Where We Are

Machine Learning Systems

Big Data

Cloud

Foundations of Data Systems

2012 - Now

2010 - Now

2000 - 2016

1980 - 2000

Logistics

- Exam date:

 - Decision: In-person Exam
- Next week:
 - TA will hold multiple hours of Exam review
 - Pay attention to Piazza announcement about scheduling
 - Make sure you attend and get important secret sauces ③
 - TAs and I will all be available for OH by appointment to help you on exam and wrapping the course!

Final Exam date (tentative): Friday, March 22, 8 - 11 am, PT

ML System history

 ML Systems evolve as more and more ML components (models/optimization algorithms) are unified

> Ad-hoc: diverse model family, optimization algos, and data

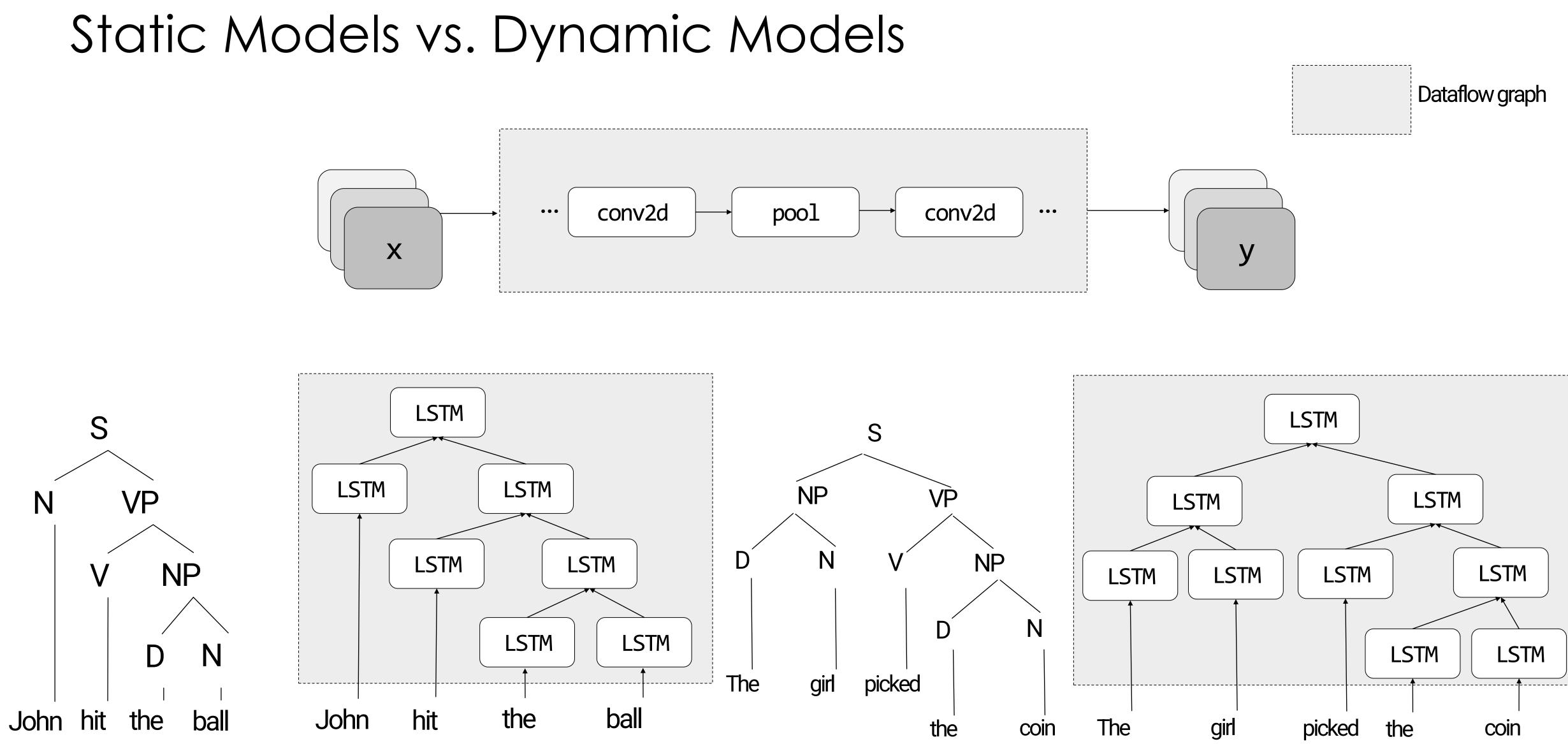
Opt algo: iterative-convergent

Model family: neural nets

Model: CNNs/transformers/GNNs

> LLMs: transformer decoders

Today: NN, data flow graph, and data parallelism



Static vs. Dynamic Dataflow Graphs

- Static Dataflow graphs
 - Define once, execute many times
 - Execution: Once defined, all following computation will follow the defined computation
 - Advantages
 - No extra effort for batching optimization, because it can be by nature batched
 - It is always easy to handle a static computational dataflow graphs in all aspects, because of its fixed structure Node placement, distributed runtime, memory management, etc.
 - Benefit the developers

Static vs. Dynamic Dataflow Graphs

- Can we handle dynamic dataflow graphs?
 - Difficulty in expressing complex flow-control logic
 - Complexity of the computation graph implementation
 - Difficulty in debugging

How to Handle Dynamic Dataflow Graph?

- In general two ways:
 - Imperative: do not requiring contracting the entire graph before execution
 - Other symbolic representation on top of dataflow graph vertex-centric representation

PYTÖRCH

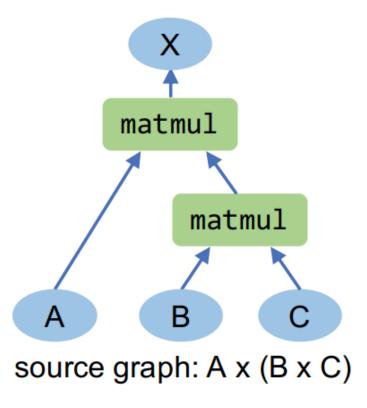
Imperative

Symbolic

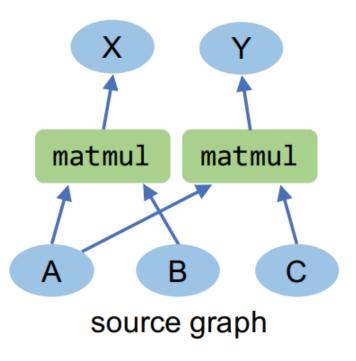
Questions

- Is CNN training static or dynamic graph?
- Is CNN inference static or dynamic graph?
- Is GPT-3 (transformers decoder) training static graph or dynamic?
- Is GPT-3 inference with batch size = 1 static or dynamic graph • Is GPT-3 serving static or dynamic graph

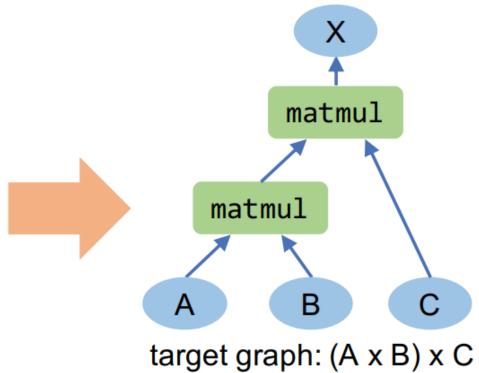
Advanced Topic: DL Dataflow Graph Optimization

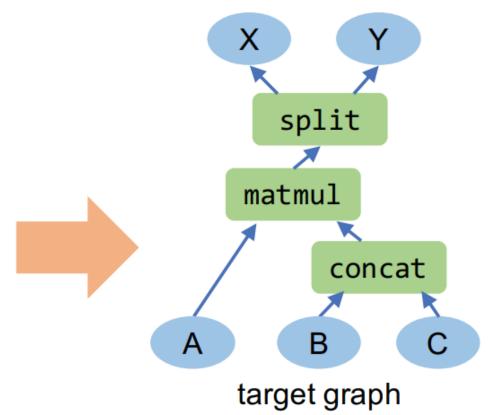


(a) Associativity of matrix multiplication.

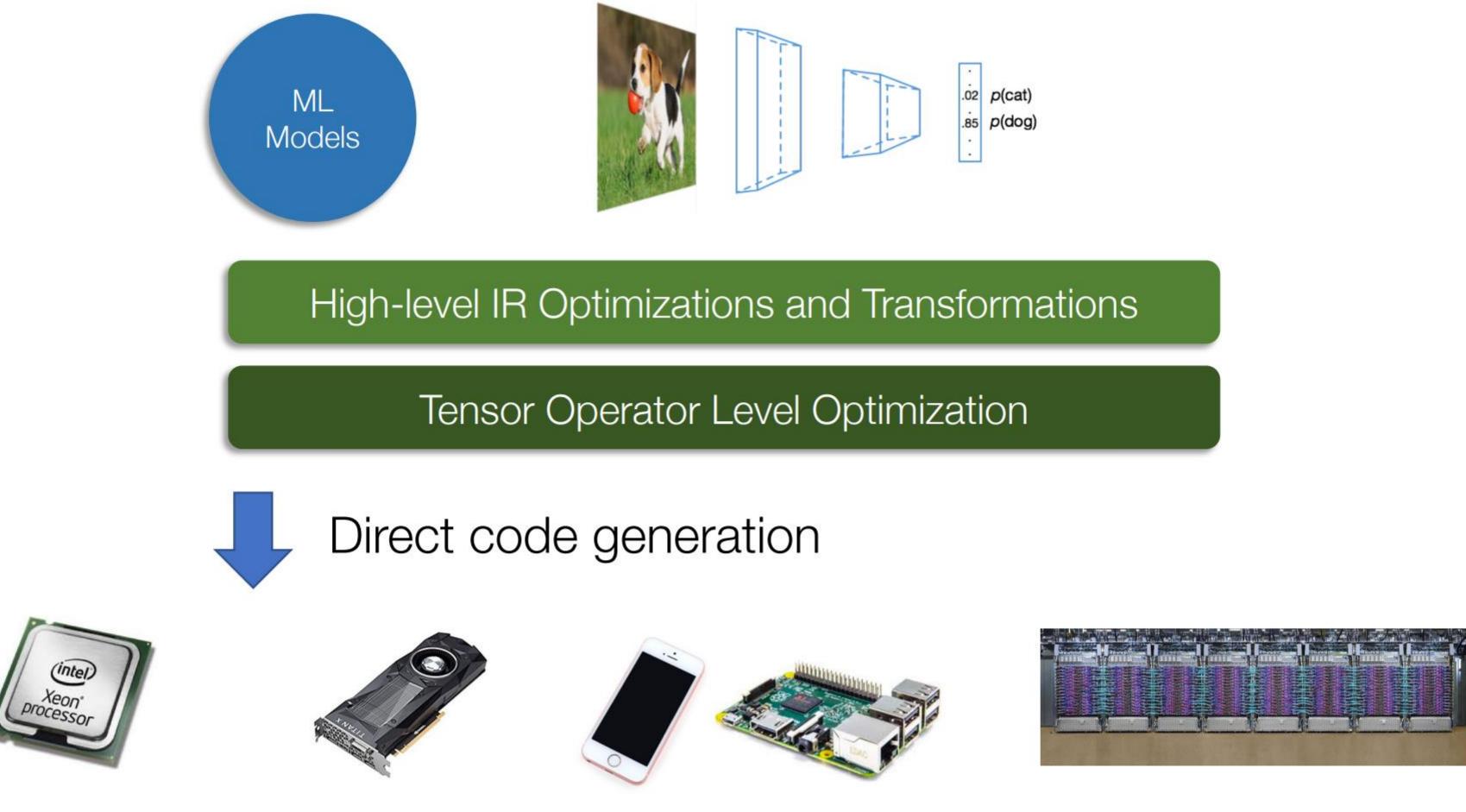


(b) Fusing two matrix multiplications using concatenation and split.





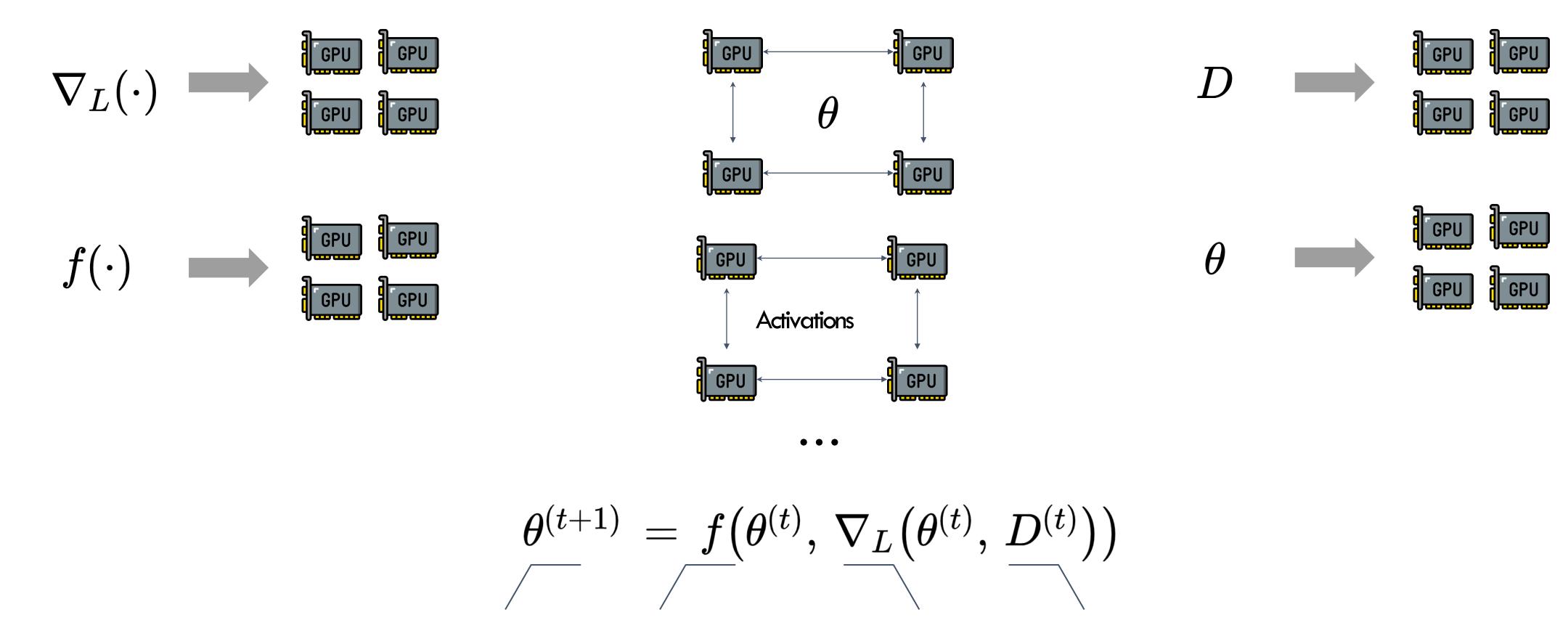
Advanced Topic: DL Graph Compilation



Where We Are

- Deep Learning as Dataflow Graphs
- Auto-differentiation Libraries
 - Symbolic vs. Imperative
 - Static vs. Dynamic
- DL Parallelism

DL Parallelization: 3 Core Problems Computing Communication



weight update (sgd, adam, etc.)

parameter

Memory

model data (CNN, GPT, etc.)

Two Views of ML Parallelisms

Classic view

Data parallelism

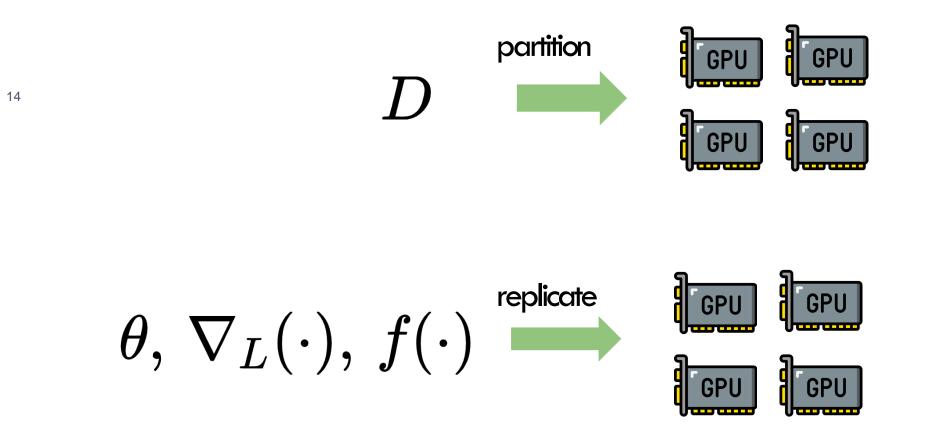
Model parallelism

New view

Inter-op parallelism

Intra-op parallelism

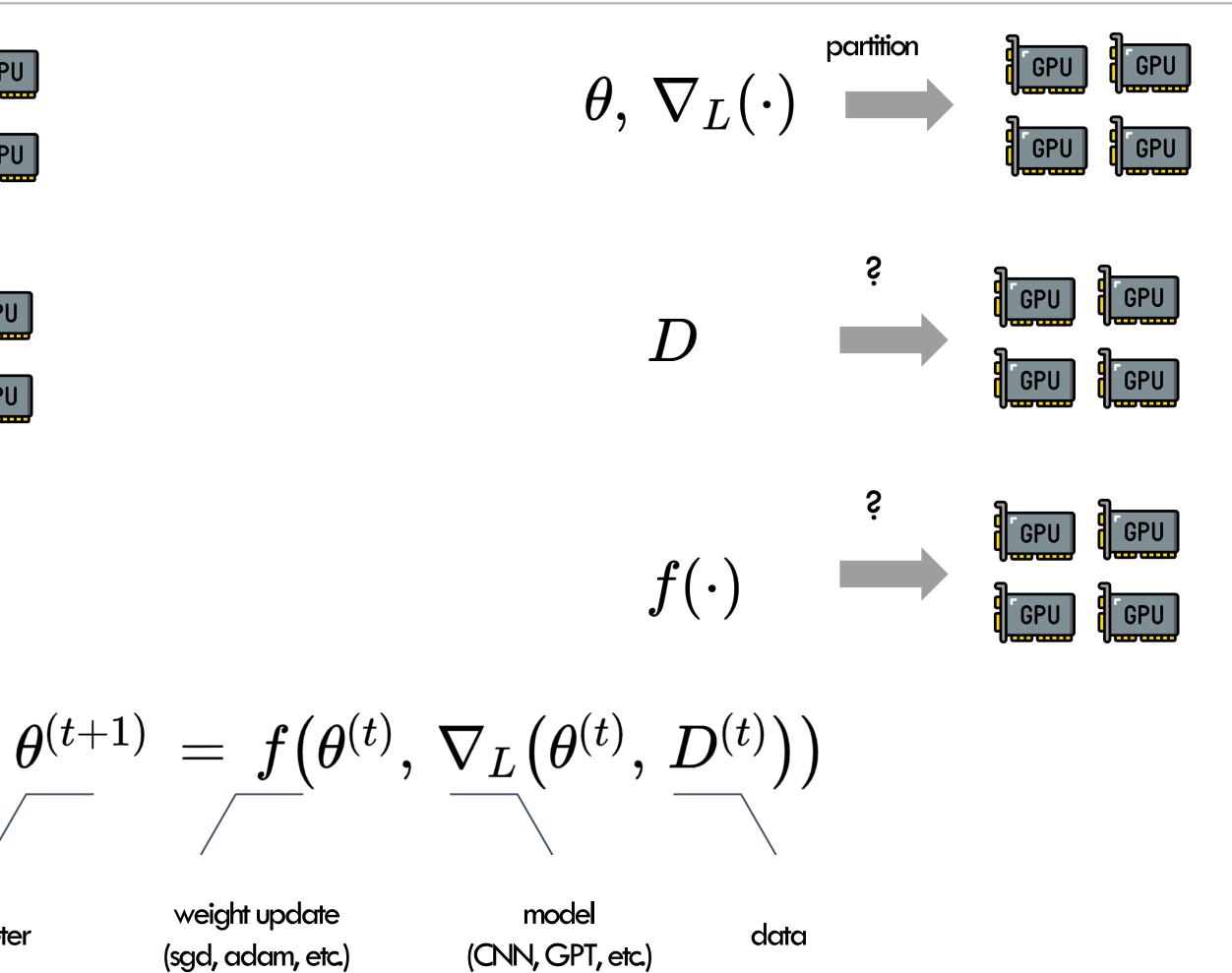
Data and Model Parallelism Data parallelism



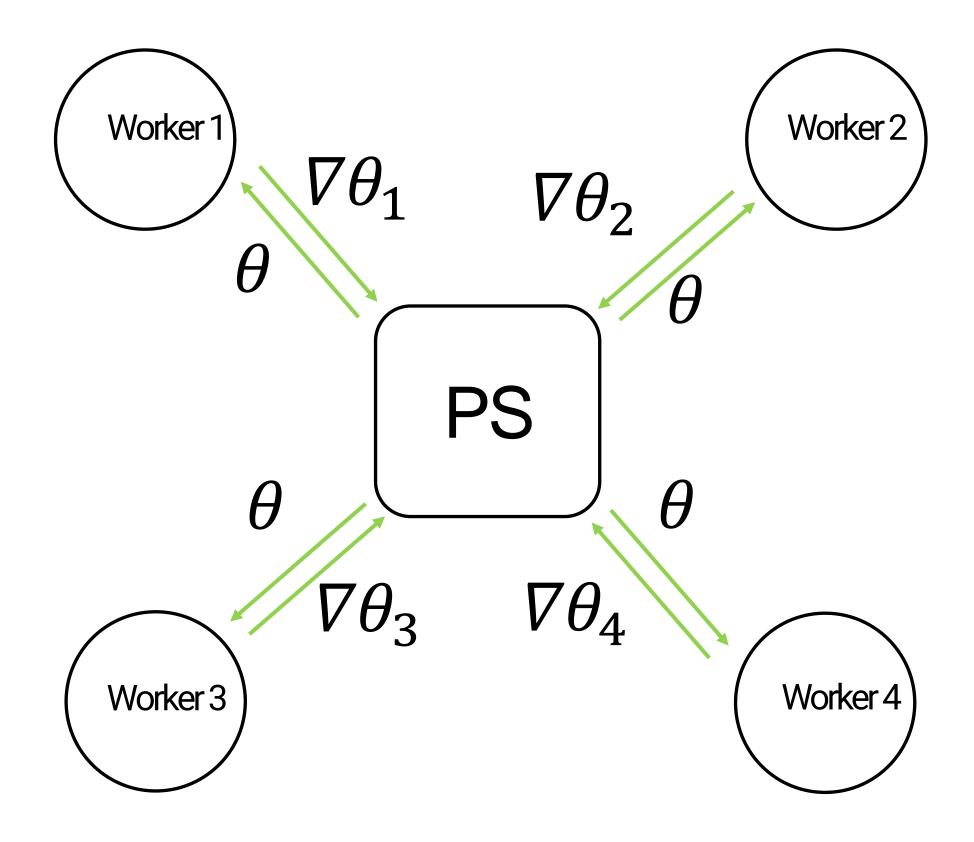
parameter

weight update (sgd, adam, etc.)

Model parallelism



PS Implements Data Parallelism

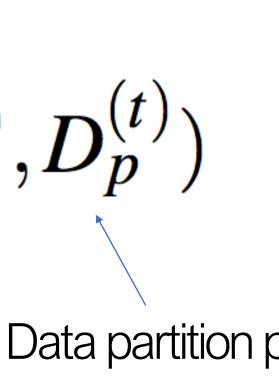


In total P workers

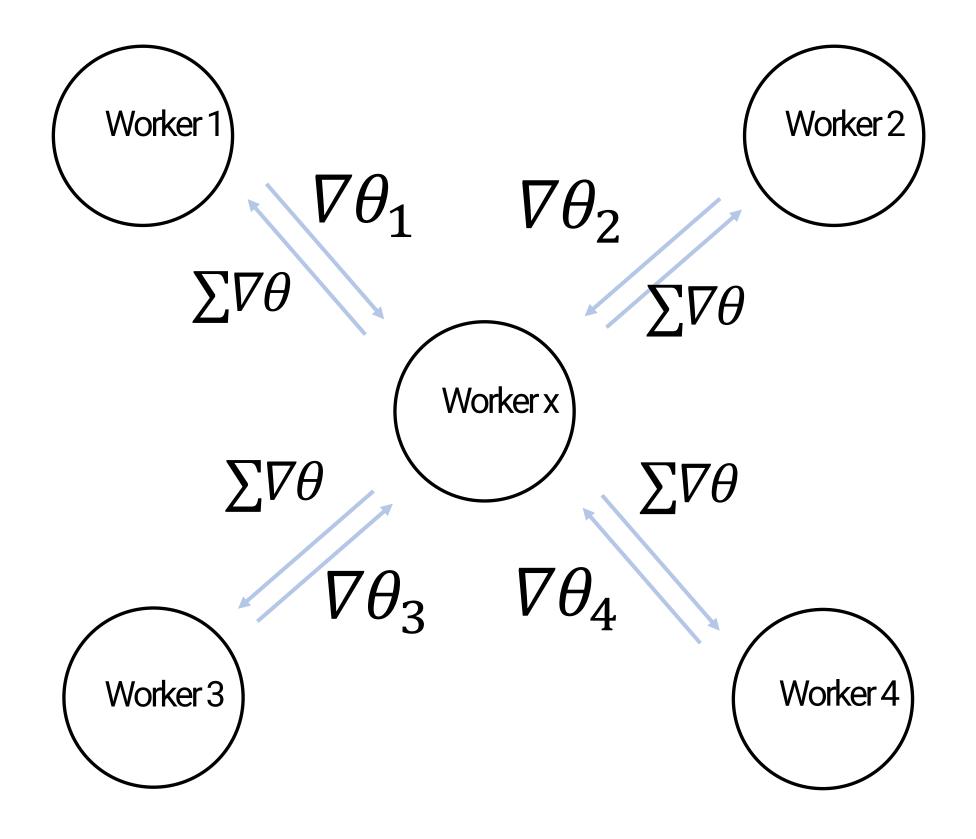
$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} + \boldsymbol{\varepsilon} \sum_{r} \nabla_{\mathcal{L}}(\boldsymbol{\theta}^{(t)}, \boldsymbol{D}_{p}^{(t)})$ p=1

PS collects, aggregates, and applies the gradients, and then broadcast the parameters back to Happening locally on each worker workers

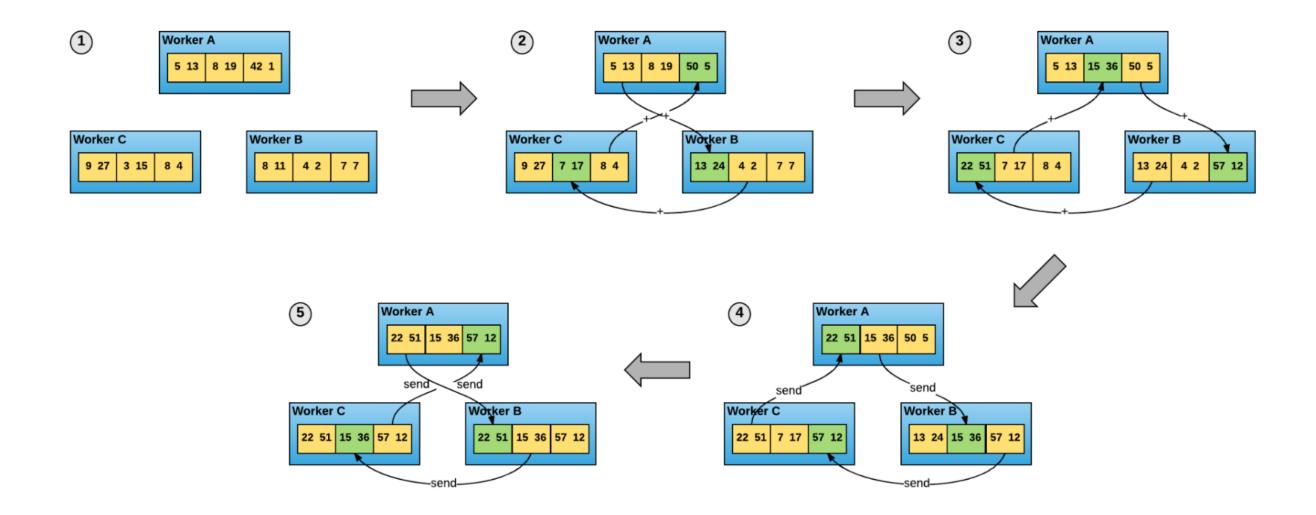
Representee Systems: Poseidon, GeePS, BytePS, etc.



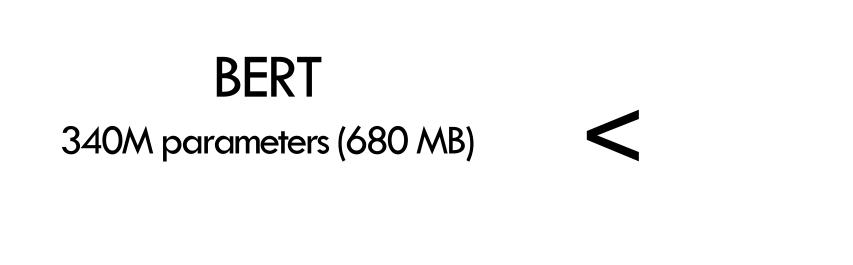
AllReduce Can Also Handle Data Parallelism Comm



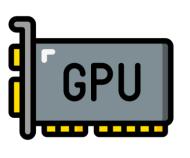
Representee Systems: Horovod, Torch.DDP



Big Model: The Core Computational Challenge



How to train and serve big models?



Device Memory 16 - 40 GB

GPT-3 175B parameters (350 GB)

Model Parallelism

Two Views of ML Parallelisms

Data and model parallelism

Two pillars: data and model.

•

•

•

•

- "Data parallelism" is general and precise.
- ? "Model parallelism" is vague.

? The view creates ambiguity for methods that neither partitions data nor the model computation.

New: Inter-op and Intra-op parallelism.

•

- Two pillars: computational graph and device cluster
- This view is based on their computing characteristics.
- This view facilitates the development of new parallelism methods.

Device Cluster

Nvidia DGX with V100

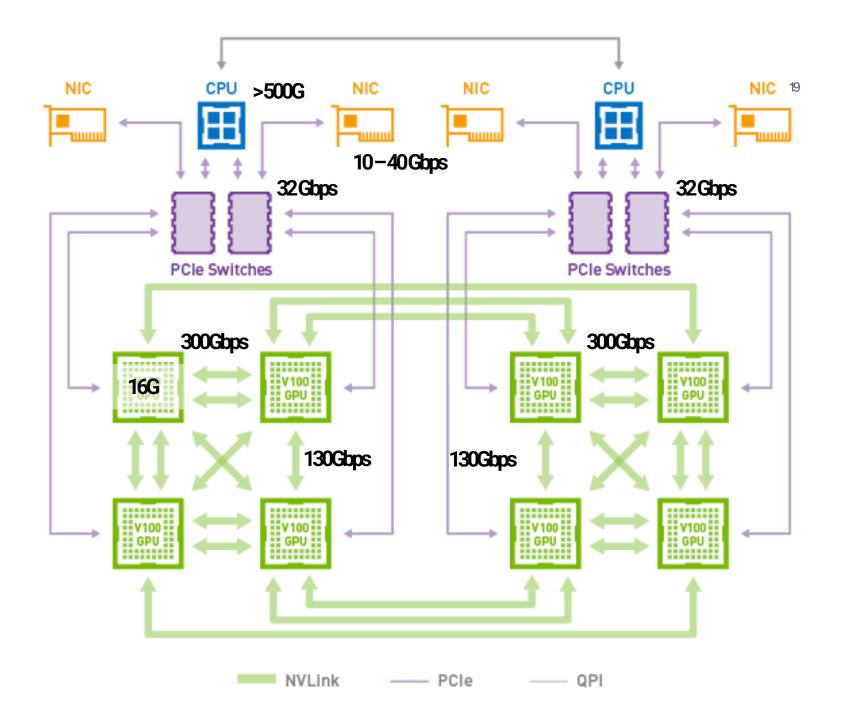
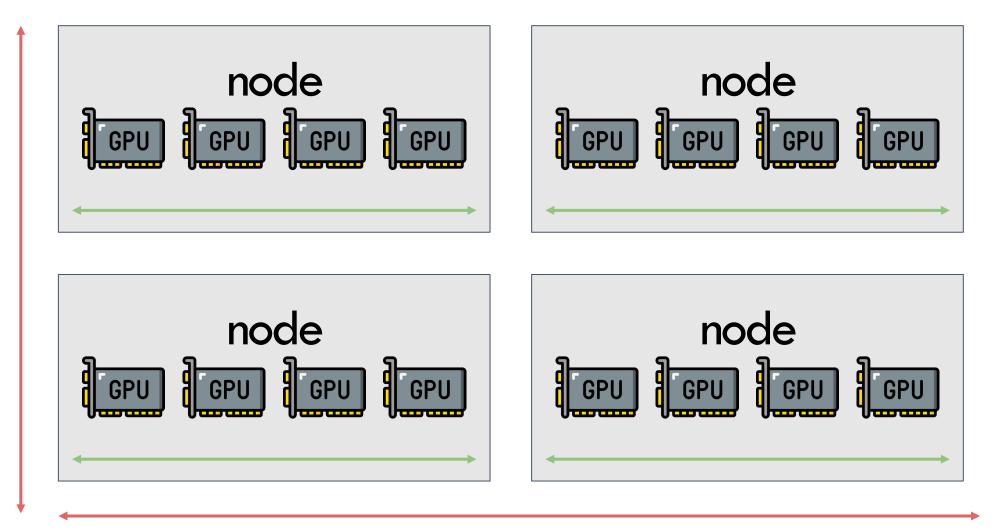


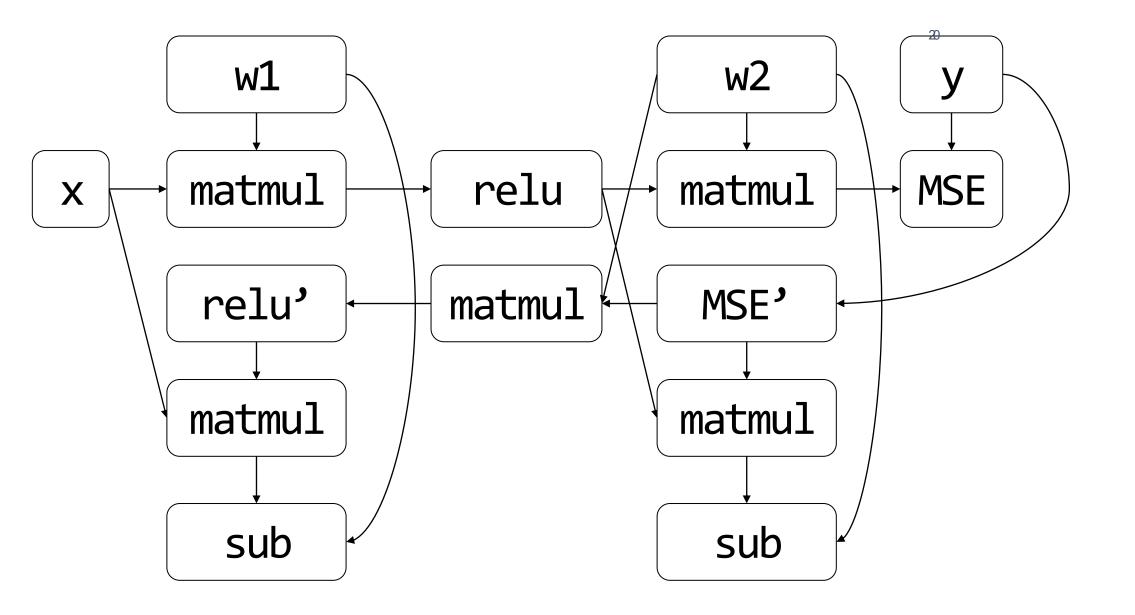
Figure from NMDIA

A typical GPU cluster topology

Fast connections Slow connections



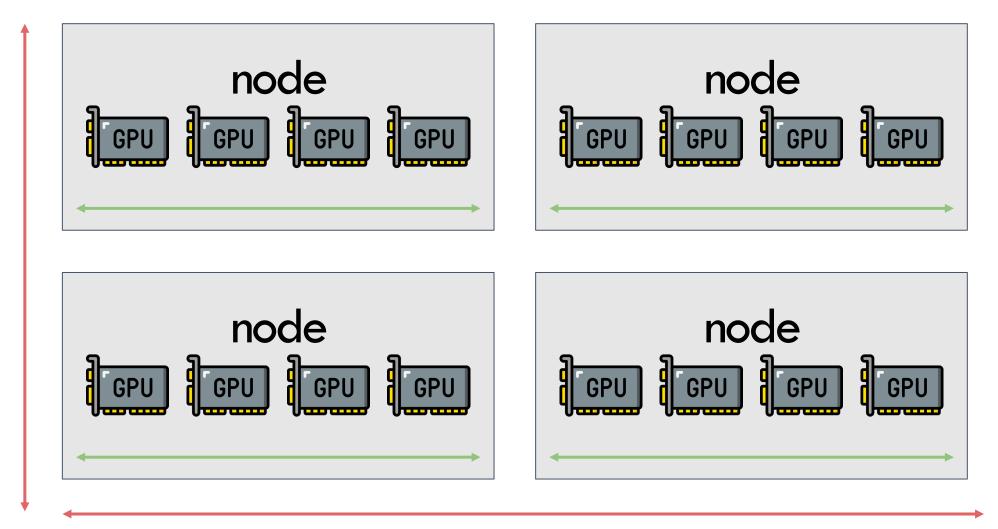
Partitioning Computation Graph on Device Cluster

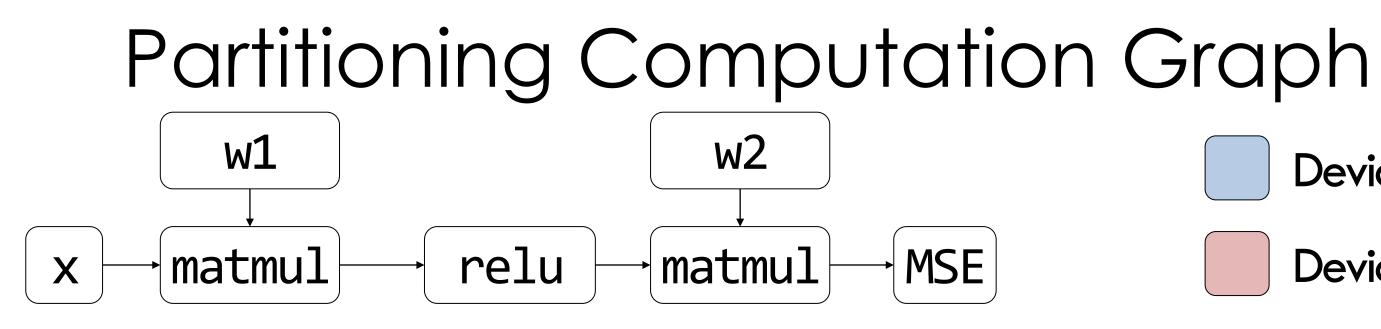


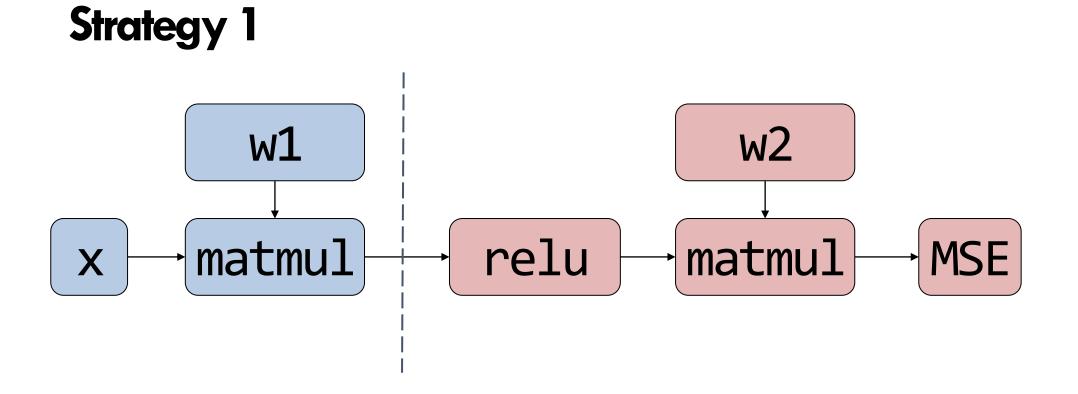
How to partition the computational graph on the device cluster?

Fast connections

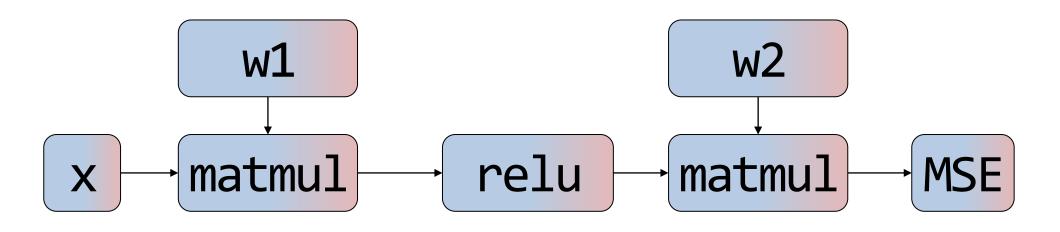
Slow connections

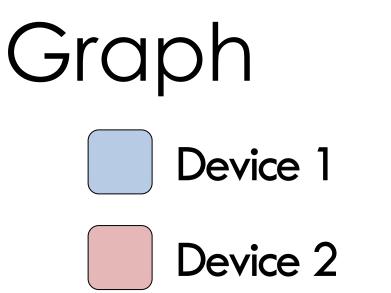


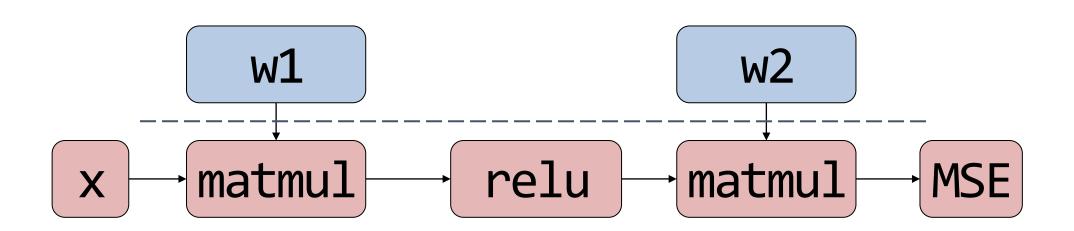


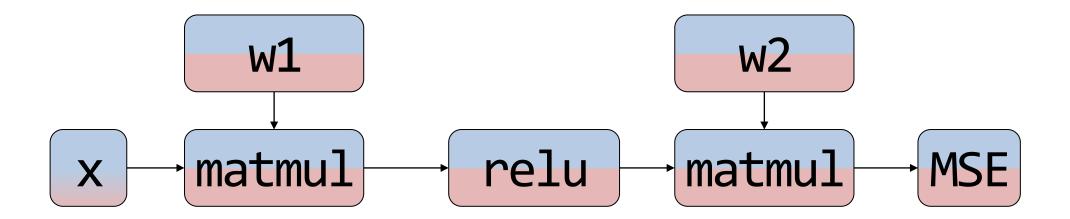


Strategy 2



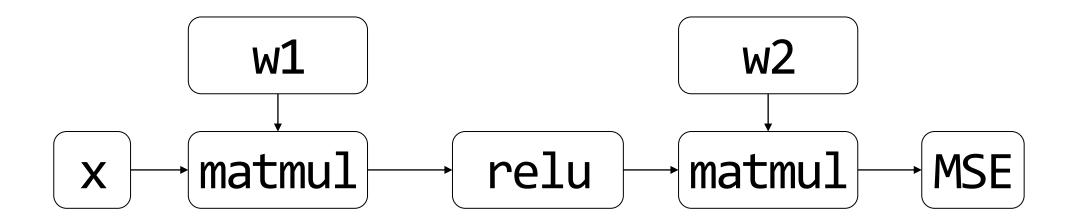




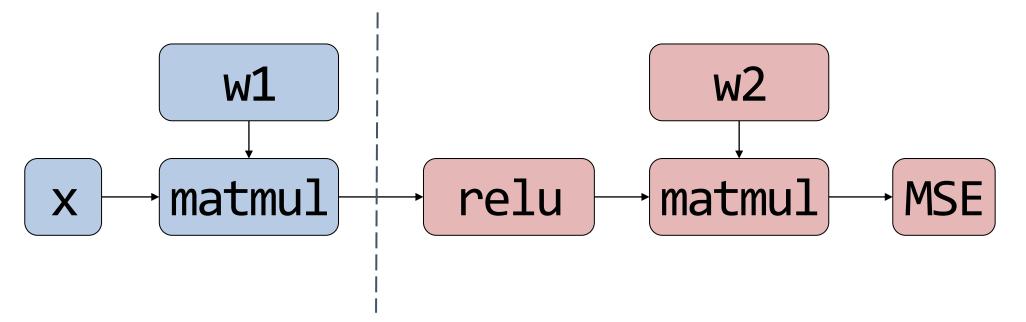


... •••

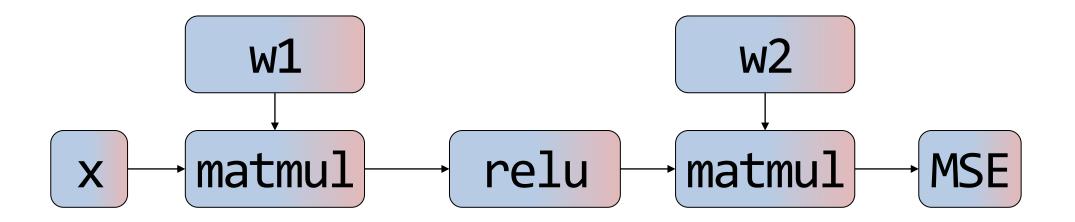
Partitioning Computation Graph

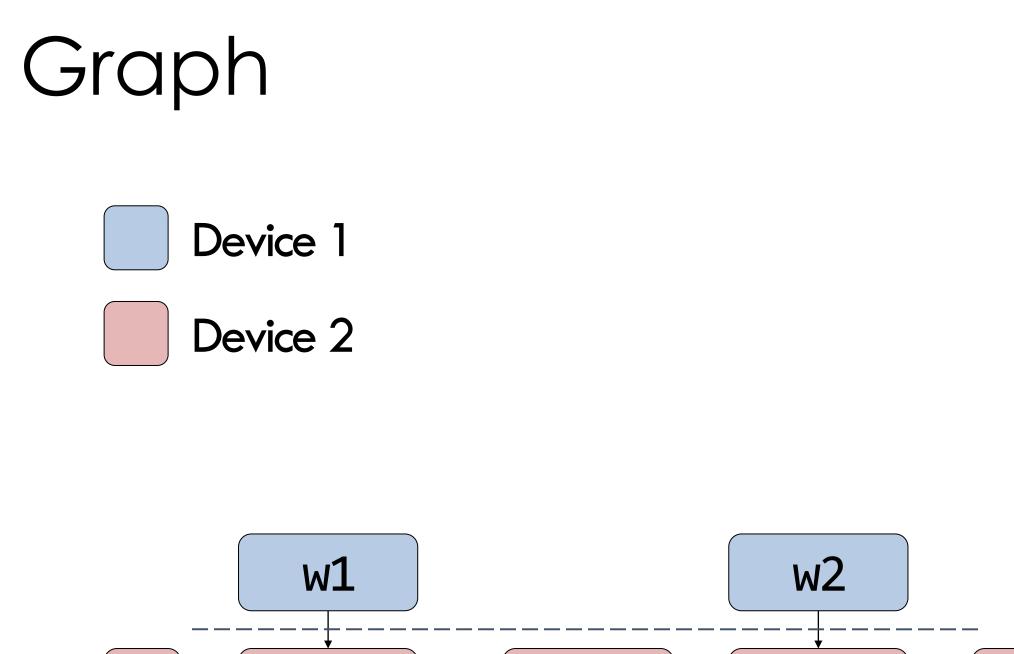


Strategy 1: Inter-operator Parallelism



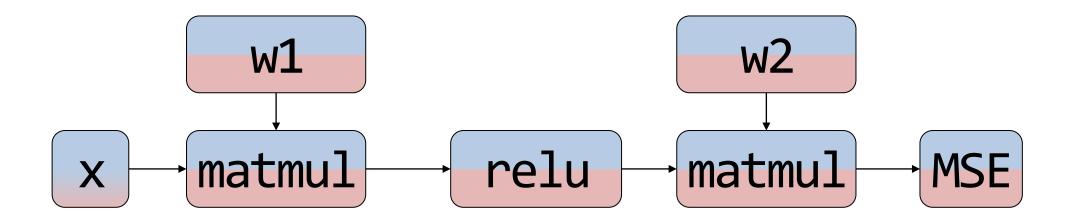
Strategy 2: Intra-operator Parallelism





matmul

Χ



relu

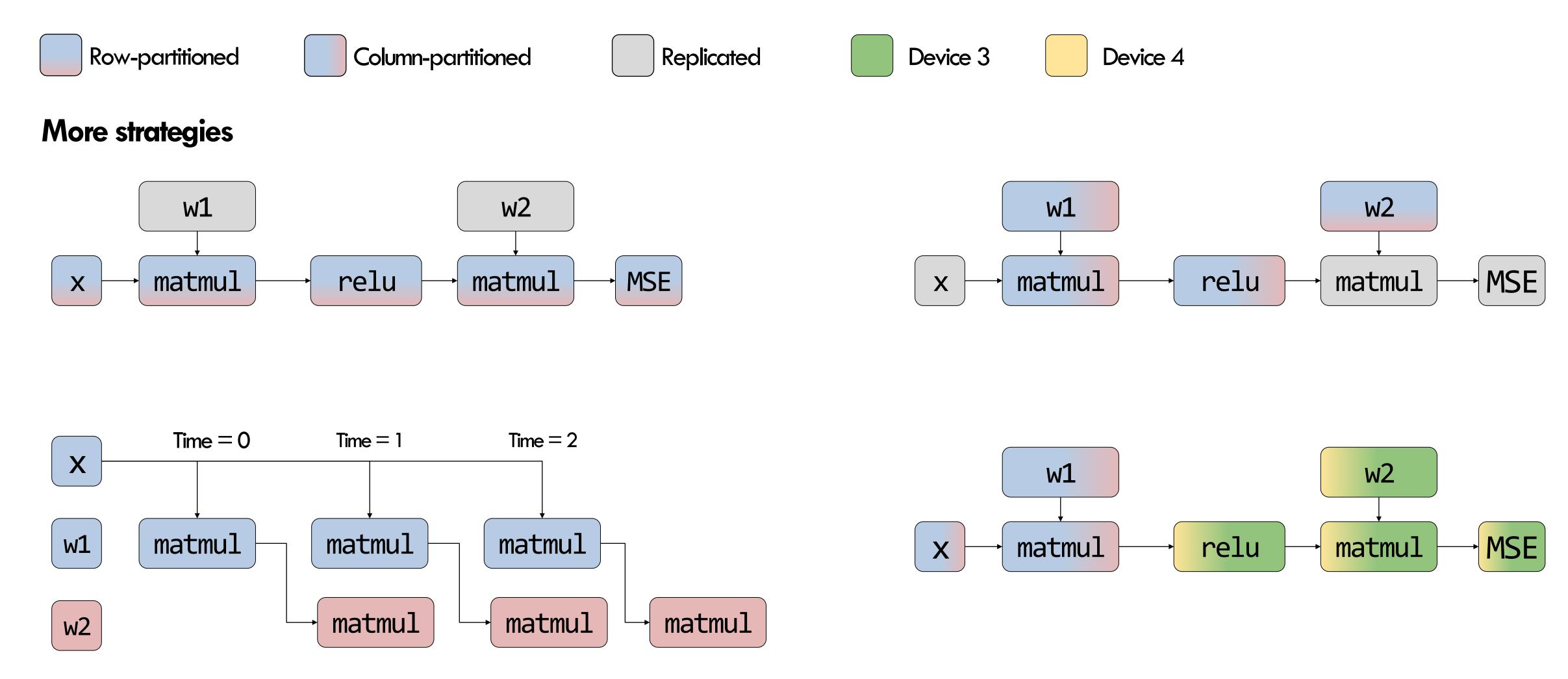
... •••

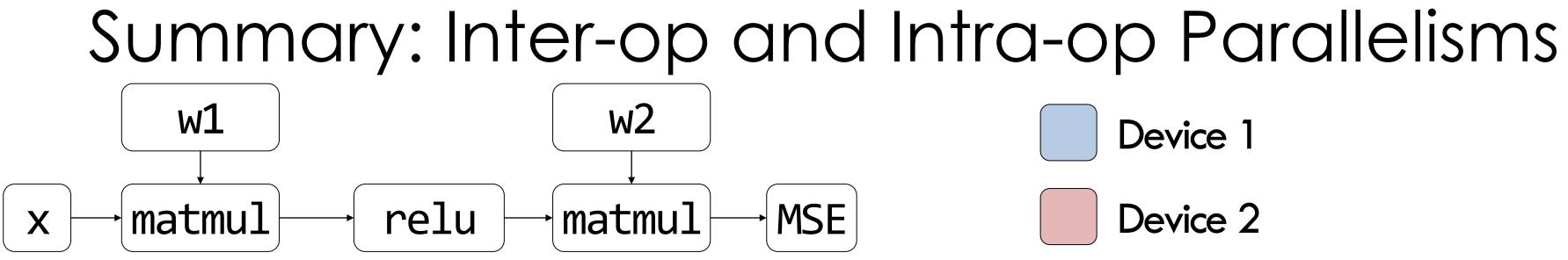
MSE

matmul

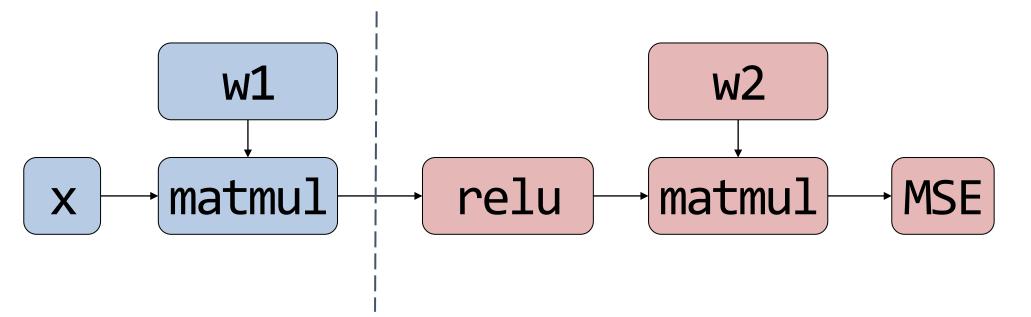
More Parallelisms...

Multiple intra-op strategies for a single node

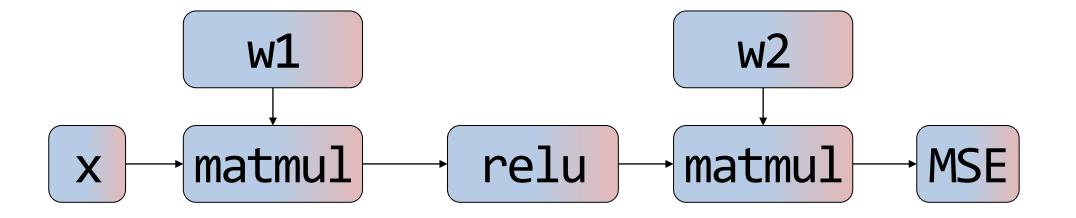




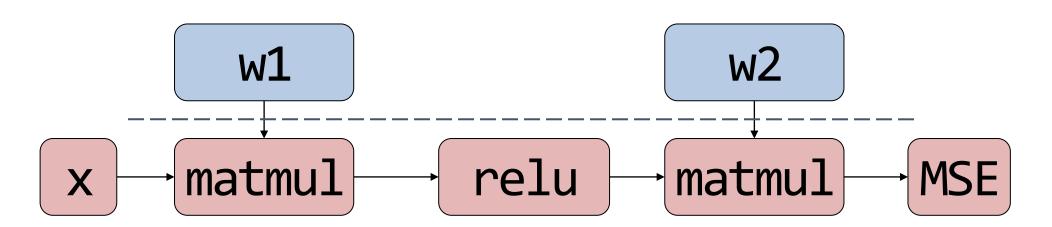
Inter-op parallelism: Assign different operators to different devices.

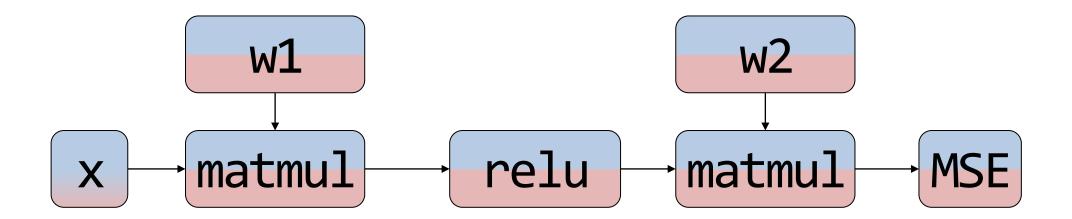


Intra-op parallelism: Assign different regions of a single operator to different devices.



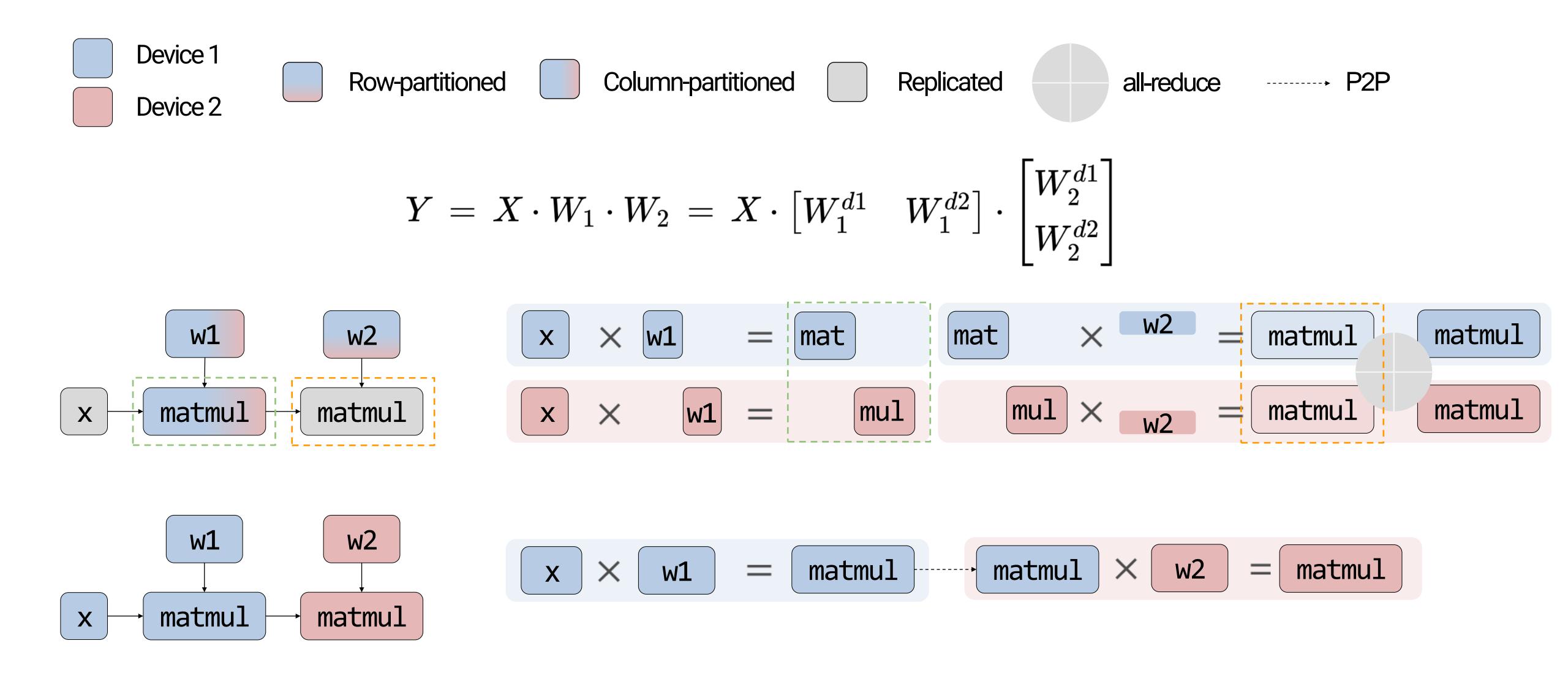
Device 1 Device 2

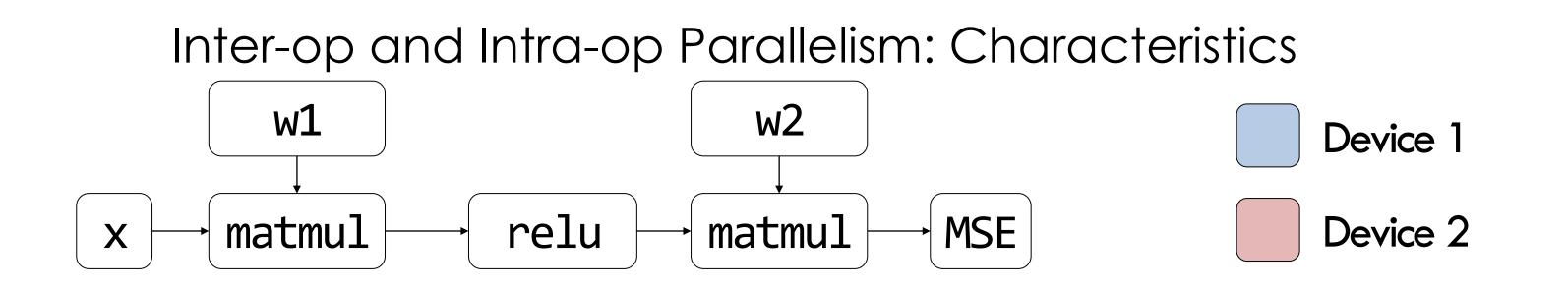


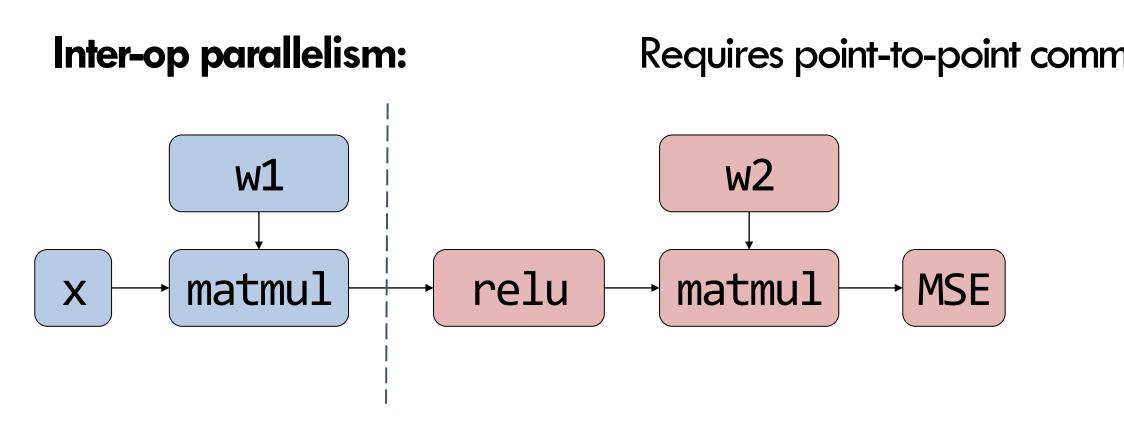


 $\bullet \bullet \bullet$...

Inside Intra- and Inter-op Parallelism

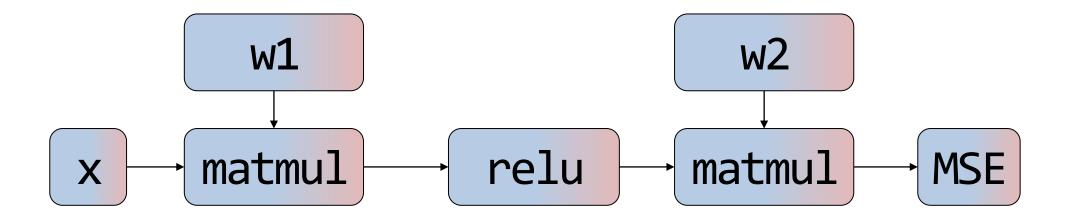




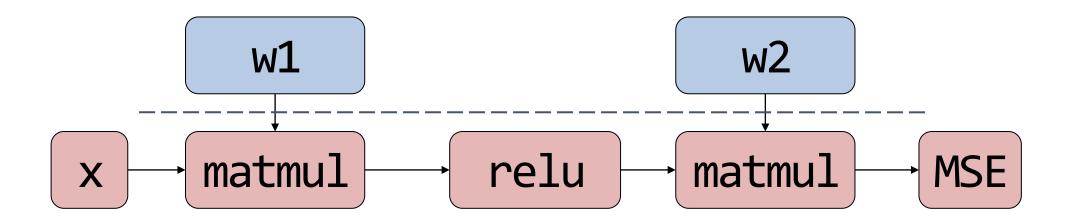


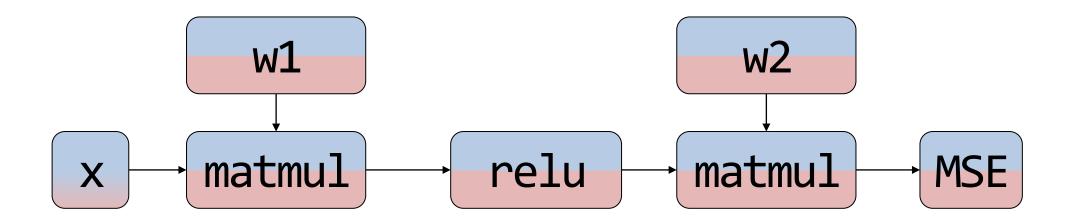
Intra-op parallelism:

Devices are busy but requires collective communication

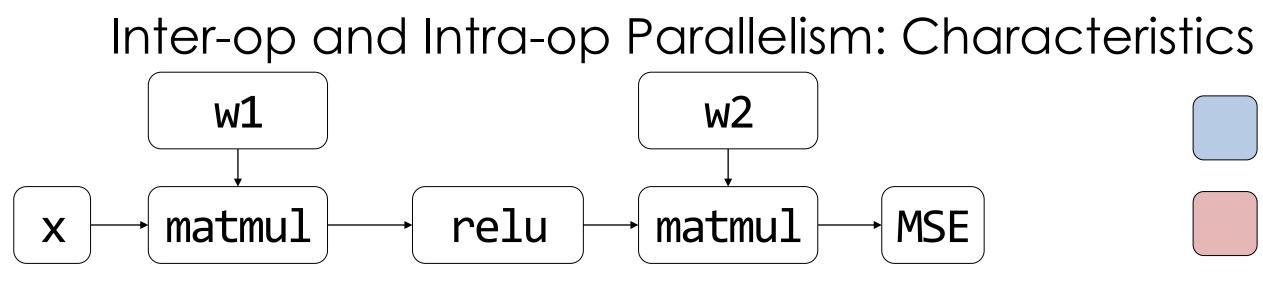


Requires point-to-point communication but results in device idle

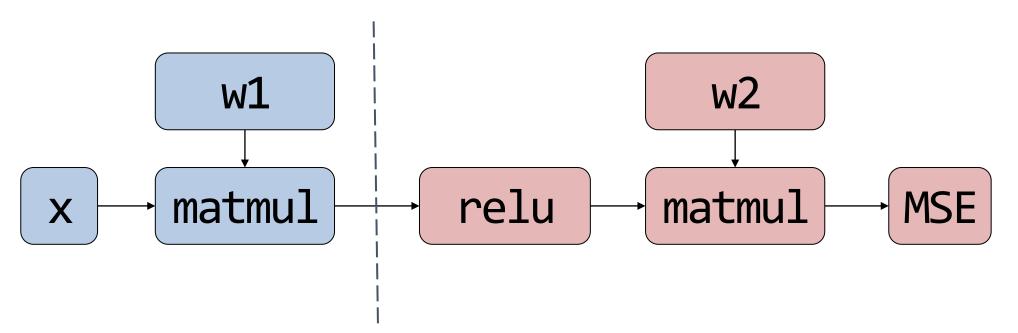




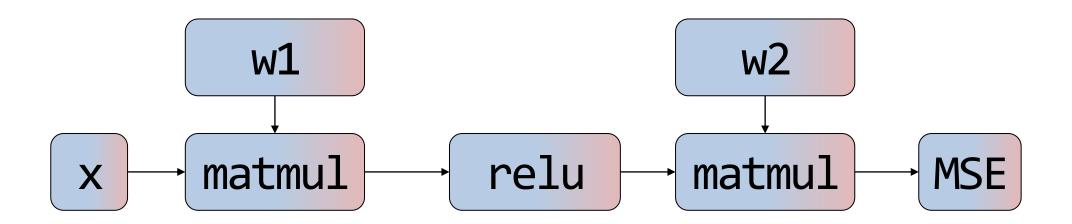
... ...

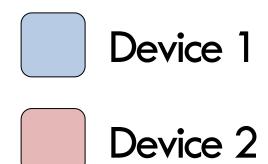


Inter-op parallelism



Intra-op parallelism



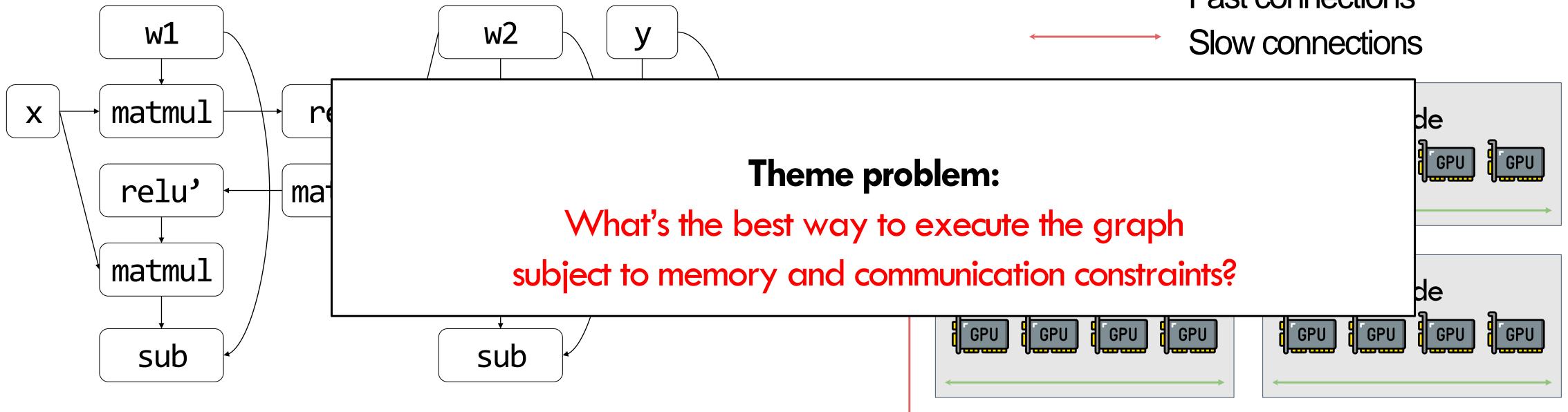


Trade-off

	Inter-operator Parallelism	Intra-operato Parallelism
Communication	Less	More
Device Idle Time	More	Less

or

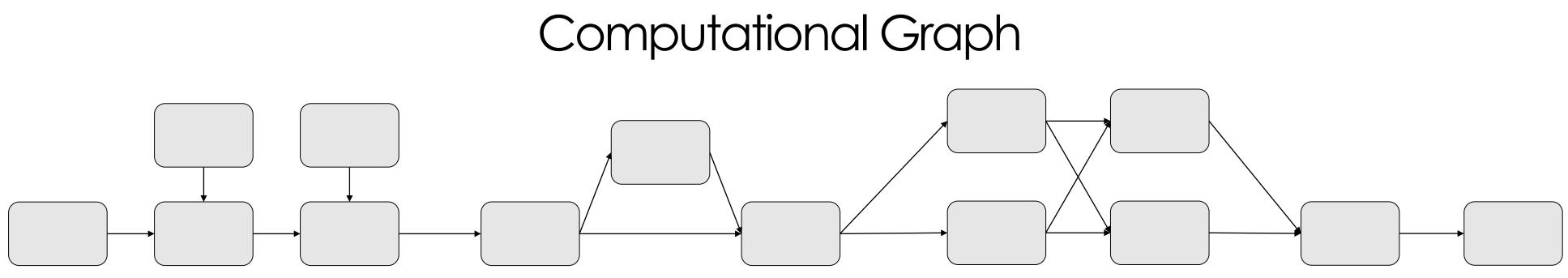
ML Parallelization under New View

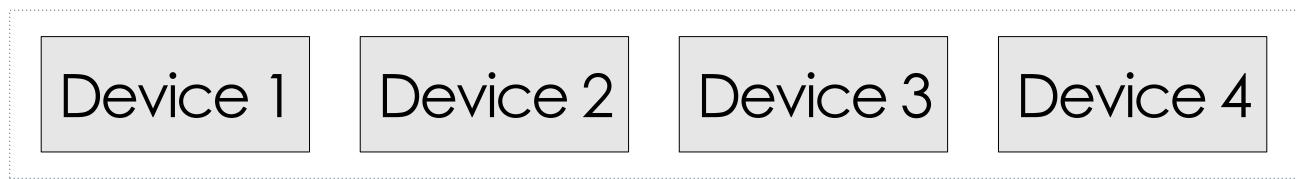


Where We Are

- Deep Learning as Dataflow Graphs
- Auto-differentiation Libraries
 - Symbolic vs. Imperative
 - Static vs. Dynamic
- DL Parallelism
 - Inter-op parallelism
 - Intra-op parallelism

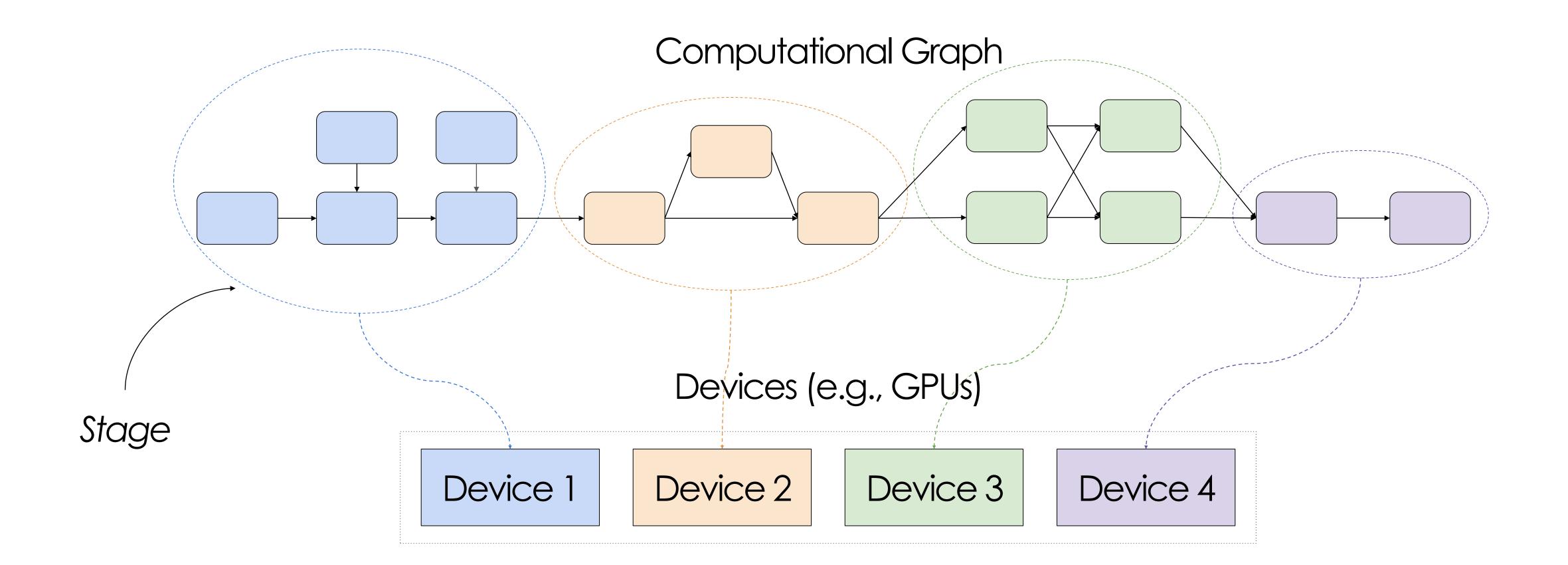
Computational Graph (Neural Networks) \rightarrow Stages



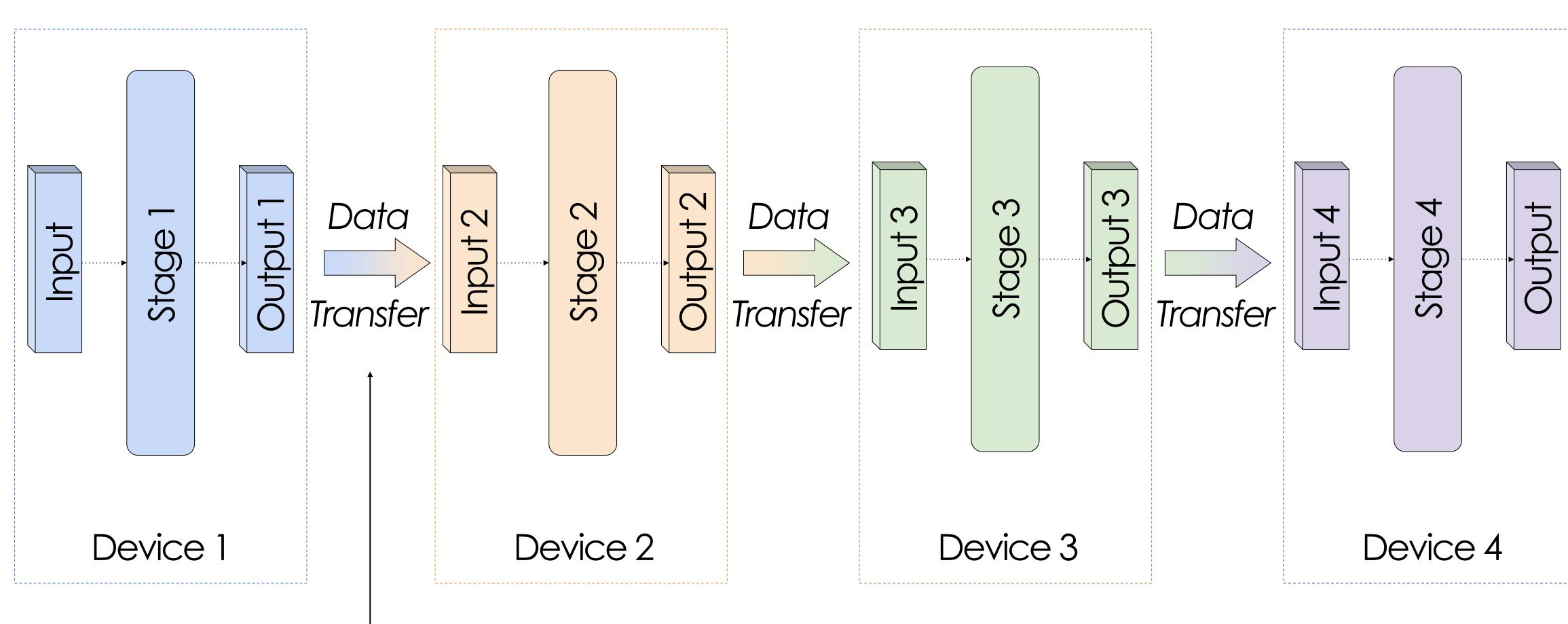


Devices (e.g., GPUs)

Computational Graph (Neural Networks) → Stages

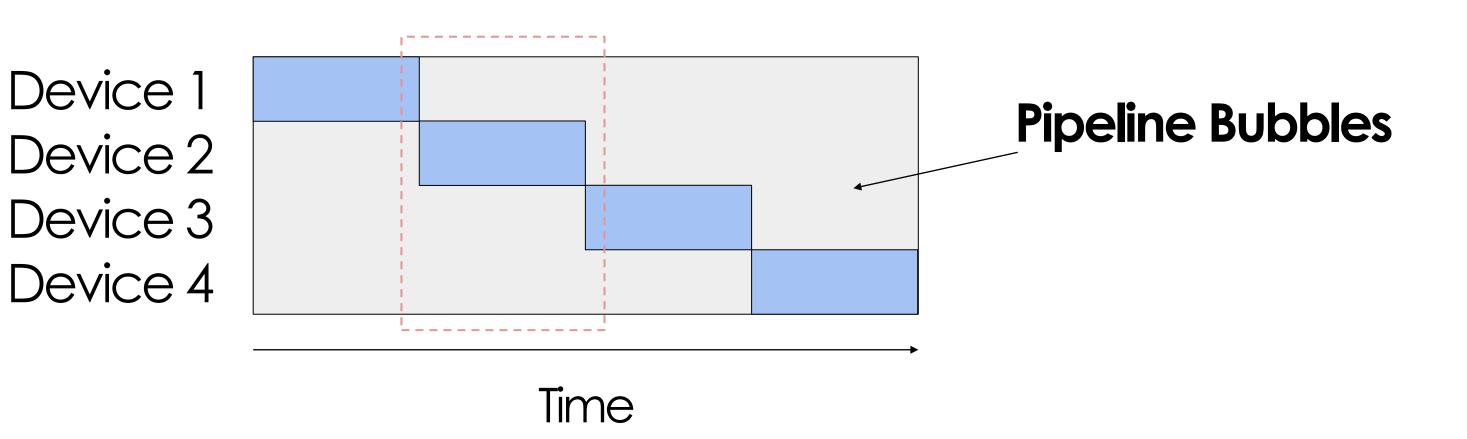


Execution & Data Movement



Note: The time spent on data transfer is typically **small**, since we only communicates stage outputs at stage boundaries between two stages.

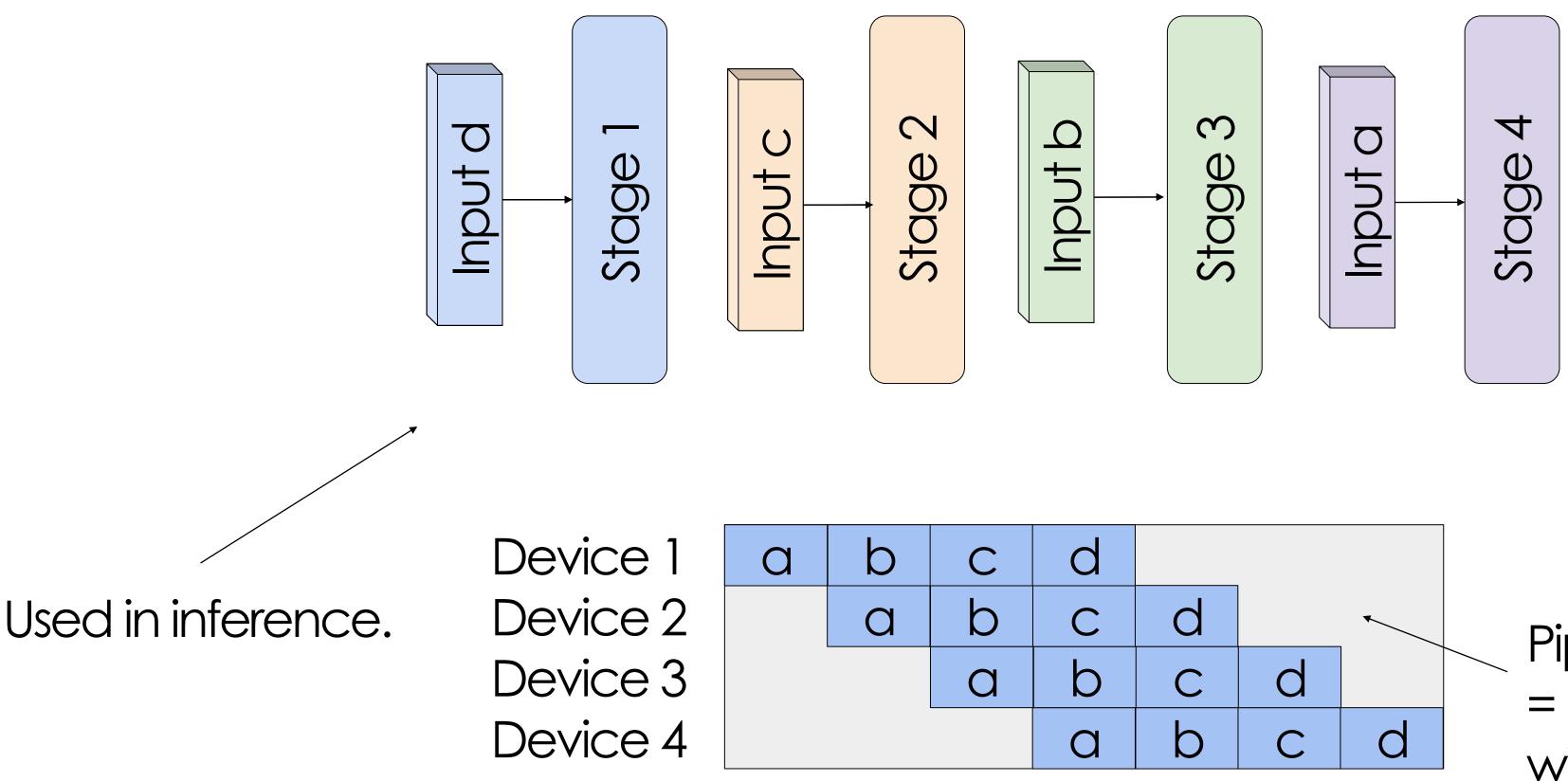
Timeline: Visualization of Inter-Operator Parallelism



- Gray area (ullet
- Only 1 device activated at a time. ullet
- Pipeline bubble percentage = bubble_area / total_area \bullet = (D - 1) / D, assuming D devices.

indicates devices being idle (a.k.a. Pipeline bubbles).

Reduce Pipeline Bubbles via Pipelining Inputs



Pipeline bubbles percentage = (D - 1) / (D - 1 + N)with D devices and N inputs.

Time

