Where We Are

Machine Learning Systems 2012 - Now

Big Data 2010 - Now

Cloud 2000 - 2016

Foundations of Data Systems 1980 - 2000
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®* Exam date:
* Final Exam date (tentative): Friday, March 22, 8 - 11 am, PT
®* Decision: In-person Exam
®* Next week:
* TA will hold multiple hours of Exam review
®* Pay attention to Piazza announcement about scheduling
* Make sure you attend and get important secret sauces ©
* TAs and | will all be available for OH by appointment to help you

on exam and wrapping the coursel



ML System history

* ML Systems evolve as more and more ML components

(models/optimization algorithms) are unified

Ad-hoc: diverse model family,
optimization algos, and dato

Today: NN, dafc

flow graph, and
data parallelism

LLMs: transformer

decoders



Static Models vs. Dynamic Models
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Static vs. Dynamic Datatlow Graphs

* Static Dataflow graphs
* Define once, execute many times
®* Execution: Once defined, all following computation will follow the

defined computation
* Advantages
®* No extra effort for batching optimization, because it can be by
nature batched
* |[t1s always easy to handle a static computational dataflow graphs

IN all aspects, because of its fixed structure
* Node placement, distributed runtime, memory management, etc.

* Benefit the developers



Static vs. Dynamic Datatlow Graphs

* Can we handle dynamic dataflow graphs?
* Difficulty In expressing complex flow-control logic
* Complexity of the computation graph implementation

* Difficulty in debugging



How to Handle Dynamic Dataflow Graphe

®* [n general two ways:
* Imperative: do not requiring contracting the entire graph before
execution
* Other symbolic representation on top of dataflow graph

® vertex-centric representation
DyNet

3

PYTHRCH Chainer

Imperative Symbolic



Questions

® |s CNN ftraining static or dynamic graphe

® [s CNN inference static or dynamic graphe

* [s GPT-3 (fransformers decoder) training static graph or dynamice
* [s GPT-3 inference with batch size = 1 stfatic or dynamic graph

* |[s GPT-3 serving static or dynamic graph



Advanced Topic: DL Dataflow Graph Optimization
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source graph: A x (B x C) target graph: A xB) x C
(a) Associativity of matrix multiplication.
X Y
N Pl
X Y split
[ "'
matmul
matmul matmul w
f \ / concat
X o
A B C A B C
source graph target graph

(b) Fusing two matrix multiplications using concatenation and split.



Advanced Topic: DL Graph Compilation
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Where We Are

®* Deep Learning as Dataflow Graphs
* Auto-differentiation Libraries

* Symbolic vs. Imperative

® Static vs. Dynamic

* DL Parallelism



DL Parallelization: 3 Core Problems

Computing Communication Memory
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weight update model

parameter (sgd, adam, etc) (CNN, GPT, efc)



Two Views of ML Parallelisms

Classic view New view

Data parallelism Inter-op parallelism

Model parallelism Intra-op parallelism



Data and Model Parallelism

Data parallelism

partition

weight updarte

parameter

(sgd, adam, etc)

Model parallelism

0, V1 (" (=0 {o)

model
(CNN, GPT, etc)
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PS Implements Data Parallelism

Vel VHZ

In total P workers

V(6,0

\

Data partition [

PS collects, aggregates, and
applies the gradients, and then
broadcast the parameters back t
WOrkers

41appening locally on each
worker

Representee Systems: Poseidon, GeePS, BytePS, etc.
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AllReduce Can Also Handle Data Parallelism Comm

Vo, Vo, > [ S i

-
§ : V 8 V 9 Worker C Worker B Worker C / W)q(er B
927(315| 84 811 | 4 2 77 927|717 | 8 4 13 24

\_+_/412 -
L .@ N oo ®

send
Worker C / wbq(er B Wor}ge’r c
VH VH 22 51|15 36|57 12 22 5115 36|57 12 22 51| 7 17 |57
3 4. x 7
\__Send)/

Representee Systems: Horovod, Torch.DDP




Big Model: The Core Computational Challenge

EQ oo
340M parameters (680 MB) < < < 175B parameters (350 GB)
Device Memory
16 - 40 GB

How to train and serve big models?

Model Parallelism



Two Views of ML Parallelisms

Data and model parallelism

Two plillars: data and model.

. "‘Data parallelism™ is general and
precise.

? "Model parallelism” is vague.

? The view creates ambiguity for
methods that neither partitions data nor
the model computation.

New: Inter-op and Infra-op
oarallelism.

Two pillars: computational graph and
device cluster

L« This view is based on their computing
characteristics.

L« This view facilitates the development
of new parallelism methods.
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Device Cluster

Nvidia DGX with V100
| |
H H
e 10-40Gbps —
i B

300Ghps

NVLink

Fgure from NVIDIA

V100

GPU
Y100
GPU

A typical GPU cluster topology

Fast connections
"~ Slow connections

node node

node hode




Partifioning Computation Graph on Device Cluster

How to partition the computational graph
on the device clustere

Fast connections
[ wi W2 ~ Slow connections
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Partitioning Computation Graph

W w2 ) Device 1

—

mat"mul]—[ relu Hmaﬁnul : Device 2

Strategy 1

oWl
mafhul

[""2} [Wl} [wz}

relu Hmafhul mafhulH relu Hmat"mul

Strategy 2
[wl} [WZ} [wl} [WZ}
mafhulH relu Hmat"mul mafhulH relu Hmat"mul

2
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Partitioning Computation Graph

W w2 ) Device |

mafhulH relu Hmaﬂnul : Device 2

Strategy 1: Inter-operator Parallelism

| w2 W w2

mafhul E relu Hmafhul mafhulH relu Hmat"mul

Strategy 2: Intra-operator Parallelism
[wl} [WZ} [wl} [WZ}
mafhulH relu Hmat"mul mafhulH relu Hmat"mul




More Parallelisms...

Multiple intra-op strategies for a single node

D Row-partitioned D Column-partitioned D Replicated D Device 3 D Device 4

More strategies
[wl} [WZ} [wl} [WZ}
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@ Time =0 Time =1 Time = 2 [ ” } [ m J

[ matvmul % [ mat"mul % [ mat"mul } mat"mul H relu H mat"mul
{ matmul } 4[ matmul J { matmul J




Summary: Inter-op and Intra-op Parallelisms
[ W1l } [ W2 } - Device 1

—

mat"mul]—[ relu Hmaﬁnul : Device 2

Inter-op parallelism: Assign different operators to different devices.
[wl} [WZ} [wl} [WZJ
mafhul

relu Hmafhul mafhulH relu Hmat"mul

Intra-op parallelism: Assign different regions of a single operator to different devices.
[wl} [WZ} [wl} [WZ}
mafhulH relu Hmat"mul mafhulH relu Hmat"mul




Inside Intra- and Inter-op Parallelism

Device 1

p— , D Row-partitioned D Column-partitioned D Replicated alkreduce - - P2P
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Inter-op and Intra-op Parallelism: Characteristics
[ wl } [ W2 } B Device 1

—

mat"mul}—[ relu Hma’&nul : Device 2

Inter-op parallelism: Requires point-to-point communication but results in device idle

T w2 Cwa w2

ma’&nulH relu Hma’&nul mat"mul}—[ relu Hma’&nul MSE

Intra-op parallelism: Devices are busy but requires collective communication
[wl} [WZ} [wl} [WZ}
mat"mulH relu Hma’&nul ma’&nul}—[ relu Hma’&nul MSE

:




Inter-op and Intra-op Parallelism: Characteristics
[ wi } [ W2 } B Device 1

mat"mul}—[ relu Hma’&nul : Device 2

Inter-op parallelism
| |
|
matmulH—[ relu Hmatmﬂ Inter-operator  Intra-operator

i Parallelism Parallelism

WD } Trade-off

Intra-op parallelism

[ wl J [ w2 J
maﬁnul}—[ relu Hma’&nul

Communication More

Device Idle Time More




ML Parallelization under New View

|

|

|

Fast connections
wl /{ W2 }\ Yy Slow connections
matmul o te
o1y’ Theme problem: EOfED
" What's the best way to execute the graph
matmul} subject fto memory and communication constraintse e




Where We Are

®* Deep Learning as Dataflow Graphs
* Auto-differentiation Libraries

* Symbolic vs. Imperative

® Static vs. Dynamic
®* DL Parallelism

® Inter-op parallelism

* Intra-op parallelism



Computational Graph (Neural Networks) — Stages

Computational Graph
L
CHOH A /( }\( J/{{ Z i\ L

Devices (e.g., GPUs)




Computational Graph (Neural Networks) — Stages

T Computational Graph
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Execution & Data Movement

)
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Note: The time spent on data transter is typically small, since we only
communicates stage outputs at stage lboundaries between two

Stages.



Timeline: Visualization of Inter-Operator Parallelism

Device | o
Device 2 //Plpellne Bubbles
Device 3 i
Device 4
Time
Gray areaq | ) indicates devices being idle (a.k.a. Pipeline bubbles).

Only 1 device activated at a time.

Pipeline bubble percentage = bubble_area / total_area
=(D-1) /D, assuming D devices.



Reduce Pipeline Bubbles via Pipelining Inputs

/

Used In inference.

Input d

Devi
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G C I with D devices and N inputs.
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