Where We Are

Machine Learning Systems 2012 - Now

Big Data 2010 - Now

Cloud 2000 - 2016

Foundations of Data Systems 1980 - 2000

ML Era (roughly starts from 2008, even betore Spark has
faken off)

* ML was still very diverse (a.k.a.in a mess) in 2012

Random Forest Simplified

Random Forest e
= f

4‘"'_/‘—/’ V 8
A AN B
e 4 “ 2
O 0. 0. W.0.V.0.550.0.%.9,
000 O0S® GO0 S0EO Sbdd d8'dd
Tree-1 Tree-2 Tree-n
Class-A Class-B Class-B

|
[Majority-Voting | I

Final-Class

XGBOOST

[
-~ ’

Torch (lua) / Theano / distbelief

Diversity -> Good News or Bad Newe

®* ML Is so diverse
* Cons:
®* There Is no unifled model / computation
* Hard to build a programming model / inferface that cover a
diverse range of applications
* No idea where the system bofttlenect is
® Pros:

* A lot of opportunities: Gold mining era

ML Systems Plan in DSC 204A

* ML System history: history of unification

®* Parameter server

* Autoditt libraries: tensortlow, pytorch, etc.

* [LMs: Flash attention, paged attention, and how o scale up

* Want to dive into each topice Enroll DSC 299 offered next quarter

ML System history

* ML Systems evolve as more and more ML components

(models/optimization algorithms) are unified

Ad-hoc: diverse model family,
optimization algos, and dato

Opt algo: iterative-convergent .
More and more unified
. yet scope becoming
Model family: neural nets Narrower and Namower

Model:
CNNs/transformers/GNNs

LLMs: transformer
decoders

The first Unified component: lterafive-convergence Algo

Random Forest Simplified

lnstance
Random Forest -

fﬁw @ %?zb

LLLLLL

Class-B
el
[M] rity-Votin

'Final-Class

Gradient boosting tree

EM Algorithm Grodlen’r descen’r

Example: Gradient Descent

Gradient / backward computation

Recdall collective l
communication 9(1) _ 6(1—1) de. V[;(Q(t_l),D(r))
1 1
objective data

® The first unification:
* Most ML algorithms are iterative-convergent

* iterative-convergent is the master equation behind

How to Distribute this Equation®e

Gradient / backward computation

|

") =9t~V de. v, (0D pi)
] !

objective datfa

P
pi+) =9 +e Y v, (60, Dy

pzl\

How o perform this sume

Problems If expressing this in Spark

* ML Is too diverse; hard to express their computation in coarse-

grained data fransformations.

map(f:T=1U) : RDD|[T]=-RDD[U]

filter(f : T=Bool) : RDD[T]= RDDI[T]

flatMap(f : T = Seq[U]) : RDDI[T]=-RDD[U]
sample(fraction : Float) : RDD[T]=-RDDI[T] (Deterministic sampling)

groupByKey() : RDD[(K, V)] = RDD[(K, Seq[V])]
reduceByKey(f : (V,V)=V) : RDD[(K, V)] = RDD[(K, V)]
union() : (RDD[T],RDD[T]) = RDDIT]
join() : (RDD[(K, V)], RDD[(K, W)]) = RDD[(K, (V, W))]
cogroup() : (RDD[(K, V)], RDD[(K, W)]) = RDD[(K, (Seq[V], Seq[W1))]
crossProduct() : (RDDI[T],RDD[U]) = RDD[(T, U)]
mapValues(f : V=W) : RDD[(K, V)] = RDD[(K, W)] (Preserves partitioning)
sort(c : Comparator[K]) : RDDI[(K, V)] = RDDI[(K, V)]
partitionBy(p : Partitioner[K]) : RDDI[(K, V)] = RDD[(K, V)]

C

Problems If expressing this in Spark

P
pi+) =9 +e Y v, (60, Dy
p=1

* Very heavy communication per iteration

* Compute : communication = 1:10 in the era of 2012

Consistency

P
pi+) =9 +e Y v, (60, Dy
p=1

Global Syndhronization Barrier

Device A
(¢) ‘ ALO ALO
\DeviceB)
(¢ 1| A0 ALO
Y 20 § &0
- 2 . 3

12

BSP's Weakness: Stragglers

* BSP suffers from siragglers
* Slow devices (stragglers) force all devices to
wait
®* More devices — higher chance of having o
straggler
* Stragglers are usually transient, e.g.
* Temporary compute/network load in multi-user
environment

* Fluctuating environmental conditions

(temperature, vibrations)
® BSP’'s throughput is greatly decreased in large

clusters/clouds, where stragglers are unavoidable

Device A

r

.

e

~

Device B

Time

An Interesting property of Gradient Descent (ascent)

Machine Learning is Error-tolerant (under certain
conditions)

Background: Strict Consistency

®* Baseline: Bulk Synchronous Parallel (BSP)
* MapReduce, Spark, many DistML Systems

Global Syndhronization Barrier

Device A
®* Devices compute updates A, () between ¢ ‘ A0
global barriers (iteration boundaries)) Device B 7
* Messages M exchanged only during) ‘ A0
barriers /
Y [TAD
* Advantage: Execution is serializable y
* Same guarantees as sequential algo! 1

®* Provided that aggregation IS agnostic
to order of messages M (e.g. in SGD)

15

5,0
5,0
5,0
- 2 - 3

16

Background: Asynchronous Communication
(No Consistency)

®* Asynchronous (Async): removes all communication barriers
® Maximizes computing time
* Transient stragglers will cause messages to be exiremely stale

* Ex:Device 2isatt =6, but Device | has only sent message fort =1

* Some Async software: messages can be applied while computing F (), A; ()

* Unpredictable behavior, can hurt statistical efficiency!

Device 1 | S
Device 2) IFE) HEEEE) W) EEEE) BE)
ey

e o o mmp

Bridging/Consistency Model

ALQ) ALQO
) l)
=) M-
))
== I L2 4

T

A
]‘i

Background: Bounded Consistency

Bounded consistency models: Middle ground between BSP and fully-asynchronous (no-tbamer)

e.g. Stale Synchronous Parallel (SSP): Devices alowed to iterate at different speeds
» Fastest & slowest device must not dnft > s iferations apart (in this example, s = 3)
e 5Isthe maximum staleness

Delay =3 ~ Stalenesss=3

Device A

Block

l X

Device B

J

17 [Ho et dl., 2013; Dc;ioe]’r5 (]]|., 2015; Wei et dl,] . 3 A4 5 A Clock

18

SSP: “Lazy” Communication

SSP: devices avoid communicating unless necessary
* |.e.When staleness condifion is about 1o e violated

» Favors throughput atf the expense of statistical ef

iclency

Updates received by Device B

Device B

-

e

> De:lc:y =2 ,_ Staleness = 3
th Communiéated, but still
(\/ satisfy SSP
3 4 5 6 Clock

19

Impacts of Consistency/Staleness:

Unbounded Staleness

Divergence under high delay

AV

|

"~ SSP s-0

— SSP s=2

— SSP s=3

—SSP s=10 |

-- ESSP s=10|

SSP s=5

ESSP s=0

20

Theory: SSP Expectation Bound

c e . 1
* Goal: minimize convex f(x) = - 1 (%)

(Example: Stochastic Gradient)

L-Lipschitz, problem diameter bounded by F?

* Staleness s, using P parallel devices

Use step size n, =

o)

Vt

F

with o =

L\/2(s+1)P

* (E)SSP converges according to

Where T Is the number of iterations

Difference between
SSP estimate and frue optimum

A

.

1 T

7 Z ft(X¢)
t—=1

\

— f(x*) <AFL \/

20s +1)P

1

1 —~—

noisy gradient

true T~~~
gradient

Parameter Server Naturally emerges

How to Implement Parameter Servere

* Key considerations:
® Server: Communication bottleneck
* Fault folerance
®* Programming Model
* Handling GPUs

Parameter Server Implementation

* Sharded parameter server: sharded KV stores

* Avoid communication bottleneck

® Redundancy across different PS shards
Parameter Servers

Programming Model

g worker 1
* Client: — /2_ B s
1. compute
® PUSh() g1+"|'+gm XX X lx x |Wy
3. update » X’? y
* PUII() f o
w {-4. pull™ |4}
* Compute() G — :
4. pull L
®* Server: . \ worker m'

X gm

° UdeTe() / XX1.chrA:pXute
training] ”
* Very similar to the spirit of Map Reduce et ———

XX X X

* A lot of flexiblility for users to customize - -

* Recall Mapreduce vs. Spark

Summary: Parameter Server

* Why does it emergee
* Unification of iferative-convergence optimization algorithm
* What problems does it address and howe
* Heavy communication, via flexible consistency
® Prose
* Cope well with iterative-convergent algo
®* Conse
* Extension to GPUs¢

® Strong assumption on communication bottleneck

	Slide 1: Where We Are
	Slide 2: ML Era (roughly starts from 2008, even before Spark has taken off)
	Slide 3: Diversity -> Good News or Bad New?
	Slide 4: ML Systems Plan in DSC 204A
	Slide 5: ML System history
	Slide 6: The first Unified component: Iterative-convergence Algo
	Slide 7: Example: Gradient Descent
	Slide 8: How to Distribute this Equation?
	Slide 9: Problems if expressing this in Spark
	Slide 10: Problems if expressing this in Spark
	Slide 11: Consistency
	Slide 12: BSP’s Weakness: Stragglers
	Slide 13: An interesting property of Gradient Descent (ascent)
	Slide 14: Machine Learning is Error-tolerant (under certain conditions)
	Slide 15: Background: Strict Consistency
	Slide 16: Background: Asynchronous Communication (No Consistency)
	Slide 17: Background: Bounded Consistency
	Slide 18: SSP: “Lazy” Communication
	Slide 19: Impacts of Consistency/Staleness: Unbounded Staleness
	Slide 20: Theory: SSP Expectation Bound
	Slide 21: Parameter Server Naturally emerges
	Slide 22: How to Implement Parameter Server?
	Slide 23: Parameter Server Implementation
	Slide 24: Programming Model
	Slide 25: Summary: Parameter Server

