,733,648		
n [17]	16	1488s	-	si	ze	5.76GB	14.72GB		
	128	857s	1759s						
3]	128	596s	1235s						
b [8]	128	249s	833s						
[8]	128	419s	462s						
read (SSD)	1	300s	651s						
read (RAM)	1	275s	-	ſ	Verte	ex order (SSD)	1	300s	
↓				Verte	ex order (RAM)	1	275s		
Further optimization of the baseline — brought time down to 110s				Hilbert order (SSD)		1	242s		
				Hilbe	ert order (RAM)	1	110s		
	biought ti								

Modern Spark ecosystem

Compelling feature: enables integration/composition of multiple domain-specific frameworks (since all collections implemented under the hood with RDDs and scheduled using Spark scheduler)

names = results.map(lambda p: p.name)

Interleave computation and database query Can apply transformations to RDDs produced by SQL queries

Machine learning library build on top of Spark abstractions.

GraphLab-like library built on top of Spark abstractions.

```
points = spark.textFile("hdfs://...")
                .map(parsePoint)
  model = KMeans.train(points, k=10)
graph = Graph(vertices, edges)
messages = spark.textFile("hdfs://...")
graph2 = graph.joinVertices(messages) {
  (id, vertex, msg) => ...
```

Story time: Spark and Databricks

- Initially just an open-source project by a few students
 The community grows because of advantages over Hadoop
- The community grows because
 and Map-reduce
- Students were about to graduate and could not commit time to those projects, what's next?
- "We asked Hortonworks if they wanted to take over Spark...They
 - were not willing... We started Databricks."
- Hortonworks -> later merged with Cloudera at 2019

Spark and Databricks

- Cloudera: data platform company, founded by Hadoop authors
 - Used to be a unicorn / high-profile / high-tech company
 - Was beat hard by Databricks / Snowflake
 - Went to public 2017, stock price keeps declining..., merged with Hortonworks in 2018, went to private in 2021 after being acquired by investment companies.
- Databricks: 7 cofounders, Initial CEO is Prof. Ion Stoica.
 - They tried to sell Spark but were unsuccessful
 - Switched to Ali Ghodsi: Iranian-Swedish, visitor to UC Berkeley, no USborn nor US-educated

Spark and Databricks

- Databricks struggled for quite a few years Raised up to Series I (Seed, A, B, C, D, E, F, G, H, I)
- - Almost failed during 2018 2020
 - Data warehousing and OLAP gradually become a business, why?
 - Competitors all failed
 - Customer Education
 - Data indeed bigger and bigger
 - Intended to go public in 2022, but hit covid
 - Valued at 43B today (is there any bubble? No one knows)
 - Create 3 billionaires
 - Competitions with Snowflake are intense

After Spark: All Modern Data/ML Syste

All Modern Data/ML Systems follow a similar architecture

A fixed set of operators

A trusted runtime with a small set of pre-loaded implementations

After Spark: Many new systems

Naiad

Where We Are

Machine Learning Systems

Big Data

Cloud

Foundations of Data Systems

2012 - Now

2010 - Now

2000 - 2016

1980 - 2000

ML Era starts (roughly 2012, when Spark starts to take off)

• ML was still a mess in 2012

Spark mllib

Torch (lua) / Theano / distbelief

Diversity -> Good News or Bad New?

- ML is so diverse
 - Cons:
 - There is no unified model / computation
 - Hard to build a programming model / interface that cover a diverse range of applications
 - No idea where the system bottlenect is
 - Pros:
 - A lot of opportunities: Gold mining era

Gradient descent is what people find very common first

Gradient / backward computation

$$\boldsymbol{\theta}^{(t)} = \boldsymbol{\theta}^{(t-1)} + \underbrace{\boldsymbol{\varepsilon} \cdot \nabla_{\mathcal{L}}(\boldsymbol{\theta}^{(t-1)}, \boldsymbol{D}^{(t)})}_{\substack{\uparrow \\ \text{objective}}} \mathbf{\theta}^{(t-1)} \mathbf{\theta}^{(t-1)} \mathbf{\theta}^{(t)} \mathbf{\theta}^{(t)} \mathbf{\theta}^{(t-1)} \mathbf{\theta}^{(t)} \mathbf{\theta}^{(t)} \mathbf{\theta}^{(t)} \mathbf{\theta}^{(t-1)} \mathbf{\theta}^{(t)} \mathbf{\theta}^{(t)} \mathbf{\theta}^{(t-1)} \mathbf{\theta}^{(t)} \mathbf{\theta}$$

- The first unification:
 - Most ML algorithms are iterative-convergent
 - Gradient descent is the master equation behind

ReturnA

How to Distribute this Equation?

Gradient / backward computation

$$\boldsymbol{\theta}^{(t)} = \boldsymbol{\theta}^{(t-1)} + \boldsymbol{\varepsilon} \cdot \nabla_{\mathcal{L}}(\boldsymbol{\theta}^{(t-1)}, \boldsymbol{D}^{(t)})$$

$$\stackrel{\dagger}{\underset{objective}{\uparrow}} \stackrel{\dagger}{\underset{data}{\uparrow}}$$

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} + \boldsymbol{\varepsilon} \sum_{p=1}^{P} \nabla_{\mathcal{L}}(\boldsymbol{\theta}^{(t)}, \boldsymbol{D}_{p}^{(t)})$$
How to perform this sum?

$$\boldsymbol{\theta}^{(t)} = \boldsymbol{\theta}^{(t-1)} + \boldsymbol{\varepsilon} \cdot \nabla_{\mathcal{L}}(\boldsymbol{\theta}^{(t-1)}, \boldsymbol{D}^{(t)})$$

$$\stackrel{\uparrow}{\underset{objective}{\uparrow}} \stackrel{\uparrow}{\underset{data}{\uparrow}}$$

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} + \boldsymbol{\varepsilon} \sum_{p=1}^{P} \nabla_{\mathcal{L}}(\boldsymbol{\theta}^{(t)}, \boldsymbol{D}_{p}^{(t)})$$
How to perform this sum

Problems if expressing this in Spark

ML is too diverse; hard to express their computation in coarsegrained data transformations.

- $map(f: T \Rightarrow U)$: $RDD[T] \Rightarrow RDD[U]$
- *filter*($f : T \Rightarrow Bool$) : RDD[T] \Rightarrow RDD[T]
- $flatMap(f: T \Rightarrow Seq[U])$: $RDD[T] \Rightarrow RDD[U]$
- $reduceByKey(f:(V,V) \Rightarrow V)$: $RDD[(K,V)] \Rightarrow RDD[(K,V)]$

 - *join*() :
 - cogroup() :
 - crossProduct() :

 - sort(c: Comparator[K]) : $RDD[(K, V)] \Rightarrow RDD[(K, V)]$
- *partitionBy*(p: Partitioner[K]) : RDD[(K, V)] \Rightarrow RDD[(K, V)]

```
sample(fraction : Float) : RDD[T] \Rightarrow RDD[T] (Deterministic sampling)
          groupByKey() : RDD[(K, V)] \Rightarrow RDD[(K, Seq[V])]
                union() : (RDD[T], RDD[T]) \Rightarrow RDD[T]
                               (RDD[(K, V)], RDD[(K, W)]) \Rightarrow RDD[(K, (V, W))]
                               (RDD[(K, V)], RDD[(K, W)]) \Rightarrow RDD[(K, (Seq[V], Seq[W]))]
                               (RDD[T], RDD[U]) \Rightarrow RDD[(T, U)]
                                                                                                C
mapValues(f : V \Rightarrow W) : RDD[(K, V)] \Rightarrow RDD[(K, W)] (Preserves partitioning)
```

Problems if expressing this in Spark

- Very heavy communication per iteration
- Compute : communication = 1:10 in the era of 2012

 $\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} + \boldsymbol{\varepsilon} \sum_{p}^{P} \nabla_{\mathcal{L}}(\boldsymbol{\theta}^{(t)}, D_{p}^{(t)})$ p=1

Consistency

 $\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} + \boldsymbol{\varepsilon} \sum_{l=1}^{P} \nabla_{\mathcal{L}}(\boldsymbol{\theta}^{(t)}, D_{p}^{(t)})$ p=1

1 *F*() 2 *F*() 3 4

BSP's Weakness: Stragglers

BSP suffers from stragglers

- Slow devices (stragglers) force all devices to wait
- More devices \rightarrow higher chance of having a straggler
- Stragglers are usually transient, e.g.
 - Temporary compute/network load in multi-user environment
 - Fluctuating environmental conditions (temperature, vibrations)
- BSP's throughput is greatly decreased in large clusters/clouds, where stragglers are unavoidable

lime

An interesting property of Gradient Descent (ascent)

 $\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} + \boldsymbol{\varepsilon} \sum_{1}^{P} \nabla_{\mathcal{L}}(\boldsymbol{\theta}^{(t)}, D_{p}^{(t)})$ p=1

Machine Learning is Error-tolerant (under certain conditions)

Background: Asynchronous Communication (No Consistency)

- **Asynchronous (Async):** removes all communication barriers
 - Maximizes computing time
 - Transient stragglers will cause messages to be extremely stale
 - Ex: Device 2 is at t = 6, but Device 1 has only sent message for t = 1
- Some Async software: messages can be applied while computing F(), $\Delta_L()$
 - Unpredictable behavior, can hurt statistical efficiency!

Background: Strict Consistency

- **Baseline:** Bulk Synchronous Parallel (BSP)
 - MapReduce, Spark, many DistML Systems
- Devices compute updates Δ_L () between global barriers (iteration boundaries)
 - Messages \mathcal{M} exchanged only during barriers
- Advantage: Execution is serializable
 - Same guarantees as sequential algo!
 - Provided that aggregation F() is agnostic to order of messages \mathcal{M} (e.g. in SGD)

Global Synchronization Barrier

Background: Bounded Consistency

Bounded consistency models: Middle ground between BSP and fully-asynchronous (no-barrier)

e.g. Stale Synchronous Parallel (SSP): Devices allowed to iterate at different speeds Fastest & slowest device must not drift > s iterations apart (in this example, s = 3) • *s* is the maximum staleness

SSP: "Lazy" Communication

SSP [Ho et al., 2013]: devices avoid communicating unless necessary i.e. when staleness condition is about to be violated lacksquare

Favors throughput at the expense of statistical efficiency

Impacts of Consistency/Staleness: Unbounded Staleness

Theory: (E)SSP Expectation Bound

- **Goal:** minimize convex $f(\mathbf{x}) = \frac{1}{T} \sum_{t=1}^{T} f_t(\mathbf{x})$ (Example: Stochastic Gradient)
 - L-Lipschitz, problem diameter bounded by F^2
 - Staleness *s*, using *P* parallel devices

• Use step size
$$\eta_t = \frac{\sigma}{\sqrt{t}}$$
 with $\sigma = \frac{F}{L\sqrt{2(s+1)P}}$

• (E)SSP converges according to

• Where T is the number of iterations

$$\begin{aligned} \text{Difference between} \\ \text{SSP estimate and true optimum} \\ R[\mathbf{X}] &:= \left\lceil \frac{1}{T} \sum_{t=1}^{T} f_t(\tilde{\mathbf{x}}_t) \right\rceil - f(\mathbf{x}^*) \leq 4FL\sqrt{\frac{2(s+1)P}{T}} \end{aligned}$$

Parameter Server

