Where We Are

Machine Learning Systems

Big Data

Cloud

Foundations of Data Systems

2012 - Now

2010 - Now

2000 - 2016

1980 - 2000

Logistics

- Exam date and location:
 - Friday, March 22, 8 11 am, PT, PCYNH 122
 - Exam Review: next Tuesday
- If you have scheduling conflicts
 - Reach out to instructor team asap to coordinate
- In-person vs. online
 - In-person is easier
 - In-person is fairer
 - We were advised against online by senior faculty

ML System history

 ML Systems evolve as more and more ML components (models/optimization algorithms) are unified

> Ad-hoc: diverse model family, optimization algos, and data

Opt algo: iterative-convergent

Model family: neural nets

Model: CNNs/transformers/GNNs

> LLMs: transformer decoders

Today: ML Parallelism, and transformers

Inter-op parallelism

Intra-op parallelism

Device 2

Trade-off

	Inter-operator Parallelism	Intra-operato Parallelism
Communication	Less	More
Device Idle Time	More	Less

or

Where We Are

- Deep Learning as Dataflow Graphs
- Auto-differentiation Libraries
 - Symbolic vs. Imperative
 - Static vs. Dynamic
- DL Parallelism
 - Inter-op parallelism
 - Intra-op parallelism

Computational Graph (Neural Networks) → Stages

Timeline: Visualization of Inter-Operator Parallelism

- Gray area (ullet
- Only 1 device activated at a time. ullet
- Pipeline bubble percentage = bubble_area / total_area \bullet = (D - 1) / D, assuming D devices.

indicates devices being idle (a.k.a. Pipeline bubbles).

Reduce Pipeline Bubbles via Pipelining Inputs

Pipeline bubbles percentage = (D - 1) / (D - 1 + N)with D devices and N inputs.

Time

Training: Forward & Backward Dependency

Time

How to Reduce Pipeline Bubbles for Training?

- Synchronous Pipeline Parallel Algorithms • GPipe 0 1F1B 0
 - Interleaved 1F1B 0
 - TeraPipe 0
 - Chimera 0

0

- Asynchronous Pipeline Parallel Algorithms • AMPNet
 - Pipedream/Pipedream-2BW

How to Reduce Pipeline Bubbles for Training?

- Synchronous Pipeline Parallel Algorithms • GPipe 0 **1F1B** 0 Interleaved 1F1B 0 TeraPipe 0 Chimera 0 Asynchronous Pipeline Parallel Algorithms •
 - AMPNet

0

Pipedream/Pipedream-2BW

GPipe

Idea: Partition the input batch into multiple "*micro-batches*". Pipeline the micro-batches. Accumulate the gradients of the micro-batches:

$$\nabla L_{\theta}(x) = \frac{1}{N} \sum_{i=1}^{N} \nabla L_{\theta}(x_i)$$

Example: Slice each input batch into 6 micro-batches:

• • •

Time

GPipe Schedule:

Forward (for input batch a)

Device 1	0	1	2	3	4	5				
Device 2		0	1	2	3	4	5			
Device 3			0	1	2	3	4	5		
Device 4				0	1	2	3	4	5	

1F1B (1 Forward 1 Backward) Schedule:

Device 1	0	1	2	3				0	4	
Device 2		0	1	2			0	3	1	
Device 3			0	1		0	2]	3	
Device 4				0	0	1	1	2	2	

Perform backward as early as possible

1F1B Memory Usage

Time

• • •

Where We Are

- Deep Learning as Dataflow Graphs
- Auto-differentiation Libraries
 - Symbolic vs. Imperative
 - Static vs. Dynamic
- DL Parallelism
 - Inter-op parallelism
 - Intra-op parallelism

Recap: Intra-op and Inter-op

Strategy 1: Inter-operator Parallelism

Strategy 2: Intra-operator Parallelism

This section:

How to parallelize an **operator** ? How to parallelize a **graph** ?

Element-wise operators

for n in range(0, N): for d in range(0, D): C[n,d] = A[n,d] + B[n,d]

> device 1 device 2 device 3 device 4

No dependency on the two for-loops. Can arbitrarily split the for-loops on different devices.

No dependency on the two spatial for-loops. Can arbitrarily split the for-loops on different devices.

> Accumulation on this reduction loop. Have to accumulate partial results if we split this forloop

e 4 replicated

$$\begin{bmatrix} C_1 \\ C_2 \\ C_3 \\ C_4 \end{bmatrix} = \begin{bmatrix} A_1 \\ A_2 \\ A_3 \\ A_4 \end{bmatrix} \times B$$

No dependency on the two spatial for-loops. Can arbitrarily split the for-loops on different devices.

> Accumulation on this reduction loop. Have to accumulate partial results if we split this for-loop

e 4 replicate d

$$= \begin{bmatrix} A_1 & A_2 & A_3 & A_4 \end{bmatrix} \begin{bmatrix} B_1 \\ B_2 \\ B_3 \\ B_4 \end{bmatrix} = A_1 B_1 + A_2 B_2 + A_3 B_3 + A_4 B_4$$

2D Convolution

Simple case: Parallelize loop n, co, ci, then the parallelization strategies are almost the same as matmul's. **Complicated case**: Parallelize loop h and w

Simple spatial loops. Can be arbitrarily split.

Stencil computation loops. Splitting these requires careful boundary handling.

- Reduction loop. Need to accumulate partial results.
- Reduction loops. But usually too small (<= 5) for parallelization.

Data Parallelism as A Case of Intra-op Parallelism

Re-partition Communication Cost Different operators' parallelization strategies require different partition format of the same tensor

• • •

Re-partition Communication Cost

Different operators' parallelization strategies require different partition format of the same tensor

Column-partitioned

Parallelize All Operators in a Graph

Problem

Minimize Node costs (computation + communication) + Edge costs (re-partition communication)

Solution

Manual design Randomized search Dynamic programming Integer linear programming

Important Projects

- Model-specific Intra-op Parallel Strategies AlexNet _ **Megatron-LM** -
 - GShard MoE
- Systems for Intra-op Parallelism ZeRO _
 - Mesh-Tensorflow _
 - GSPMD
 - Tofu

_

_

FlexFlow

AlexNet

Result: increase top-1 accuracy by 1.7%

Assign a group convolution layer to 2 GPUs

Megaton-LM

Result: a large language model with 8.3B parameters that outperforms SOTA results

Figure 3 from the paper: How to partition the MLP in the transformer.

(a) MLP

Illustrated with the notations in this tutorial

all-reduce during forward

Intra-operator Parallelism Summary

•

parallelism communication cost . Intra-op and inter-op can be combined

We can parallelize a single operator by exploiting its internal

. To do this for a whole computational graph, we need to choose strategies for all nodes in the graph to minimize the

Advanced Topic: Auto-parallelization

Auto-parallelization: Problem

strategy

32

max Performance(Model, Cluster) s.t. strategy \in Inter-op \cup Intra-op

Combine Intra-op Parallelism and Inter-op Parallelism

Inter-op Parallelism

The Search Space is Huge

#ops in a real model (nodes to color)

#op types (type of nodes)

100 - 10K

#devices on a cluster (available colors)

80 - 200+ 10s - 1000s

One Inefficient Way: Search (by Google)

Tasks	Single-CPU	Single-GPU	#GPUs	Scotch	MinCut	Expert	RL-based	Speedup
RNNLM (batch 64)	6.89	1.57	2 4	13.43 11.52	11.94 10.44	3.81 4.46	1.57 1.57	$0.0\% \\ 0.0\%$
NMT (batch 64)	10.72	OOM	2 4	14.19 11.23	11.54 11.78	4.99 4.73	4.04 3.92	23.5% 20.6%
Inception-V3 (batch 32)	26.21	4.60	2 4	25.24 23.41	22.88 24.52	11.22 10.65	4.60 3.85	0.0% 19.0%

High-level Idea to avoid exhausted search

How GPT-3/4 Training solves this: Massively Parallel

Problems We haven't covered in ML Systems

- Graph optimization and compilation
- Machine learning for systems
- GPU Architectures
- TinyML: ML on edge devices
- Federated learning
- Transformer-specific optimizations
- ML/LLM Serving
 - Continuous batching
 - Paged attention
 - Speculative decoding

My Upcoming Teaching Schedule

- Spring 24
 - DSC 291: ML Systems
- Fall 24
 - Chill
- Winter 25
- Spring 25
 - DSC 204A (This course again)

CSE/DSC 234: ML Systems (DSC 291 will be lifted to this one)

Thank you! (remember to submit course eval for your own/my/TA's/benefits!)