
Where We Are

Foundations of Data Systems

Cloud

Machine Learning Systems

Big Data

1980 - 2000

2000 - 2016

2010 - Now

2012 - Now



Logistics

• Exam date and location: 

• Friday, March 22, 8 - 11 am, PT, PCYNH 122

• Exam Review: next Tuesday

• If you have scheduling conflicts

• Reach out to instructor team asap to coordinate 

• In-person vs. online

• In-person is easier

• In-person is fairer

• We were advised against online by senior faculty



ML System history

• ML Systems evolve as more and more ML components 

(models/optimization algorithms) are unified

Ad-hoc: diverse model family, 

optimization algos, and data 

Opt algo: iterative-convergent

Model family: neural nets

Model: 

CNNs/transformers/GNNs

LLMs: transformer 

decoders

Today:
ML Parallelism, 

and transformers
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Where We Are

• Deep Learning as Dataflow Graphs

• Auto-differentiation Libraries

• Symbolic vs. Imperative

• Static vs. Dynamic

• DL Parallelism

• Inter-op parallelism

• Intra-op parallelism



Computational Graph (Neural Networks) → Stages

Computational Graph

Device 1 Device 2 Device 3 Device 4

Stage

Devices (e.g., GPUs)



Timeline: Visualization of Inter-Operator Parallelism

● Gray area (         ) indicates devices being idle (a.k.a. Pipeline bubbles).

● Only 1 device activated at a time.

● Pipeline bubble percentage = bubble_area / total_area

= (D - 1) / D, assuming D devices.
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Reduce Pipeline Bubbles via Pipelining Inputs

St
a

g
e

 1

St
a

g
e

 2

St
a

g
e

 3

St
a

g
e

 4

In
p

u
t 
a

In
p

u
t 
a

In
p

u
t 
b

a

Device 4

a

Device 3

Device 2

Device 1

Time

b

a

b

c

a

b

c

d

b

c

c

d

d

d

Pipeline bubbles percentage

= (D - 1) / (D - 1 + N)

with D devices and N inputs.
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Training: Forward & Backward Dependency
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10

● Synchronous Pipeline Parallel Algorithms

○ GPipe

○ 1F1B 

○ Interleaved 1F1B

○ TeraPipe

○ Chimera

● Asynchronous Pipeline Parallel Algorithms

○ AMPNet

○ Pipedream/Pipedream-2BW

How to Reduce Pipeline Bubbles for Training?
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GPipe

Idea: Partition the input batch into multiple “micro-batches”. Pipeline the micro-batches. 

Accumulate the gradients of the micro-batches:
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with D devices and N micro-batches.

Example: Slice each input batch into 6 micro-batches:



GPipe: Memory Usage
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1F1B Memory Usage
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Where We Are

• Deep Learning as Dataflow Graphs

• Auto-differentiation Libraries

• Symbolic vs. Imperative

• Static vs. Dynamic

• DL Parallelism

• Inter-op parallelism

• Intra-op parallelism



Recap: Intra-op and Inter-op
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Strategy 1: Inter-operator Parallelism
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Strategy 2: Intra-operator Parallelism

This section:
How to parallelize an operator ?

How to parallelize a graph ?



Parallelize One Operator

for n in range(0, N):

for d in range(0, D):

C[n,d] = A[n,d] + B[n,d]  

No dependency on the two for-loops.

Can arbitrarily split the for-loops on different devices.

Element-wise operators

= +C A Bn

d

Parallelize loop n 

= +C A Bn

d

Parallelize both loop n and loop d a lot of

other 

variants

…

device 1 device 2 device 3 device 4



for i in range(0, N):

for j in range(0, M):

for k in range(0, K):

C[i,j] = C[i,j] + A[i,k] x B[k,j]  

Parallelize One Operator

No dependency on the two spatial for-loops.

Can arbitrarily split the for-loops on different devices.

Accumulation on this reduction loop.

Have to accumulate partial results if we split this for-

loop

Matrix multiplication

= xC A Bi

j

Parallelize loop i 

device 1 device 2 device 3 device 4 replicated



for i in range(0, N):

for j in range(0, M):

for k in range(0, K):

C[i,j] = C[i,j] + A[i,k] x B[k,j]  

Parallelize One Operator

No dependency on the two spatial for-loops.

Can arbitrarily split the for-loops on different devices.

Accumulation on this reduction loop.

Have to accumulate partial results if we split this 

for-loop

Matrix multiplication

device 1 device 2 device 3 device 4 replicate

d

k

k

Parallelize loop k 

(got by all-reduce)

= xC A B



for i in range(0, N):

for j in range(0, M):

for k in range(0, K):

C[i,j] = C[i,j] + A[i,k] x B[k,j]  

Parallelize One Operator

No dependency on the two spatial for-loops.

Can arbitrarily split the for-loops on different devices.

Accumulation on this reduction loop.

Have to accumulate partial results if we split this 

for-loop

a lot of

other variants

…

Matrix multiplication

device 1 device 2 device 3 device 4

= xC Ai

j

Parallelize loop i and j 

A: partially tiled

Device 1 and 2 hold a replicated tile

Device 3 and 4 hold a replicated tile

B = xAi

j

Parallelize loop i and k 

C B

C: got by all-reduce



for n in range(0, N):

for co in range(0, CO):

for h in range(0, H):

for w in range(0, W):

for ci in range(0, CI):

for kh in range(0, KH):

for kw in range(0, KW):

C[n,co,h,w] += A[n,co,h+kh,w+kw] x B[kh,kw,co,ci]  

Parallelize One Operator

2D Convolution

Simple case: Parallelize loop n, co, ci, then the parallelization strategies are almost the same as matmul’s.

Complicated case: Parallelize loop h and w

Simple spatial loops. Can be arbitrarily split.

Reduction loop. Need to accumulate partial 

results.

Stencil computation loops. Splitting these requires careful 

boundary handling.

Reduction loops. But usually too small (<= 5) for 

parallelization.



Data Parallelism as A Case of Intra-op Parallelism
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Backward Pass
One “Type 1” matmul: no communication

Two “Type 2” matmuls: require all-reduce
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partition
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Need re-partition

by all-gather

Replicated Column-partitionedRow-partitioned

Different operators’ parallelization strategies require different partition format of the same tensor

Re-partition Communication Cost



Re-partition Communication Cost

all-to-all

all-to-all

Different operators’ parallelization strategies require different partition format of the same tensor

Row-partitioned

Replicated

Column-partitioned



Parallelize All Operators in a Graph

Minimize Node costs (computation + communication) + Edge costs (re-partition communication)

Pick a parallel strategy

of each operator

x relu matmul

w2

matmul

w1

Problem

Manual design

Randomized search

Dynamic programming

Integer linear programming

Solution



Important Projects

• Model-specific Intra-op Parallel Strategies

- AlexNet

- Megatron-LM

- GShard MoE

• Systems for Intra-op Parallelism

- ZeRO

- Mesh-Tensorflow

- GSPMD

- Tofu

- FlexFlow



AlexNet

Assign a group convolution layer to 2 GPUs

Result: increase top-1 accuracy by 1.7%



Megaton-LM

Result: a large language model with 8.3B parameters that outperforms SOTA results

Figure 3 from the paper：

How to partition the MLP in the transformer.

x gelu matmul
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matmul
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Replicated
Column-

partitioned
Row-partitioned

dropout

Illustrated with the notations in this tutorial

all-reduce during forward

all-reduce during backward



Intra-operator Parallelism Summary

• We can parallelize a single operator by exploiting its internal 

parallelism

• To do this for a whole computational graph, we need to 

choose strategies for all nodes in the graph to minimize the 

communication cost

• Intra-op and inter-op can be combined



Advanced Topic: Auto-parallelization

node node

node Node
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Model Cluster

Strategy

31



Auto-parallelization: Problem

32



Combine Intra-op Parallelism and Inter-op Parallelism

Computational Graph

Stage

Intra-op Parallelism

Inter-op Parallelism

Device

Mesh



100 - 10K

#ops in a real model

(nodes to color)

#devices on a cluster

(available colors)

80 - 200+

#op types

(type of nodes)

10s - 1000s

The Search Space is Huge



3
5

One Inefficient Way: Search (by Google)
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Inter-op parallelism
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Intra-op parallelism

node node

node node

Fast connections

Slow connections

High-level Idea to avoid exhausted search



How GPT-3/4 Training solves this: Massively Parallel



Problems We haven’t covered in ML Systems

• Graph optimization and compilation

• Machine learning for systems

• GPU Architectures

• TinyML: ML on edge devices

• Federated learning

• Transformer-specific optimizations

• ML/LLM Serving

• Continuous batching 

• Paged attention

• Speculative decoding



My Upcoming Teaching Schedule

• Spring 24

• DSC 291: ML Systems

• Fall 24

• Chill

• Winter 25

• CSE/DSC 234: ML Systems (DSC 291 will be lifted to this one)

• Spring 25

• DSC 204A (This course again)



Thank you!

(remember to submit course eval for your 

own/my/TA’s/benefits!)
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