Where We Are

Machine Learning Systems

Big Data

Cloud

Foundations of Data Systems

2012 - Now

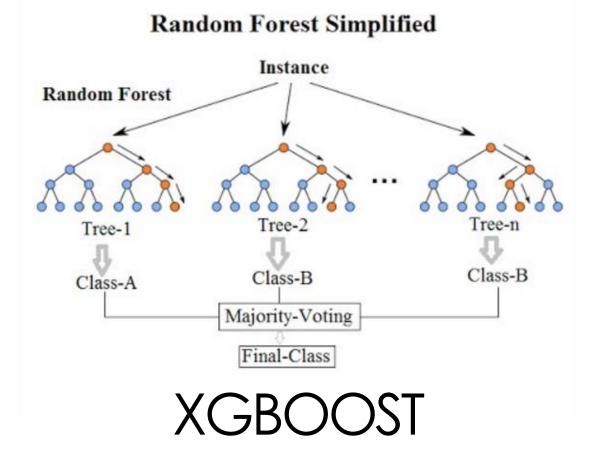
2010 - Now

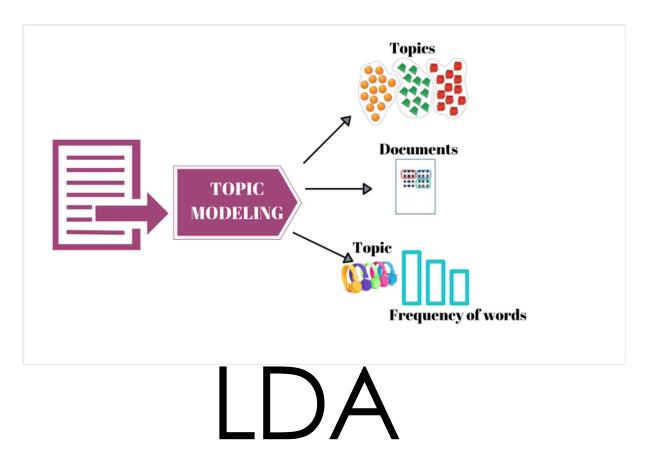
2000 - 2016

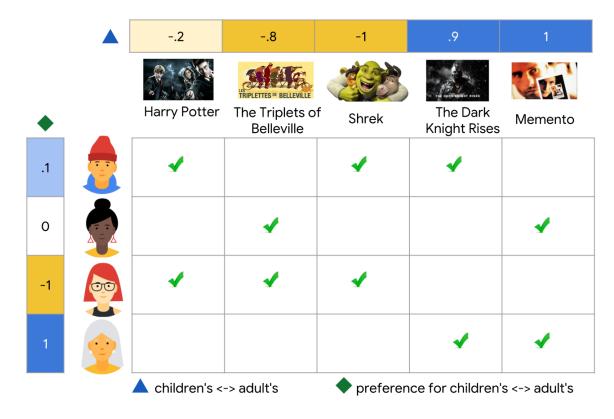
1980 - 2000

ML Era (roughly starts from 2008, even before Spark has taken off)

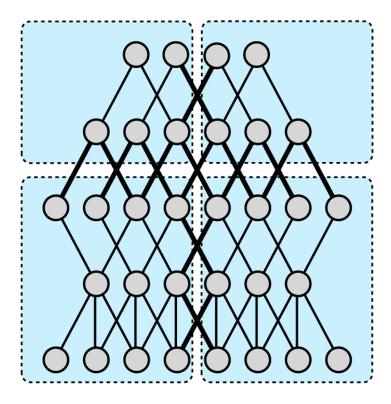
• ML was still very diverse (a.k.a. in a mess) in 2012







Spark mllib



Torch (lua) / Theano / distbelief

Diversity -> Good News or Bad New?

- ML is so diverse
 - Cons:
 - There is no unified model / computation
 - Hard to build a programming model / interface that cover a diverse range of applications
 - No idea where the system bottlenect is
 - Pros:
 - A lot of opportunities: Gold mining era

ML Systems Plan in DSC 204A

- ML System history: history of unification
- Parameter server
- Autodiff libraries: tensorflow, pytorch, etc.
- LLMs: Flash attention, paged attention, and how to scale up
- Want to dive into each topic? Enroll DSC 299 offered next quarter

ML System history

 ML Systems evolve as more and more ML components (models/optimization algorithms) are unified

> Ad-hoc: diverse model family, optimization algos, and data

Opt algo: iterative-convergent

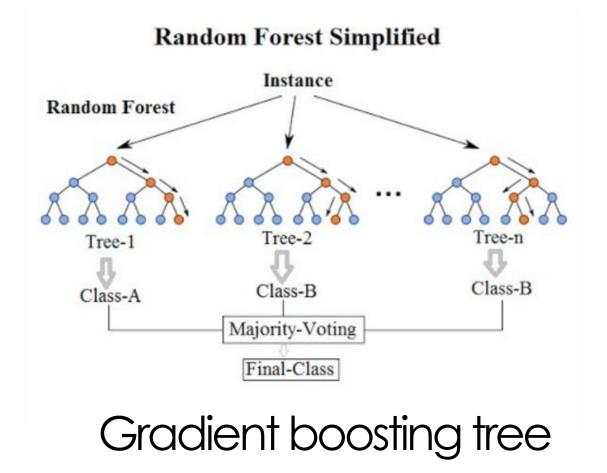
Model family: neural nets

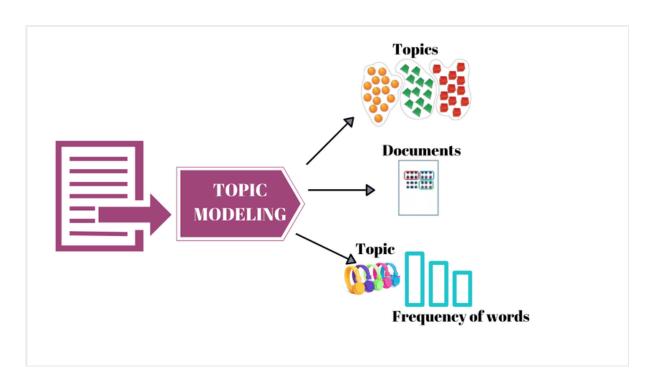
Model: CNNs/transformers/GNNs

> LLMs: transformer decoders

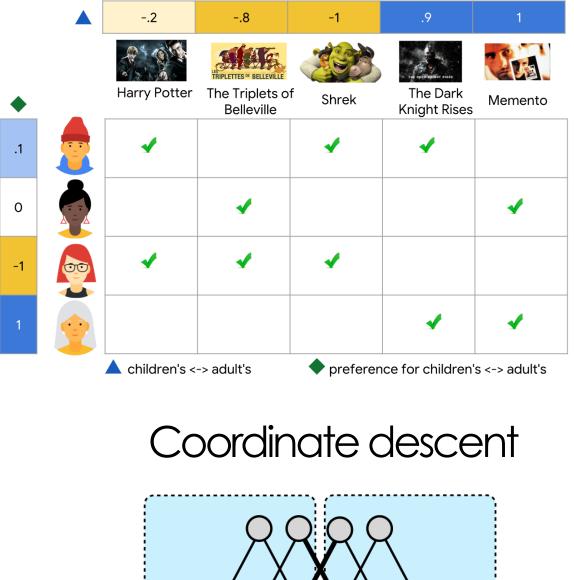
More and more **unified** yet scope becoming narrower and narrower

The first Unified component: Iterative-convergence Algo





EM Algorithm



Gradient descent

Example: Gradient Descent

Recall collective communication

$$\boldsymbol{\theta}^{(t)} = \boldsymbol{\theta}^{(t-1)} + \underbrace{\boldsymbol{\varepsilon} \cdot \nabla_{\mathcal{L}}(\boldsymbol{\theta}^{(t-1)}, \boldsymbol{D}^{(t)})}_{\substack{\uparrow \\ \text{objective}}} \mathbf{\theta}^{(t-1)} \mathbf{\theta}^{(t-1)}$$

- The first unification:
 - Most ML algorithms are iterative-convergent
 - iterative-convergent is the master equation behind

Gradient / backward computation

How to Distribute this Equation?

Gradient / backward computation

$$\boldsymbol{\theta}^{(t)} = \boldsymbol{\theta}^{(t-1)} + \boldsymbol{\varepsilon} \cdot \nabla_{\mathcal{L}}(\boldsymbol{\theta}^{(t-1)}, \boldsymbol{D}^{(t)})$$

$$\stackrel{\dagger}{\underset{objective}{\uparrow}} \stackrel{\dagger}{\underset{data}{\uparrow}}$$

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} + \boldsymbol{\varepsilon} \sum_{p=1}^{P} \nabla_{\mathcal{L}}(\boldsymbol{\theta}^{(t)}, \boldsymbol{D}_{p}^{(t)})$$
How to perform this sum?

$$\boldsymbol{\theta}^{(t)} = \boldsymbol{\theta}^{(t-1)} + \boldsymbol{\varepsilon} \cdot \nabla_{\mathcal{L}}(\boldsymbol{\theta}^{(t-1)}, \boldsymbol{D}^{(t)})$$

$$\stackrel{\uparrow}{\underset{objective}{\uparrow}} \stackrel{\uparrow}{\underset{data}{\uparrow}}$$

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} + \boldsymbol{\varepsilon} \sum_{p=1}^{P} \nabla_{\mathcal{L}}(\boldsymbol{\theta}^{(t)}, \boldsymbol{D}_{p}^{(t)})$$
How to perform this sum

Problems if expressing this in Spark

ML is too diverse; hard to express their computation in coarsegrained data transformations.

- $map(f: T \Rightarrow U)$: $RDD[T] \Rightarrow RDD[U]$
- *filter*($f : T \Rightarrow Bool$) : RDD[T] \Rightarrow RDD[T]
- $flatMap(f: T \Rightarrow Seq[U])$: $RDD[T] \Rightarrow RDD[U]$
- $reduceByKey(f:(V,V) \Rightarrow V)$: $RDD[(K,V)] \Rightarrow RDD[(K,V)]$

 - *join*() :
 - cogroup() :
 - crossProduct() :

 - sort(c: Comparator[K]) : $RDD[(K, V)] \Rightarrow RDD[(K, V)]$
- *partitionBy*(p: Partitioner[K]) : RDD[(K, V)] \Rightarrow RDD[(K, V)]

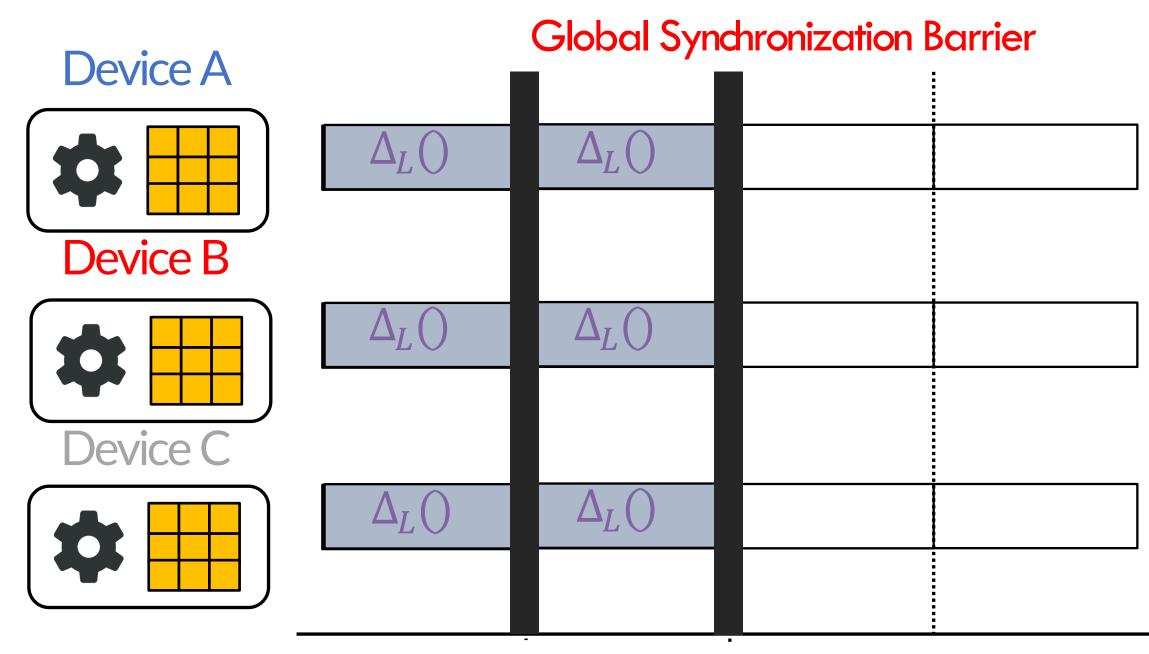
```
sample(fraction : Float) : RDD[T] \Rightarrow RDD[T] (Deterministic sampling)
          groupByKey() : RDD[(K, V)] \Rightarrow RDD[(K, Seq[V])]
                union() : (RDD[T], RDD[T]) \Rightarrow RDD[T]
                               (RDD[(K, V)], RDD[(K, W)]) \Rightarrow RDD[(K, (V, W))]
                               (RDD[(K, V)], RDD[(K, W)]) \Rightarrow RDD[(K, (Seq[V], Seq[W]))]
                               (RDD[T], RDD[U]) \Rightarrow RDD[(T, U)]
                                                                                                C
mapValues(f : V \Rightarrow W) : RDD[(K, V)] \Rightarrow RDD[(K, W)] (Preserves partitioning)
```

Problems if expressing this in Spark

- Very heavy communication per iteration
- Compute : communication = 1:10 in the era of 2012

 $\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} + \boldsymbol{\varepsilon} \sum_{p}^{P} \nabla_{\mathcal{L}}(\boldsymbol{\theta}^{(t)}, D_{p}^{(t)})$ p=1

Consistency



 $\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} + \boldsymbol{\varepsilon} \sum_{l=1}^{P} \nabla_{\mathcal{L}}(\boldsymbol{\theta}^{(t)}, D_{p}^{(t)})$ p=1

1 *F*() 2 *F*() 3 4

BSP's Weakness: Stragglers

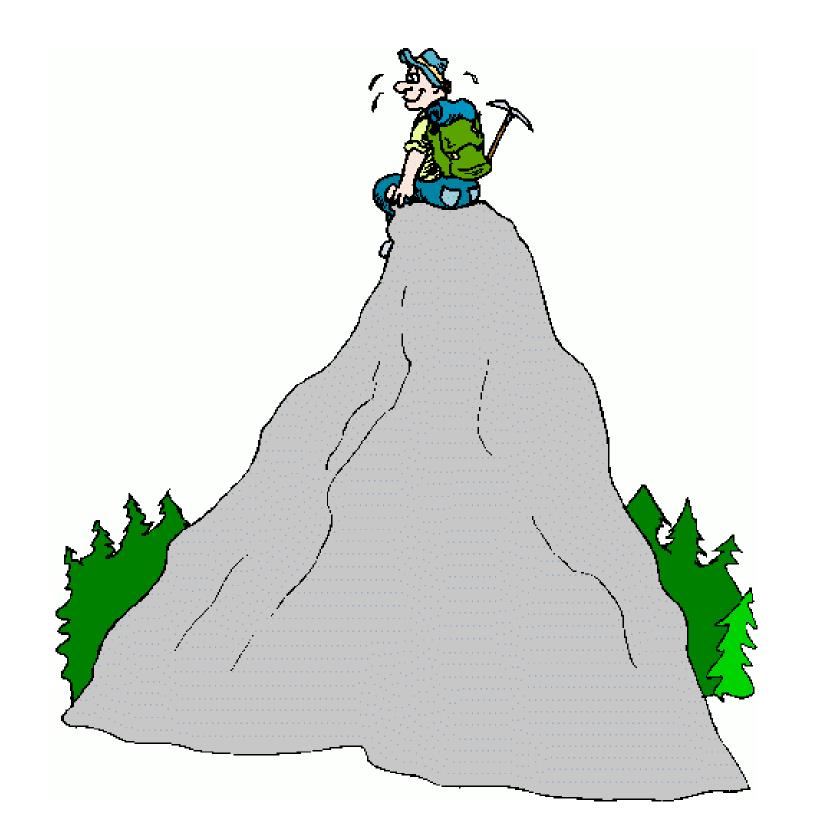
- **BSP** suffers from stragglers
 - Slow devices (stragglers) force all devices to wait
 - More devices \rightarrow higher chance of having a straggler
- Stragglers are usually transient, e.g.
 - Temporary compute/network load in multi-user environment
 - Fluctuating environmental conditions (temperature, vibrations)
- BSP's throughput is greatly decreased in large clusters/clouds, where stragglers are unavoidable



Device A **Device B** Device (

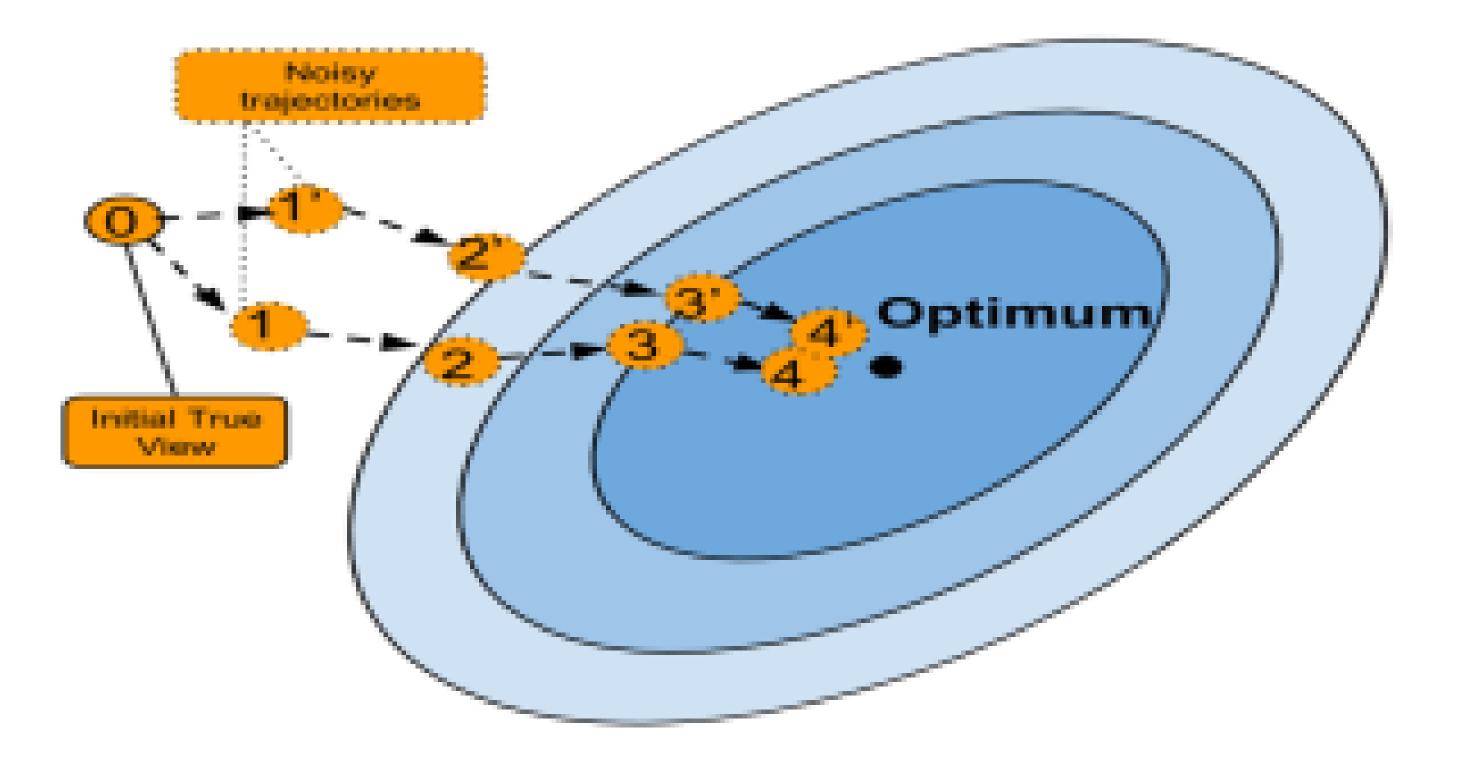
Time

An interesting property of Gradient Descent (ascent)



 $\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} + \boldsymbol{\varepsilon} \sum_{1}^{P} \nabla_{\mathcal{L}}(\boldsymbol{\theta}^{(t)}, D_{p}^{(t)})$ p=1

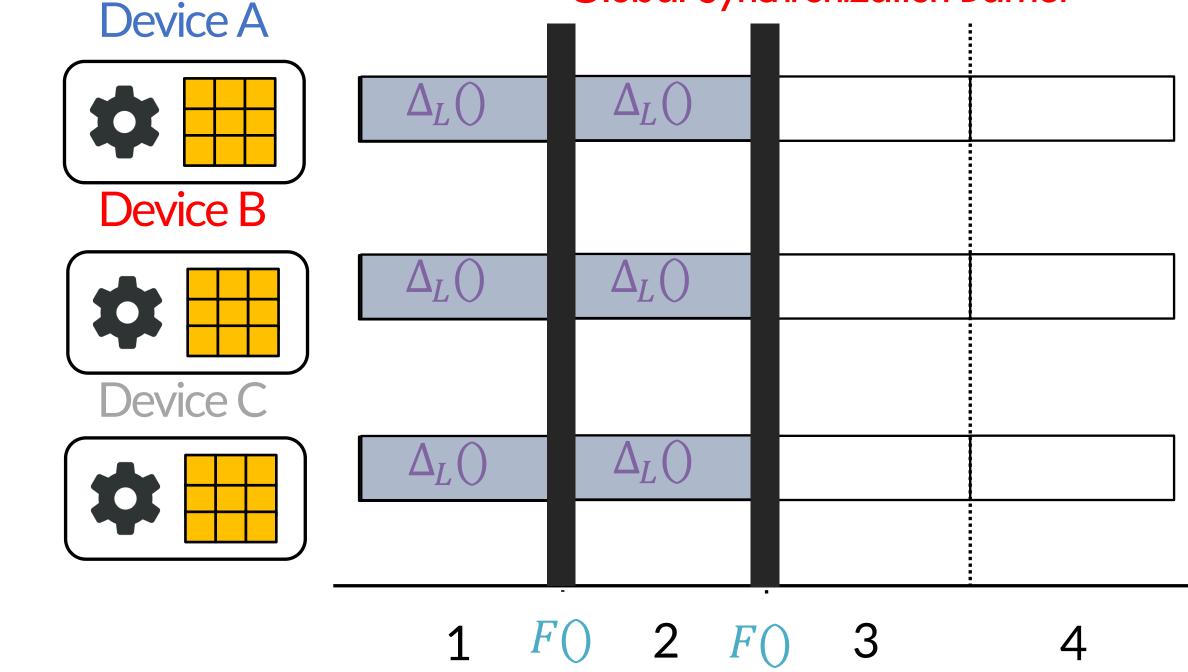
Machine Learning is Error-tolerant (under certain conditions)



Background: Strict Consistency

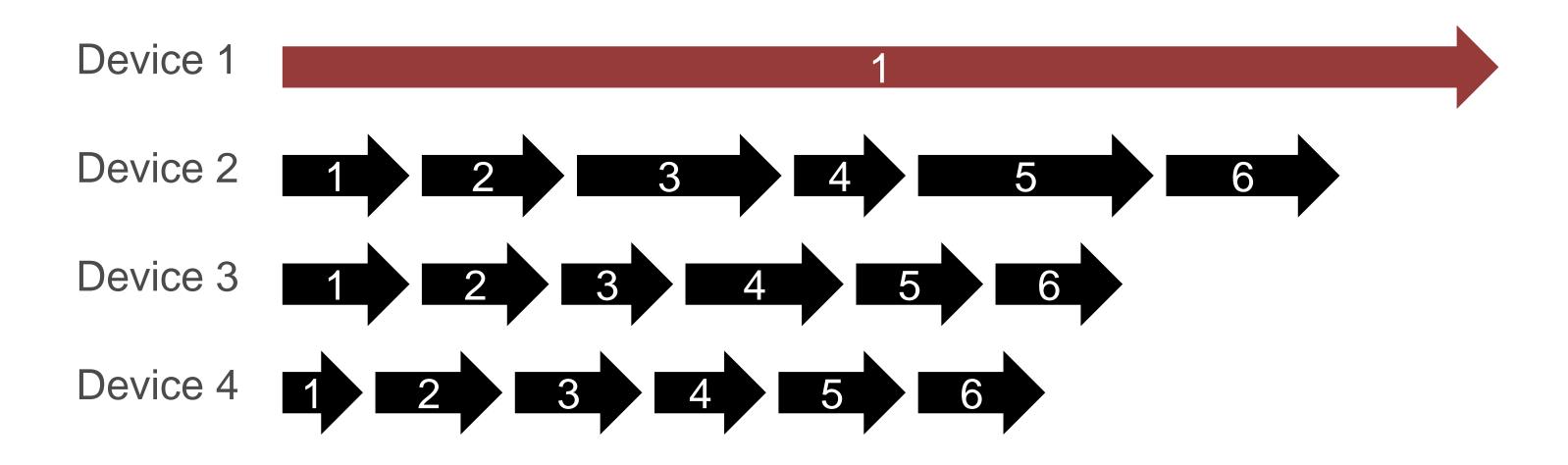
- **Baseline:** Bulk Synchronous Parallel (BSP)
 - MapReduce, Spark, many DistML Systems
- Devices compute updates $\Delta_L()$ between global barriers (iteration boundaries)
 - Messages \mathcal{M} exchanged only during barriers
- Advantage: Execution is serializable
 - Same guarantees as sequential algo!
 - Provided that aggregation F() is agnostic to order of messages \mathcal{M} (e.g. in SGD)

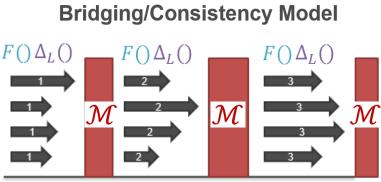
Global Synchronization Barrier



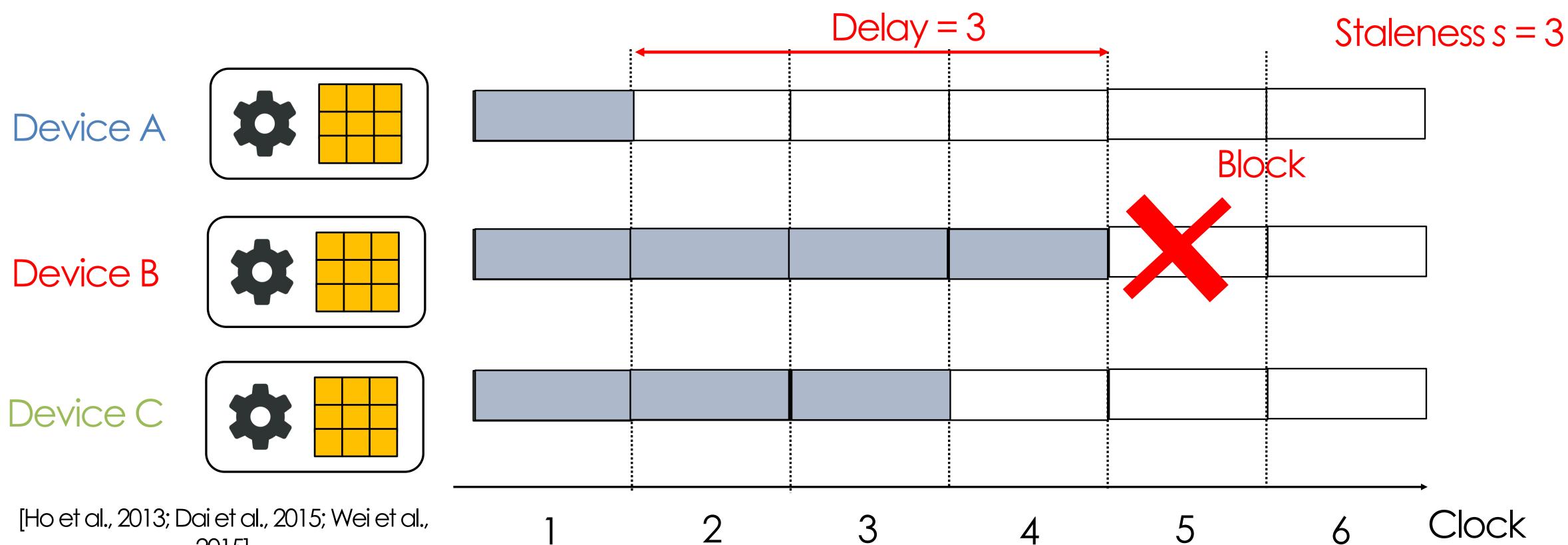
Background: Asynchronous Communication (No Consistency)

- **Asynchronous (Async):** removes all communication barriers
 - Maximizes computing time
 - Transient stragglers will cause messages to be extremely stale
 - Ex: Device 2 is at t = 6, but Device 1 has only sent message for t = 1
- Some Async software: messages can be applied while computing F(), $\Delta_L()$
 - Unpredictable behavior, can hurt statistical efficiency!





Background: Bounded Consistency



17 2015]

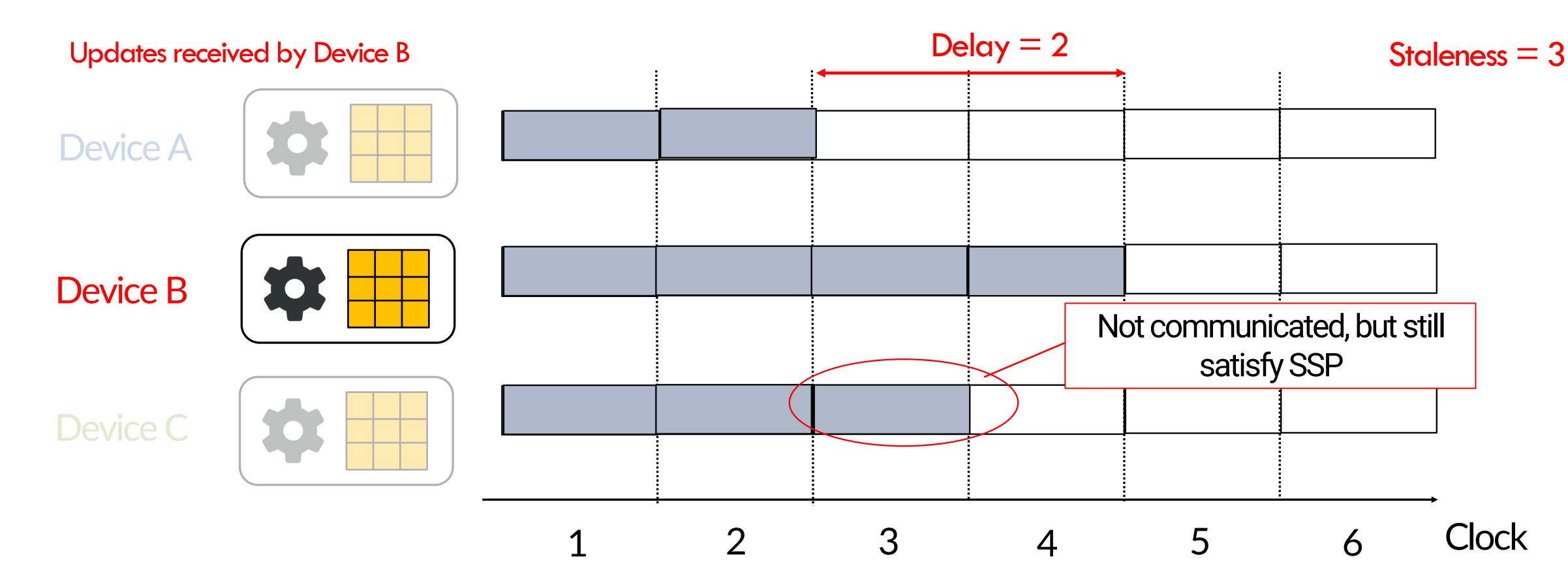
Bounded consistency models: Middle ground between BSP and fully-asynchronous (no-barrier)

e.g. Stale Synchronous Parallel (SSP): Devices allowed to iterate at different speeds Fastest & slowest device must not drift > s iterations apart (in this example, s = 3) • *s* is the maximum staleness

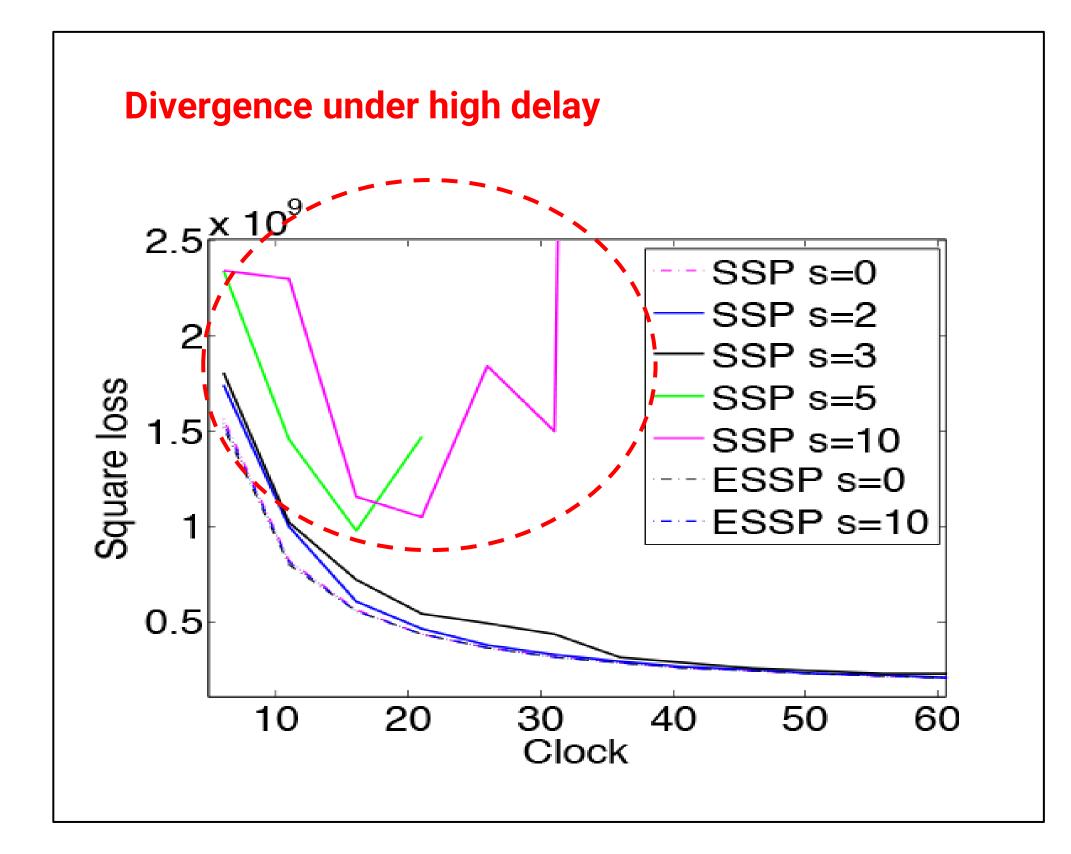
SSP: "Lazy" Communication

SSP: devices avoid communicating unless necessary

- i.e. when staleness condition is about to be violated ullet
- Favors throughput at the expense of statistical efficiency



Impacts of Consistency/Staleness: Unbounded Staleness



Theory: SSP Expectation Bound

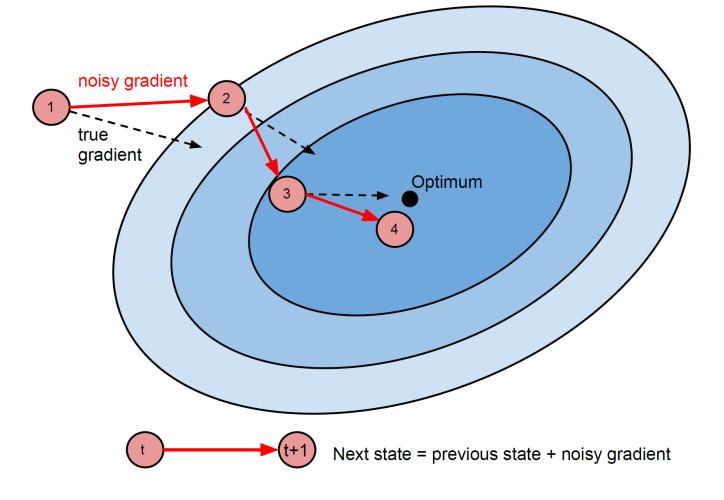
- **Goal:** minimize convex $f(\mathbf{x}) = \frac{1}{T} \sum_{t=1}^{T} f_t(\mathbf{x})$ (Example: Stochastic Gradient)
 - L-Lipschitz, problem diameter bounded by F^2
 - Staleness s, using P parallel devices

• Use step size
$$\eta_t = \frac{\sigma}{\sqrt{t}}$$
 with $\sigma = \frac{F}{L\sqrt{2(s+1)P}}$

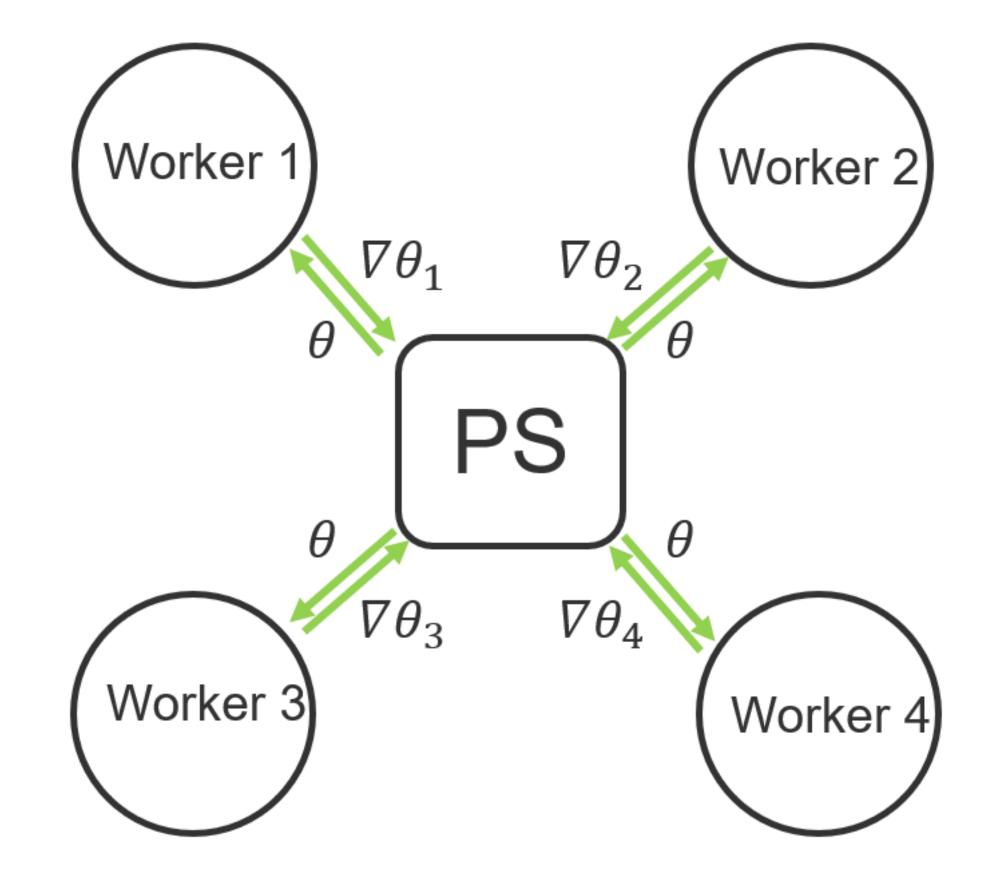
• (E)SSP converges according to

Where T is the number of iterations

$$R[\mathbf{X}] := \begin{bmatrix} \frac{1}{T} \sum_{t=1}^{T} f_t(\tilde{\mathbf{x}}_t) \end{bmatrix} - f(\mathbf{x}^*) \le 4FL\sqrt{\frac{2(s+1)P}{T}}$$



Parameter Server Naturally emerges

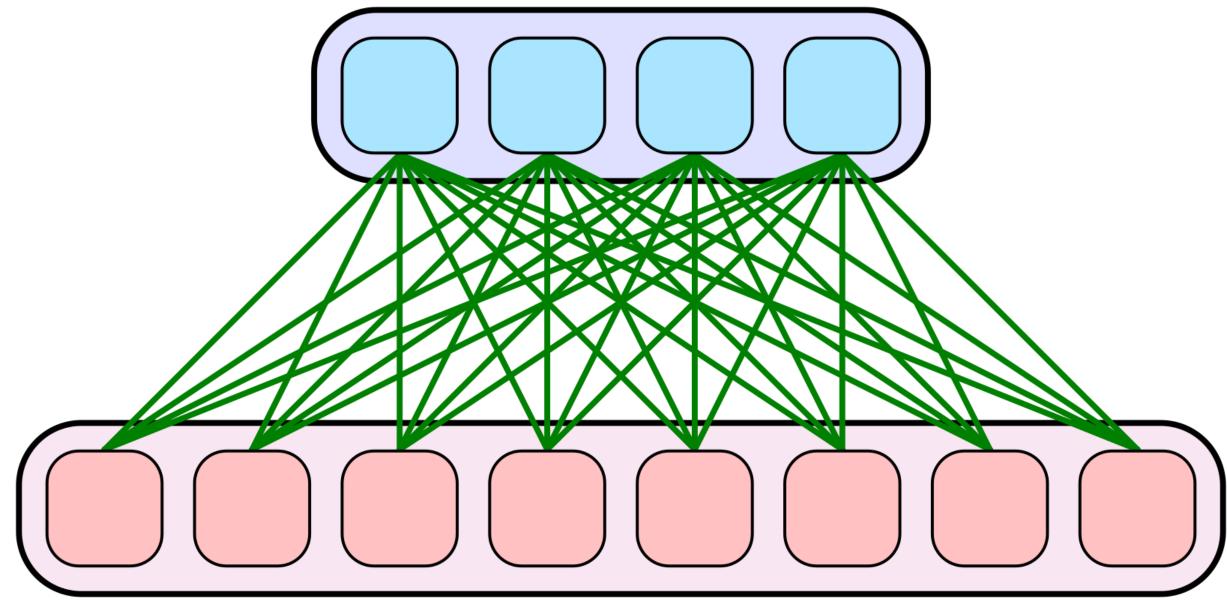


How to Implement Parameter Server?

- Key considerations:
 - Server: Communication bottleneck
 - Fault tolerance
 - Programming Model
 - Handling GPUs

Parameter Server Implementation

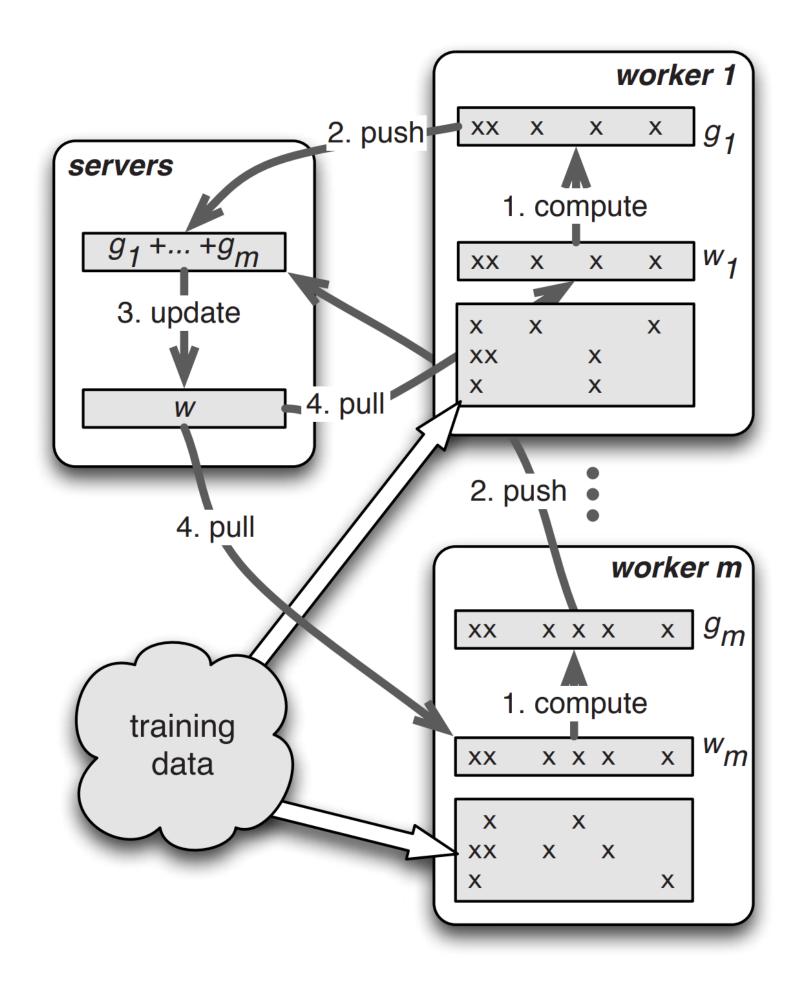
- Sharded parameter server: sharded KV stores
 - Avoid communication bottleneck
 - Redundancy across different PS shards **Parameter Servers**



Workers

Programming Model

- Client:
 - Push()
 - Pull()
 - Compute()
- Server:
 - Update()
- Very similar to the spirit of Map Reduce
- A lot of flexibility for users to customize
 - Recall Mapreduce vs. Spark



ap Reduce customize

Summary: Parameter Server

- Why does it emerge?
- Unification of iterative-convergence optimization algorithm What problems does it address and how?
 - Heavy communication, via flexible consistency
- Pros?
 - Cope well with iterative-convergent algo
- Cons?
 - Extension to GPUs?
 - Strong assumption on communication bottleneck