
Where We Are

Foundations of Data Systems

Cloud

Machine Learning Systems

Big Data

1980 - 2000

2000 - 2016

2010 - Now

2012 - Now



ML Era (roughly starts from 2008, even before Spark has 

taken off)

• ML was still very diverse (a.k.a. in a mess) in 2012

XGBOOST Spark mllib

LDA Torch (lua) / Theano / distbelief



Diversity -> Good News or Bad New?

• ML is so diverse 

• Cons:

• There is no unified model / computation

• Hard to build a programming model / interface that cover a 

diverse range of applications

• No idea where the system bottlenect is

• Pros:

• A lot of opportunities: Gold mining era



ML Systems Plan in DSC 204A

• ML System history: history of unification

• Parameter server

• Autodiff libraries: tensorflow, pytorch, etc.

• LLMs: Flash attention, paged attention, and how to scale up

• Want to dive into each topic? Enroll DSC 299 offered next quarter



ML System history

• ML Systems evolve as more and more ML components 

(models/optimization algorithms) are unified

Ad-hoc: diverse model family, 

optimization algos, and data 

Opt algo: iterative-convergent

Model family: neural nets

Model: 

CNNs/transformers/GNNs

LLMs: transformer 

decoders

More and more unified
yet scope becoming 

narrower and narrower



The first Unified component: Iterative-convergence Algo

Gradient boosting tree Coordinate descent 

EM Algorithm Gradient descent
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Example: Gradient Descent

• The first unification:

• Most ML algorithms are iterative-convergent

• iterative-convergent is the master equation behind

dataobjective

Gradient / backward computation

Recall collective 

communication



How to Distribute this Equation?

dataobjective

Gradient / backward computation

How to perform this sum?



Problems if expressing this in Spark

• ML is too diverse; hard to express their computation in coarse-

grained data transformations.



Problems if expressing this in Spark

• Very heavy communication per iteration

• Compute : communication = 1:10 in the era of 2012



Consistency
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BSP’s Weakness: Stragglers

• BSP suffers from stragglers

• Slow devices (stragglers) force all devices to 

wait

• More devices → higher chance of having a 

straggler

• Stragglers are usually transient, e.g.

• Temporary compute/network load in multi-user 

environment

• Fluctuating environmental conditions 

(temperature, vibrations)

• BSP’s throughput is greatly decreased in large 

clusters/clouds, where stragglers are unavoidable

Time

Device A

Device B

Device C



An interesting property of Gradient Descent (ascent)



Machine Learning is Error-tolerant (under certain 

conditions)
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Background: Strict Consistency 

• Baseline: Bulk Synchronous Parallel (BSP)

• MapReduce, Spark, many DistML Systems

• Devices compute updates Δ𝐿() between 

global barriers (iteration boundaries)

• Messages ℳ exchanged only during 

barriers

• Advantage: Execution is serializable

• Same guarantees as sequential algo!

• Provided that aggregation 𝐹() is agnostic 

to order of messages ℳ (e.g. in SGD)

Device A

Device B

Device C

1 2 3 4

Global Synchronization Barrier

Δ𝐿()

Δ𝐿()

Δ𝐿()

Δ𝐿()

Δ𝐿()

Δ𝐿()

𝐹() 𝐹()
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Background: Asynchronous Communication

(No Consistency)

• Asynchronous (Async): removes all communication barriers

• Maximizes computing time

• Transient stragglers will cause messages to be extremely stale

• Ex: Device 2 is at 𝑡 = 6, but Device 1 has only sent message for 𝑡 = 1

• Some Async software: messages can be applied while computing 𝐹(), Δ𝐿()

• Unpredictable behavior, can hurt statistical efficiency!
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Background: Bounded Consistency

Clock

Device A

Device B

Device C

1 2 3 4

Staleness s= 3 

5 6

Delay = 3

Block

[Ho et al., 2013; Dai et al., 2015; Wei et al., 

2015]

Bounded consistency models: Middle ground between BSP and fully-asynchronous (no-barrier)

e.g. Stale Synchronous Parallel (SSP): Devices allowed to iterate at different speeds
• Fastest & slowest device must not drift > 𝑠 iterations apart (in this example, 𝑠 = 3)

• 𝑠 is the maximum staleness
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SSP: “Lazy” Communication

Clock

Device A

Device B

Device C

1 2 3 4

Staleness = 3 

5 6

Delay = 2Updates received by Device B

Not communicated, but still 
satisfy SSP

SSP: devices avoid communicating unless necessary
• i.e. when staleness condition is about to be violated

• Favors throughput at the expense of statistical efficiency
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Impacts of Consistency/Staleness:

Unbounded Staleness

Divergence under high delay
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Theory: SSP Expectation Bound

• Goal: minimize convex 𝑓(𝐱) =
1

𝑇
σ𝑡=1
𝑇 𝑓𝑡(𝐱)

(Example: Stochastic Gradient)

• 𝐿-Lipschitz, problem diameter bounded by 𝐹2

• Staleness 𝑠, using 𝑃 parallel devices

• Use step size 𝜂𝑡 =
𝜎

𝑡
with 𝜎 =

𝐹

𝐿 2 𝑠+1 𝑃

• (E)SSP converges according to

• Where 𝑇 is the number of iterations

Difference between

SSP estimate and true optimum



Parameter Server Naturally emerges



How to Implement Parameter Server?

• Key considerations:

• Server: Communication bottleneck

• Fault tolerance

• Programming Model

• Handling GPUs



Parameter Server Implementation

• Sharded parameter server: sharded KV stores

• Avoid communication bottleneck

• Redundancy across different PS shards



Programming Model

• Client: 

• Push()

• Pull()

• Compute()

• Server:

• Update()

• Very similar to the spirit of Map Reduce

• A lot of flexibility for users to customize

• Recall Mapreduce vs. Spark



Summary: Parameter Server

• Why does it emerge?

• Unification of iterative-convergence optimization algorithm

• What problems does it address and how?

• Heavy communication, via flexible consistency

• Pros?

• Cope well with iterative-convergent algo

• Cons?

• Extension to GPUs?

• Strong assumption on communication bottleneck
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