
Where We Are

Foundations of Data Systems

Cloud

Machine Learning Systems

Big Data

1980 - 2000

2000 - 2016

2010 - Now

2012 - Now

Logistics

• Exam date and location:

• Friday, March 22, 8 - 11 am, PT, PCYNH 122

• Exam Review: next Tuesday

• If you have scheduling conflicts

• Reach out to instructor team asap to coordinate

• In-person vs. online

• In-person is easier

• In-person is fairer

• We were advised against online by senior faculty

ML System history

• ML Systems evolve as more and more ML components

(models/optimization algorithms) are unified

Ad-hoc: diverse model family,

optimization algos, and data

Opt algo: iterative-convergent

Model family: neural nets

Model:

CNNs/transformers/GNNs

LLMs: transformer

decoders

Today:
ML Parallelism,

and transformers

x MSErelu matmul

w2

matmul

w1 Device 1

Device 2

x MSErelu matmul

w2

matmul

w1

Inter-op parallelism

x MSErelu matmul

w2

matmul

w1

Intra-op parallelism

Inter-operator

Parallelism

Intra-operator

Parallelism

Communication Less More

Device Idle Time More Less

Trade-off

Inter-op and Intra-op Parallelism: Characteristics

Where We Are

• Deep Learning as Dataflow Graphs

• Auto-differentiation Libraries

• Symbolic vs. Imperative

• Static vs. Dynamic

• DL Parallelism

• Inter-op parallelism

• Intra-op parallelism

Computational Graph (Neural Networks) → Stages

Computational Graph

Device 1 Device 2 Device 3 Device 4

Stage

Devices (e.g., GPUs)

Timeline: Visualization of Inter-Operator Parallelism

● Gray area () indicates devices being idle (a.k.a. Pipeline bubbles).

● Only 1 device activated at a time.

● Pipeline bubble percentage = bubble_area / total_area

= (D - 1) / D, assuming D devices.

Device 4

Device 3

Device 2

Device 1

Time

Pipeline Bubbles

Reduce Pipeline Bubbles via Pipelining Inputs

St
a

g
e

 1

St
a

g
e

 2

St
a

g
e

 3

St
a

g
e

 4

In
p

u
t
a

In
p

u
t
a

In
p

u
t
b

a

Device 4

a

Device 3

Device 2

Device 1

Time

b

a

b

c

a

b

c

d

b

c

c

d

d

d

Pipeline bubbles percentage

= (D - 1) / (D - 1 + N)

with D devices and N inputs.

In
p

u
t
b

In
p

u
t
c

In
p

u
t
a

In
p

u
t
c

In
p

u
t
d

In
p

u
t
a

In
p

u
t
b

Used in inference.

Training: Forward & Backward Dependency

St
a

g
e

 1

St
a

g
e

 2

St
a

g
e

 3

St
a

g
e

 4

In
p

u
t

Loss

Device 4

Device 3

Device 2

Device 1

Time

a

a

a

a

…

a

a

a

a

b

b

b

b

U
p

d
a

te

Forward Backward Forward

10

● Synchronous Pipeline Parallel Algorithms

○ GPipe

○ 1F1B

○ Interleaved 1F1B

○ TeraPipe

○ Chimera

● Asynchronous Pipeline Parallel Algorithms

○ AMPNet

○ Pipedream/Pipedream-2BW

How to Reduce Pipeline Bubbles for Training?

11

● Synchronous Pipeline Parallel Algorithms

○ GPipe

○ 1F1B

○ Interleaved 1F1B

○ TeraPipe

○ Chimera

● Asynchronous Pipeline Parallel Algorithms

○ AMPNet

○ Pipedream/Pipedream-2BW

How to Reduce Pipeline Bubbles for Training?

GPipe

Idea: Partition the input batch into multiple “micro-batches”. Pipeline the micro-batches.

Accumulate the gradients of the micro-batches:

Device 4

Device 3

Device 2

Device 1

Time

0

0

1

1

2

2

3

3 4 5

4 5

0

0

1

1

2

2

3

3 4 5

4 5

Forward (for input batch a)

3 2 1 05 4

3 2 1 05 4

3 2 1 05 4

3 2 1 05 4

Backward (a)

U
p

d
a

te

0

0

1

…

Forward (b)

Pipeline bubbles percentage = (D - 1) / (D - 1 + N)

with D devices and N micro-batches.

Example: Slice each input batch into 6 micro-batches:

GPipe: Memory Usage

Device 4

Device 3

Device 2

Device 1

Time

0

0

1

1

2

2

3

3

3 2 1 0

U
p

d
a

te

0

0

1

4 5

4 5

5 4

…

0

0

1

1

2

2

3

3 4 5

4 5 3 2 1 05 4

3 2 1 05 4

3 2 1 05 4

Forward (a) Backward (a) Forward (b)

Per-Device

Memory

Usage

Model

parameters

Intermediate

activation

= Parameters + Activation × #Micro-Batches

Device 4

Device 3

Device 2

Device 1

Time

0

0

1

1

2

2

3

3

3210

U
p

d
a

te

0

0

1

4 5

4 5

54

…

0

0

1

1

2

2

3

3 4 5

4 53210 54

3210 54

3210 54

Device 4

Device 3

Device 2

Device 1 0

0

1

1

2

2

3

3

3 2 1 0

U
p

d
a

te

0

0

1

4 5

4 5

5 4

…

0

0

1

1

2

2

3

3 4 5

4 5 3 2 1 05 4

3 2 1 05 4

3 2 1 05 4

Forward (for input batch a) Backward (a) Forward (b)

GPipe Schedule:

1F1B (1 Forward 1 Backward) Schedule:

Perform backward as early as possible

Same Latency

1F1B Memory Usage

Device 4

Device 3

Device 2

Device 1

Time

0

0

1

1

2

2

3

3

3210

U
p

d
a

te

0

0

1

4 5

4 5

54

…

0

0

1

1

2

2

3

3 4 5

4 53210 54

3210 54

3210 54

Maximum

per-device

memory

usage

= Parameters + Activation × #Micro-Batches #Devices

Where We Are

• Deep Learning as Dataflow Graphs

• Auto-differentiation Libraries

• Symbolic vs. Imperative

• Static vs. Dynamic

• DL Parallelism

• Inter-op parallelism

• Intra-op parallelism

Recap: Intra-op and Inter-op

x subrelu matmul

w2

matmul

w1

Strategy 1: Inter-operator Parallelism

x subrelu matmul

w2

matmul

w1

Strategy 2: Intra-operator Parallelism

This section:
How to parallelize an operator ?

How to parallelize a graph ?

Parallelize One Operator

for n in range(0, N):

for d in range(0, D):

C[n,d] = A[n,d] + B[n,d]

No dependency on the two for-loops.

Can arbitrarily split the for-loops on different devices.

Element-wise operators

= +C A Bn

d

Parallelize loop n

= +C A Bn

d

Parallelize both loop n and loop d a lot of

other

variants

…

device 1 device 2 device 3 device 4

for i in range(0, N):

for j in range(0, M):

for k in range(0, K):

C[i,j] = C[i,j] + A[i,k] x B[k,j]

Parallelize One Operator

No dependency on the two spatial for-loops.

Can arbitrarily split the for-loops on different devices.

Accumulation on this reduction loop.

Have to accumulate partial results if we split this for-

loop

Matrix multiplication

= xC A Bi

j

Parallelize loop i

device 1 device 2 device 3 device 4 replicated

for i in range(0, N):

for j in range(0, M):

for k in range(0, K):

C[i,j] = C[i,j] + A[i,k] x B[k,j]

Parallelize One Operator

No dependency on the two spatial for-loops.

Can arbitrarily split the for-loops on different devices.

Accumulation on this reduction loop.

Have to accumulate partial results if we split this

for-loop

Matrix multiplication

device 1 device 2 device 3 device 4 replicate

d

k

k

Parallelize loop k

(got by all-reduce)

= xC A B

for i in range(0, N):

for j in range(0, M):

for k in range(0, K):

C[i,j] = C[i,j] + A[i,k] x B[k,j]

Parallelize One Operator

No dependency on the two spatial for-loops.

Can arbitrarily split the for-loops on different devices.

Accumulation on this reduction loop.

Have to accumulate partial results if we split this

for-loop

a lot of

other variants

…

Matrix multiplication

device 1 device 2 device 3 device 4

= xC Ai

j

Parallelize loop i and j

A: partially tiled

Device 1 and 2 hold a replicated tile

Device 3 and 4 hold a replicated tile

B = xAi

j

Parallelize loop i and k

C B

C: got by all-reduce

for n in range(0, N):

for co in range(0, CO):

for h in range(0, H):

for w in range(0, W):

for ci in range(0, CI):

for kh in range(0, KH):

for kw in range(0, KW):

C[n,co,h,w] += A[n,co,h+kh,w+kw] x B[kh,kw,co,ci]

Parallelize One Operator

2D Convolution

Simple case: Parallelize loop n, co, ci, then the parallelization strategies are almost the same as matmul’s.

Complicated case: Parallelize loop h and w

Simple spatial loops. Can be arbitrarily split.

Reduction loop. Need to accumulate partial

results.

Stencil computation loops. Splitting these requires careful

boundary handling.

Reduction loops. But usually too small (<= 5) for

parallelization.

Data Parallelism as A Case of Intra-op Parallelism

matmul (c)

b

a

Matmul Parallelization Type 1
communication cost = 0

matmul (c)

b

a

Matmul Parallelization Type 2
communication cost = all-reduce(c)

Replicated Column-partitionedRow-partitioned

x MSE

y

relu matmul

w2

matmul

w1

Forward Pass
Two “Type 1” matmuls: no communication

new_w2new_w1

matmul

matmul

MSE’

matmul

relu’

Backward Pass
One “Type 1” matmul: no communication

Two “Type 2” matmuls: require all-reduce

x

w1 w2

matmul matmulrelu

matmul relu matmul

w2

relu

Do not need re-

partition

matmul

w2

relu

…

Need re-partition

by all-gather

Replicated Column-partitionedRow-partitioned

Different operators’ parallelization strategies require different partition format of the same tensor

Re-partition Communication Cost

Re-partition Communication Cost

all-to-all

all-to-all

Different operators’ parallelization strategies require different partition format of the same tensor

Row-partitioned

Replicated

Column-partitioned

Parallelize All Operators in a Graph

Minimize Node costs (computation + communication) + Edge costs (re-partition communication)

Pick a parallel strategy

of each operator

x relu matmul

w2

matmul

w1

Problem

Manual design

Randomized search

Dynamic programming

Integer linear programming

Solution

Important Projects

• Model-specific Intra-op Parallel Strategies

- AlexNet

- Megatron-LM

- GShard MoE

• Systems for Intra-op Parallelism

- ZeRO

- Mesh-Tensorflow

- GSPMD

- Tofu

- FlexFlow

AlexNet

Assign a group convolution layer to 2 GPUs

Result: increase top-1 accuracy by 1.7%

Megaton-LM

Result: a large language model with 8.3B parameters that outperforms SOTA results

Figure 3 from the paper：

How to partition the MLP in the transformer.

x gelu matmul

w2

matmul

w1

Replicated
Column-

partitioned
Row-partitioned

dropout

Illustrated with the notations in this tutorial

all-reduce during forward

all-reduce during backward

Intra-operator Parallelism Summary

• We can parallelize a single operator by exploiting its internal

parallelism

• To do this for a whole computational graph, we need to

choose strategies for all nodes in the graph to minimize the

communication cost

• Intra-op and inter-op can be combined

Advanced Topic: Auto-parallelization

node node

node Node

A B DC

…

A B DC

A B DC

A B DC

x MSE

y

relu matmul

w2

matmul

w1

matmul

matmul

MSE’

matmul

relu’

sub sub

Model Cluster

Strategy

31

Auto-parallelization: Problem

32

Combine Intra-op Parallelism and Inter-op Parallelism

Computational Graph

Stage

Intra-op Parallelism

Inter-op Parallelism

Device

Mesh

100 - 10K

#ops in a real model

(nodes to color)

#devices on a cluster

(available colors)

80 - 200+

#op types

(type of nodes)

10s - 1000s

The Search Space is Huge

3
5

One Inefficient Way: Search (by Google)

x MSErelu matmul

w2

matmul

w1

3
6

Device 1

Device 2

x MSErelu matmul

w2

matmul

w1

Inter-op parallelism

x MSErelu matmul

w2

matmul

w1

Intra-op parallelism

node node

node node

Fast connections

Slow connections

High-level Idea to avoid exhausted search

How GPT-3/4 Training solves this: Massively Parallel

Problems We haven’t covered in ML Systems

• Graph optimization and compilation

• Machine learning for systems

• GPU Architectures

• TinyML: ML on edge devices

• Federated learning

• Transformer-specific optimizations

• ML/LLM Serving

• Continuous batching

• Paged attention

• Speculative decoding

My Upcoming Teaching Schedule

• Spring 24

• DSC 291: ML Systems

• Fall 24

• Chill

• Winter 25

• CSE/DSC 234: ML Systems (DSC 291 will be lifted to this one)

• Spring 25

• DSC 204A (This course again)

Thank you!

(remember to submit course eval for your

own/my/TA’s/benefits!)

	Slide 1: Where We Are
	Slide 2: Logistics
	Slide 3: ML System history
	Slide 4: Inter-op and Intra-op Parallelism: Characteristics
	Slide 5: Where We Are
	Slide 6: Computational Graph (Neural Networks) → Stages
	Slide 7: Timeline: Visualization of Inter-Operator Parallelism
	Slide 8: Reduce Pipeline Bubbles via Pipelining Inputs
	Slide 9: Training: Forward & Backward Dependency
	Slide 10: How to Reduce Pipeline Bubbles for Training?
	Slide 11: How to Reduce Pipeline Bubbles for Training?
	Slide 12: GPipe
	Slide 13: GPipe: Memory Usage
	Slide 14: GPipe Schedule:
	Slide 15: 1F1B Memory Usage
	Slide 16: Where We Are
	Slide 17: Recap: Intra-op and Inter-op
	Slide 18: Parallelize One Operator
	Slide 19: Parallelize One Operator
	Slide 20: Parallelize One Operator
	Slide 21: Parallelize One Operator
	Slide 22: Parallelize One Operator
	Slide 23: Data Parallelism as A Case of Intra-op Parallelism
	Slide 24: Re-partition Communication Cost
	Slide 25: Re-partition Communication Cost
	Slide 26: Parallelize All Operators in a Graph
	Slide 27: Important Projects
	Slide 28: AlexNet
	Slide 29: Megaton-LM
	Slide 30: Intra-operator Parallelism Summary
	Slide 31: Advanced Topic: Auto-parallelization
	Slide 32: Auto-parallelization: Problem
	Slide 33: Combine Intra-op Parallelism and Inter-op Parallelism
	Slide 34: The Search Space is Huge
	Slide 35: One Inefficient Way: Search (by Google)
	Slide 36: High-level Idea to avoid exhausted search
	Slide 37: How GPT-3/4 Training solves this: Massively Parallel
	Slide 38: Problems We haven’t covered in ML Systems
	Slide 39: My Upcoming Teaching Schedule
	Slide 40: Thank you! (remember to submit course eval for your own/my/TA’s/benefits!)

