
Where We Are

Foundations of Data Systems

Cloud

Machine Learning Systems

Big Data

1980 - 2000

2000 - 2016

2010 - Now

2012 - Now

Logistics

• Exam date:

• Final Exam date (tentative): Friday, March 22, 8 - 11 am, PT

• TAs and I are still debating between classroom or canvas

• Will update you by this Wed (3/13)

• All Multiple choice questions

• Course Evaluation

• It is important for both me, yourself, and TAs

• Please participate to get your extra credits ☺

ML System history

• ML Systems evolve as more and more ML components

(models/optimization algorithms) are unified

Ad-hoc: diverse model family,

optimization algos, and data

Opt algo: iterative-convergent

Model family: neural nets

Model:

CNNs/transformers/GNNs

LLMs: transformer

decoders

Today: NN, data
flow graph, and
data parallelism

Recap: Parameter Server

• Pros?

• General: Abstract iterative-convergent algo

• Relax Consistency: stale synchronous

• Nice interface like map-reduce

• Cons?

• Extension to GPUs?

• Strong assumption on communication bottleneck

The Second Unification: Neural Networks

Figure from AlexNet

[Krizhevskyet al., NeurIPS 2012], [Krizhevskyet al., preprint, 2014]

Why DL Emerged and Succeeded(but failed before)?

• It beats the previous state-of-the-art method by 10 points

• Every year we see 1 point improvement in the past 10 years

• It scales with the size of data

• Train with the entire ImageNet data

• It is simple: optimized by 1st-order method SGD

• Its computation pattern aligns with hardware (GPU/accelerators)

Deep learning Characteristics

• Iterative-convergent?

• Yes: SGD

• Model still diverse?

• No: much less diverse than the entire spectrum of ML

• Yes: Still many flavors of NNs and needs sufficiently expressive lib to program various architectures

• Compute very intensive?

• Yes: GPU becomes a must

• Model very large?

• No: It starts with a relatively small model (2012)

• Yes: It becomes large when people discover the transformer architecture

• Existing data systems to program NNs?

• Map-reduce: not for iterative-convergence

• Spark: op lib is very corase grained and not for neural network ops

• P: programming model offers too many flexibility which renders it not so helpful

8

Outline

• Deep Learning as Dataflow Graphs

• Auto-differentiation Libraries

• Symbolic vs. Imperative

• Static vs. Dynamic

• DL Parallelism

Background: DL Computation

Input

Backward Propagation

Dog

Forward Propagation

Layer 1 Layer 2 Layer n…

Prediction

Cat

parameter
model

(CNN, GPT, etc.)
data

weight update

(sgd, adam, etc.)

9

10

A Computational Layer in DL: forward

• A layer in a neural network is composed of a few finer computational operations

• Consider: z = fl x : 𝑦 = 𝑊𝑥 + 𝑏, 𝑧 = 𝑅𝑒𝐿𝑈 𝑦

𝑓𝑙

𝑥 𝑧

11

A Computational Layer in DL: backward

• Denote the backward pass through a layer 𝑙 as 𝑏𝑙

• 𝑏𝑙 derives the gradients of the input 𝑥(d𝑥),given the gradient of 𝑧 as d𝑧, as

well as the gradients of the parameters W, b

• d𝑥 will be the backward input of its previous layer 𝑙 − 1

• Backward pass can be thought as a backward dataflow where the gradient

flow through the layer

𝑏𝑙

𝑑𝑥 𝑑𝑧

12

A Layer as a Dataflow Graph

• Give the forward computation flow, gradients can be computed

by auto differentiation

• Automatically derive the backward gradient flow graph from the forward

dataflow graph

Photo from TensorFlowwebsite

13

Combining Weight Update

•Gradients can be computed by auto differentiation

• Automatically derive the gradient flow graph from the forward

dataflow graph

⋯
𝑓𝐿𝑓2𝑓1

⋯
𝑏𝐿𝑏2𝑏1

Photo from TensorFlowwebsite

14

Forward Backward Weight update

Practice

15

Practice

Operator / its output tensor Data flowing direction

Forward

x MSE

y

relu matmul

w2

matmul

w1

+Backward

x MSE

y

relu matmul

w2

matmul

w1

matmul

matmul

MSE’

matmul

relu’

+Weight update

x MSE

y

relu matmul

w2

matmul

w1

matmul

matmul

MSE’

matmul

relu’

sub sub

16

Dataflow Graph Programming Model Today

• Define a neural network

• Define operations and layers: fully-connected? Convolution?

Recurrent?

• Define the data I/O: read what data from where?

• Define a loss function/optimization objective: L2 loss? Softmax?

Ranking Loss?

• Define an optimization algorithm: SGD? Momentum SGD? etc

• Auto-differential Libraries will then take over

• Connect operations, data I/O, loss functions and trainer.

• Build forward dataflow graph and backward gradient flow graphs.

• Perform training and apply updates

Discussion:

Compare this vs. Spark, parameter server, MapReduce?

18

Outline

• Deep Learning as Dataflow Graphs

• Auto-differentiable Libraries

• Symbolic vs. Imperative

• Static vs. Dynamic

• DL Parallelism

19

Auto-differential Libraries

• Auto-differential Library automatically derives the gradients following the back-

propagation rule.

• A lot of auto-differentiation libraries have been developed:

20

Deep Learning Toolkits

• They are roughly adopted by different domains

Vision
NLP

21

Symbolic vs. Imperative

• They are also designed differently

• Symbolic v.s. imperative programming

Imperative Symbolic

22

Symbolic vs. Imperative

• Symbolic vs. imperative programming

• Symbolic: write symbols to assemble the networks first, evaluate

later

• Imperative: immediate evaluation

ImperativeSymbolic

23

Symbolic vs. Imperative

• Symbolic

• Good

• easy to optimize (e.g. distributed, batching, parallelization) for developers

• More efficient

• Bad

• The way of programming might be counter-intuitive

• Hard to debug for user programs

• Less flexible: you need to write symbols before actually doing anything

• Imperative:

• Good

• More flexible: write one line, evaluate one line (that’s why we all like Python)

• Easy to program and easy to debug: because it matches the way we use C++ or python

• Bad

• Less efficient

• More difficult to optimize

24

Are All Models expressive in Dataflow Graph?

	Slide 1: Where We Are
	Slide 2: Logistics
	Slide 3: ML System history
	Slide 4: Recap: Parameter Server
	Slide 5: The Second Unification: Neural Networks
	Slide 6: Why DL Emerged and Succeeded(but failed before)?
	Slide 7: Deep learning Characteristics
	Slide 8: Outline
	Slide 9: Background: DL Computation
	Slide 10: A Computational Layer in DL: forward
	Slide 11: A Computational Layer in DL: backward
	Slide 12: A Layer as a Dataflow Graph
	Slide 13: Combining Weight Update
	Slide 14: Practice
	Slide 15: Practice
	Slide 16: Dataflow Graph Programming Model Today
	Slide 17: Discussion: Compare this vs. Spark, parameter server, MapReduce?
	Slide 18: Outline
	Slide 19: Auto-differential Libraries
	Slide 20: Deep Learning Toolkits
	Slide 21: Symbolic vs. Imperative
	Slide 22: Symbolic vs. Imperative
	Slide 23: Symbolic vs. Imperative
	Slide 24: Are All Models expressive in Dataflow Graph?

