Where We Are

Machine Learning Systems 2012 - Now

Big Data 2010 - Now

Cloud 2000 - 2016

Foundations of Data Systems 1980 - 2000

L OgistiCS

®* Exam date:
* Final Exam date (tentative): Friday, March 22,8 - 11 am, PT
* TAs and | are still debating between classroom or canvas
* Will update you by this Wed (3/13)
* All Multiple choice guestions
®* Course Evaluation
® [tIs iImportant for both me, yourself, and TAS

®* Please participate to get your extra credifs ©

ML System history

* ML Systems evolve as more and more ML components

(models/optimization algorithms) are unified

Ad-hoc: diverse model family,
optimization algos, and dato

Today: NN, dafc

flow graph, and
data parallelism

LLMs: transformer

decoders

Recap: Parameter Server

® Prose
* General: Abstract iterative-convergent algo
® Relax Consistency: stale synchronous
®* Nice Interface like map-reduce
* Conse
®* Extension to GPUs?

® Strong assumption on communication pbottleneck

The Second Unification: Neural Networks

Imagenet classification with deep convolutional neural networks [PDF] Neurips.cc
A Krizhevsky, | Sutskever... - Advances in neural ..., 2012 - proceedings.neurips.cc

We trained a large, deep convolutional neural network to classify the 1.3 million high-resolution
images in the LSVRC-2010 ImageNet training set into the 1000 different classes. On the ...

Y7 Save Y9 Cite Cited by 126745 Related articles All 102 versions &9

3 AT >
L 7 3’ . %
----- \ AL NG g
3 d
192 192 128 2048 2048 \O€NSE
;128
AN 13 _ 13
I \ AN+
224 3| ENRE 3| L R X R
: - 13 ' dense’| |dense g
27 EN 3| \ 7 13
g 3|\ 1000
) . 192 192 128 Max
: 2048 2048
Stride Max 128 Max pooling
Uof 4 pooling pooling

3 48

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input 1s 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440-186,624—-64,896—64,896—43,264—
4096—4096—-1000.

Figure from AlexNet
[Knizhevsky et al., NeurlPS 2012], [Knizhevsky et al., preprint, 2014]

Why DL Emerged and Succeeded(but failed betore)?¢

* [t beats the previous state-of-the-art method by 10 points

® Every year we see 1 point improvement in the past 10 years
* |t scales with the size of data

* Train with the entire ImageNet data
* |t is simple: optimized by 1s"-order method SGD

* |ts computation pattern aligns with hardware (GPU/accelerators)

Deep learning Characteristics

®* |ferative-convergente
® Yes:SGD
* Modelstill diversee
® No: much less diverse than the entire spectrum of ML
* Yes: Still many flavors of NNs and needs sufficiently expressive lib to program various architectures
* Compute very intensivee¢
® Yes: GPU becomes a must
* Model very large?
* No: It starts with a relatively small model (2012)
* Yes: It becomes large when people discover the fransformer architecture
® Existing data systems to program NNse
* Map-reduce: not for iterative-convergence
e Spark:op libis very corase grained and not for neural network ops
* P:programming model offers too many flexibility which renders it not so helpful

Outline

* Deep Learning as Dataflow Graphs
* Auto-differentiation Libraries

* Symbolic vs. Imperative

® Static vs. Dynamic

® DL Parallelism

Background: DL Computation

Forward Propagation

—> E Layer 1 }‘E Layer 2]—‘E Layer n } —>

p(t+1) — f(g(t), Vs (g(t), D(t)))

—

parameter

Van

weight update
(sgd, adam, etc)

N

model
(CNN, GPT, etc)

-

data

Prediction

Cat

Dog

10

A Computational Layer in DL: forward

* A layerin a neural network is composed of a few finer computational operations

® Consider:z=fi(x): y=Wx+b,z= ReLU(y)

Do
N
7\|7¢ﬂ ®

(RelU)

— | [— -
fi

A

(Add)

(MatMul)

0

11

A Computational Layer in DL: backward

* Denofe the backward pass through a layer [as b,
e p, derives the gradients of the input x(dx),given the gradient of z as dz, as
well as the gradients of the parameters W, b
e dx will be the backward input of its previous layer [— 1
® Backward pass can be thought as a backward dataflow where the gradient

flow through the layer
=
dx dz

—|— .y T

—~——(dAdd)

12

A Layer as a Dataflow Graph

* Give the forward computation flow, gradients can be computed

by auto differentiation

* Automatically derive the backward gradient flow graph from the forward

dataflow graph

(RelU) [dRiLUJ
(Add) (dAdd)
z g

13

Combining Weight Update

* Gradients can be computed by auto differentiation

* Automartically derive the gradient flow graph from the forward

SGD Trainer

i = HE.I: -
Logt Luer i
E".:‘I" 1"‘-\.__.: .J. __'_,.-'l
W ”.,:_F'_I_a-i!-'-._l?,
1 2 L e
— — o — G FRectd

Practice
pit+1) — f(g(t)’ VvV, (9(15), D(t)))
L = MSE(ws - ReLU(w12), y) 6 = {wi,ws}, D = {(z,y)}
f(O,VL) =0—-Vy

Forward

Practice
p(t+1) — f(g(t)’ Vs (g(t), D(t)))
L = MSE(ws - ReLU(w12), y) 6 = {wi,ws}, D = {(z,y)}
£(0,V)=0—-V,
| Operator/ its output tensor —— Data flowing direction

Forward

[wl 1 [W2 1 [}Z] [wl 1 w2 wl w2 y
mat"mul H relu H mat"mul }—»@ mat"mul H relu mat}nul T{ mat;nul relu mat"mul MéE

-[matmul MSE’

[relu’ }——Lmatmul Né

matmul} matmul

relu

matmul

k\/ \)
N\
=
Y o
C d
=] -
|—I

sub

16

Dataflow Graph Programming Model Today

* Define a neurdl network

* Define operations and layers: fully-connectede Convolutione
Recurrente

®* Define the data |/O: read what data from where®e

* Define aloss function/optimization objective: L2 losse Soffmaxe
Ranking Losse

* Define an optimization algorithm: SGD¢? Momentum SGDe etc

* Auto-differential Libraries will then take over

® Connect operations, data |/O, loss functions and trainer.

* Build forward datatflow graph and backward gradient flow graphs.

* Perform training and apply updates

Discussion:
Compare this vs. Spark, parameter server, MapReduce®e

18

Outline

®* Deep Learning as Dataflow Graphs
* Auto-differentiable Libraries

* Symbolic vs. Imperative

® Static vs. Dynamic

® DL Parallelism

19

Auto-differential Libraries

* Auto-differential Library automatically derives the gradients following the back-
propagation rule.

* A lot of auto-ditferentiation libraries have been developed:

. .
Q Microsoft

Caffe © Caffe? Ten;!:,, C N T K

‘rmh PYTORCH
DyNet theano

<o

Chainer

dmlc
mxnet

20

Deep Learning Toolkifs

* They are roughly adopted by different domains

N B® Microsoft

Caffe & cCaffe2 Ten;!:r C N T K

‘rmh PYTORCH
DyNet theano

I

Chainer

dmic
mxnet

Vision

NLP

21

Symbolic vs. Imperative

®* They are also designed differently

* Symbolic v.s. Imperative programming

Caffe

N

Tensor
DyNet +Q+’ Caffe?2

I torch Py }.
. theano
Chainer
. amilc
PYTORCH mxnet
Imperative

Symbolic

22

Symbolic vs. Imperative

®* Symbolic vs. imperative programming
* Symbolic: write symbols to assemble the networks first, evaluate
later

* Imperative: immediate evaluation

Variable('A")
Variable('B"')

B * A

C + Constant(1)

import numpy as np
a = np.ones(18)

O -h #H O ¢ O -

, , b = np.ones(18) * 2
compiles the function c=bh * a
= compile(D) d=c+1
= f(A=np.ones(180), B=np.ones(16)*2)
Symbolic Imperative

23

Symbolic vs. Imperative

* Symbolic
* Good
® eqsy to optimize (e.g. distributed, batching, parallelization) for developers
* More efficient
* Bad
* The way of programming might be counter-intuitive
* Hard to debug for user programs
* Less flexible: you need to write symbols before actually doing anything
* |mperative:
* Good
* More flexible: write one line, evaluate one line (that’'s why we all like Python)
® Easy to program and easy to debug: because it matches the way we use C++ or python
* Bad
® Less efficient
* More difficult to optimize

Are All Models expressive In Datatflow Graphe

Class
Qutput
Probégi\Lijﬂes Label

—
[c

[_Add & Norm |
Feed
l l Forward
l I (Add & Norm |<_:
| l ~Cagetom) | | | e BERT
Feed Attention

Forward D) Nx
— L R |_%
N Add & Norm
- w Masked

e Multi-Head Multi-Head
Attention Attention E[CLSI E 1 - N E [SEP] E1 E M
\ J — ﬁ P AN N AN s

I 2 Positional D @ Positional L=l
Encoding Encoding
Input Output Tok Tok Tok Tok
Embedding Embedding [[CLS] 1[1 N [SEP] 1 M

T T

Inputs Outputs | |
(shifted right)
Sentence 1 Sentence 2
@
I @ of
RNN > RNN > RNN > RNN > o) ® ®
3 5 5 3 A @ o
@000 @000 [@eee [@eee [00 O ®
xgl) xgl) ‘xgl) Xfxl) y(1) . . p D .
RNN > RNN D) oz O—-Q:. ol
h-~
A A A / \\ O
iy
[©000Q] [©0000] [0 ® ‘d ®
x{? x\? y'? PP : @ d
o . . .
RNN > RNN > RNN SIVE) /\ ® @
f f f f Alice gave a message to Bob % o °
[©0000] [0000] [0000] [00 ® > > ® > ® o @® O
xg3) ng) ng) y(?’) I J J s J 3 .
I A S 80P A [

	Slide 1: Where We Are
	Slide 2: Logistics
	Slide 3: ML System history
	Slide 4: Recap: Parameter Server
	Slide 5: The Second Unification: Neural Networks
	Slide 6: Why DL Emerged and Succeeded(but failed before)?
	Slide 7: Deep learning Characteristics
	Slide 8: Outline
	Slide 9: Background: DL Computation
	Slide 10: A Computational Layer in DL: forward
	Slide 11: A Computational Layer in DL: backward
	Slide 12: A Layer as a Dataflow Graph
	Slide 13: Combining Weight Update
	Slide 14: Practice
	Slide 15: Practice
	Slide 16: Dataflow Graph Programming Model Today
	Slide 17: Discussion: Compare this vs. Spark, parameter server, MapReduce?
	Slide 18: Outline
	Slide 19: Auto-differential Libraries
	Slide 20: Deep Learning Toolkits
	Slide 21: Symbolic vs. Imperative
	Slide 22: Symbolic vs. Imperative
	Slide 23: Symbolic vs. Imperative
	Slide 24: Are All Models expressive in Dataflow Graph?

