https://hao-ai-lab.github.10/dsc204a-w24/

DSC 204A: Scalable Data Systems
Winter 2024

Machine Learning Systems
Big Data

Cloud

Foundations of Data Systems

Feedback and Logistics

Request: Upload slide deck before classe

® Yes —we're catching up

Book: Design data-intensive applications

® Been In student folder

Practice Qs (review next class)

Q1: How much space do | need to store GPT-3 ¢
Q2: What do exponent and fraction control in float point

representatione
Q3: What is the difference between BF16 and FP16%¢

Q1: How much space do | need to store GPT-3 ¢

* What is GPT-3
* An ML model with trained weights

* — g software with some built-in data

4 <4

—_— c%: -+ U

G PT' 3 - PY g
Parameters:

A few KBs? How large is this?

Q1: How much space do | need to store GPT-3 ¢

Data type? # data
- Bf16: 16-bit
g | 1/35B
Parameters: 2 byTeS X] 75B

How large is this?

= 350 B bytes
= 350 GB

Practice Qs (review next class)

Q1: How much space do | need to store GPT-3 ¢
Q2: What do exponent and fraction control in float point

representation?
Q3: What is the difference between BF16 and FP16%¢

Fractional Binary Numbers

2:
24‘-1
4
e @ @ 2
— 1
bf bf-j eee bz bj_' bﬂlb-j_ b-2 b_3 o0 b'j
12 — I
1’(’4 e 8 @
1/8
m Representation 2]

" Bits to right of “binary point” represent fractional powers of 2
® Represents rational number:
P 3 by x 2k

Bryant and O'Hallaron, Computer Systems: A Programmer’'s Perspective, Third Edition

Let’s design a fix-point FP6

Sign Integer Fraction
0 0o 1 o 1 0
Bit index: 5 4 3 2 1 0
+ 2 1 1/2 1/4 1/8
1+1/4=1.25

Can represent numbers from -3.875 (111111)t0 3.875(011111).

An Example

0.62510 —
0.62510 — 01012

0.625,,=0.101,=1.01-2"

10

An Example (Cont.)

0.625,,=0.101,=1.01-2"

1)°- 20140 741740 5)

sign exponent fraction
(1 bit) (2 bits) (3 bits)
0 0 1 0 1

Bit index: 5 4 3 2 1

13

Digital Representation of Data

* Foat:
* Standard |IEEE format for single (aka binary32):

5|gn exponent (8 bItS) fraction (23 bits)
nmlllllmmmmnmnmmmnmmmmmn
31 30 23 22 (bit index)

(_1)sz'gn « 9erponent—127 (1 Zb23—i2_z

(—1)? x 21247120 x (141-272%) = (1/8) x (1 + (1/4)) = 0.15625

14

Q2: What do exponent and fraction control?

®* Exponent controls: range, offset

®* Fraction conftrols: actual value, precision

S|gn exponent (8 blts) fraction (23 bits)

31 30 23 22 (bit index)

Q2: What do exponent and fraction control?

Any problem about floating point (compared to fixed point)e
* More complex (to both human and computers)

®* [nconsistent precision

Q3: What is the difference between BF16 and FP 1672

IEEE half-precision 16-bit float
sign exponent (5 bit) fraction (10 bit)
| I |
o(o0|1]1]| 0] 0 HONEEEONEGEEONEONEGRNGRNOREON T L0oatlb

15 14 10 9 0
Less exponent -> smaller range -> easier to overflow
More fraction -> more precise

bfloat16
sign exponent (8 bit) fraction (7 bit)
| I |
o(o |11]1[1]1] 0] 0 ECEEIEINIENENGN DT Loatl6b

15 14 /7 6 0
more exponent -> larger range -> harder o overtlow

less fraction -> less precise

Why BF16 is better in ML/AIZ

1. ML/AlIs error-tolerant (why¢ what is not error-tolerante). 7-bit
precision Is sufficient

2. Deep leaning is easy to overtlow

3. Conversion between fp32 and bfl1é Is less effortless

IEEE half-precision 16-bit float
sign exponent (5 bit) fraction (10 bit)
| - |
o0]| 11| 0| 0 HONETEIISCEEONEIENREGRNOEEGE Tloatlo

15 14 10 9 0

IEEE 754 single-precision 32-bit float

sign exponent (8 bit) fraction (23 bit) float32
| . l
0 0 1 1 1 1 1 0 0 0 1 0

31 30 23 22 0

bfloat16
sign exponent (8 bit) fraction (7 bit)
| T |
oo |1 |1[1|1]1] 0] o0 EENEEEEECENONEGEEOE Dfloatl6

15 14 7 6 0

18

Examples In the final exam: FP8

1 4-bits

frac

3-bits

Digital Representation of Data

®* Representing Character (char) and String:

® [etfters, numerals, punctuations, etc.
* A string s typically just a variable-sized

array of char

® C charis 1B; Java charis 2B; Python does not have a char

type (use str or bytes)

* American Standard Code for Informati

for encoding characters; initially 7-bit;

on Interchange (ASCII)
ater extended to 8-bit

* Examples: ‘A’ is 61, 'a’1s 97, '@’ is 64, ‘'I" is 33, etc.

* Unicode UTF-8 i1s now common, subsumes ASCII; 4B for ~1.1
million “code points” incl. many other language scripts, math

symbols, &, etc.

19

20

Digital Representation of Data

* All digital objects are collections of
iIntegers, floats, and characters)

basic data types (bytes,

* SQL dates/timestamp: string (w/ known format)

* ML feature vector: array of floats

(w/ known length)

* Neural network weights: set of multi-dimensional arrays

(Mmatrices or tensors) of floats (w/
* Graph: an abstfract data type (A

known dimensions)

DT) with sef of vertices

(say, infegers) and set of edges (pair of integers)
* Program in PL, SQL query: string (w/ grammar)
* Other data structures or digital objectse

21

Foundation of Data Systems: where we are

* Computer Organization

®* Representation of Dato
® Processors, memory, stforages
* Operating System Basics (hext week)

a You

| cannot believe Artificial general intelligence is just a few Python files and 350GB of S'l'r

GPT Again e |

[0, 500, 32768, 1008, 922, ...] Lisf[infegers]

1

Disk

4 <4

D + [==
PY ‘

P fers:
A few KBs 350 GB
!

[0,25116,1234, 5984, 6, ...]

Q ChatGPT

It's understandable to be amazed by the progress in artificial intelligence, especially

GPT

List[integers]

when considering something as advanced as Artificial General Intelligence (AGI). S'I'r
However, the reality is a bit more complex than just a few Python files and a large
dataset.

23

Disk

Arm

Actuator

SCSI
connector

Spindle

Platters

Electronics
(including a
processor

and memory!)

Image courtesy of Seagate Technology

Disk Geometry

® Disks consist of platters, each with two surfaces.
®* Fach surface consists of concentric rings called fracks.
®* Each track consists of sectors separated by gaps.

Tracks
Surface
Track k Gaps
/ N7

Sectors

24

25

Disk Capacity

* Capacity: maximum number of bits that can be stored.
®* Deftermined by these technology factors:
®* Recording density (bits/in): number of bits that can be squeezed
INfo a 1 inch segment of a frack.
* Track density (fracks/in): number of tracks that can be squeezed
INfo a 1 inch radial segment.
* Area density (bits/in?): product of
recording and track density.

Disk Operation (Single-Platter View)

The disk surface
spins at a fixed
rotational rate.
E.g. 7200 RPM

The read/write head

is attached to the end

of the arm and flies over
the disk surface on

a thin cushion of air.

By moving radially, the arm can
position the read/write head
over any track.

27

Disk Operation (Multi-Platter View)

()

-l
_
_

Read/write heads
move in unison
from cylinder to
cylinder

Arm

Disk Access — Service Time Components

N
W

#

After BLUE read Seek for RED

]

Data transfer Se

28

ek

%

$

2
<)y

Rotational latency After RED read

]

Rotational Data transfer
latency

29

Disk Access Time

®* Average time to

access some target sector approximated by:

Toccess — Tovg seek T Tovg rotation T Tovg transfer

* Seek fime (Tavg seek)

* Time to position heads over cylinder containing target sector.

* Typical Tavgseek IS 3—2 Ms

* Rotational latency (Tqvg rotation)

* Time waiting for first bit of target sector to pass under r/w head.

® Tavgrotation = 1/2 X 1/RPMs x 60 sec/1 min

* Typical rotational rate = 7,200 RPMs

¢ TrO quer Time (Tgvg TrOnsfer)

° Time toread:

‘he bifs in the tfarget sector.

avg transfer =] /

/

RPM x 1/(avg # sectors/track) x 60 secs/1 min

t

time for one rotation (in minutes) fraction of a rotation to be read

30

Disk Access Time Example

e Given:
e Rotational rate = /7,200 RPM

* Average seek time = 9 ms HDD reading speed (7200 RPM):
* Avg # sectors/track = 400 80 —] 60 MB/S

®* Derived:
® Tavgrotation = 1/2 X (60 secs/7200 RPM) x 1000 ms/sec = 4 ms
® Tavg transfer = 60/7200 x 1/400 x 1000 ms/sec = 0.02 ms
® Toccess =9 ms+4ms+0.02ms
* Importfant poinfts:
® Access time dominated by seek time and rotational latency.

* First bif In a sector is the most expensive, the rest are free.

GPT Again

GPT

[0, 500, 32768, 1008, 922, ...]

|
Disk
4 <>
c%: -+ . ’
PY s’
A few KBs qufgg g
|

[0, 25116, 1234, 5984,6, ...]

List[integers]

&

List[integers]

32

Basics of Processors

® Processor: Hardware 10 orchestrate and execute insfructions 1o
manipulate data as specified by a program

* Examples: CPU, GPU, FPGA, TPU, embedded, etc.
* |SA (Instruction Set Architecture):
* The vocabulary of commands of a processor

Program in PL

Comopile/Interpref l

e s

2
L

Program in Assembly Language

Assemble J
Machine code tied to ISA

1

RuUn on processor

50483
BE0483
50483
20483
50483
50483
50483
50483
BE0483
50483
BR483

33

Basics of Processors

Q: How does a processor execute machine codee

* Most common approach: load-store architecture

® Registers: Tiny local memory (“scratch space’™) on proc. info which
INstructions and data are copied

* |SA specifies bit length/format of machine code commands

* |[SA has several commands fo manipulate register contents

INstruction

CPU chip
Register file Register names
Srax : ALU | /\
srbx §
’ addq %rbx, %rax
— T~
IS

. rax += rbx
Bus interface

oo

How Fast Is Processor

® [nstruction / second: number of Instfructions a processor can do

®* Data sclence: We care more about computation on floating

poIiNnt numbers

* FLOPS: number of floating point operations a process can do

intel cpu floating point per seconds? X ,!, Ce)

All Images Shopping Videos News More ~

Generative Al is experimental. Learn more

The floating-point operations per second (FLOPS) of an Intel Core i7
processor can vary depending on the model and clock speed. On average, a
mid-range Intel Core i7 processor can perform around 100-200 GFLOPS
(billion floating-point operations per second). ~

CPUs can execute floating point calculations, similarly to GPUs, but are
typically one or two orders of magnitude slower. For example, a modern GPU
can do up to ~2 Teraflops while an Intel is ~80 Gigaflops. v

Q

Tools

FP64

FP64 Tensor Core

FP32

TF32 Tensor Core

BFLOATI16 Tensor Core

FP16 Tensor Core

FP8 Tensor Core

34 teraFLOPS

67 teraFLOPS

67 teraFLOPS

989 teraFLOPS®

1,979 teraFLOPS?

1,979 teraFLOPS®

3,958 teraFLOPS&?

Problem?@e

100 GFLOPs /s A

1. Assume we use 0.5s to perform 50 FLOPs

2. We need to read 50x2=100 GB in the rest of 0.5s to keep the CPU busy
3. We need the CPU to read at a speed of 1T00GB / 0.5s = 200 GB /s

80 — 160 MB /s

Memory/Storage Hierarchy
“

~100GB/s

~$5/GB
Non-Volatile RAM

~1Bs
~GB/s Flash Storage $200/TB

=
\B Magnetic Hard Disk Drive (HDD) ~1O‘£S
~200MB/s ~$30/TB

~50MB/s ~PBs: ~$10/TB

33

Writing & Reading Memory Instructions

* Write
* Transtfer data from memory to CPU

Mmovq %rax, %rsp
* “Store” operation

* Read
* Transfer data from CPU to memory
Mmovq %Isp, Jerax
* “Load"” operation

39

Abstract Computer Parts and Data

Processor Store: Retrieve

Arithmetic
Control .
Retri _ Unit & Logic
Process
Registers Caches

Dynamic Random

Access Memory
(DRAM)

Bus

Store: Retrieve

Input Output
Devices Devices

Secondary Storage

(e.g., Magnetic hard
disk, Flash SSD, etc.)

Input; Output; Retrieve

Bus Structure Connecting CPU and Memory

* A busisa collection of parallel wires that carry address, data, and control
signals.

® Buses are typically shared by multiple devices.

CPU chip

oo
.
.

System bus Memory bus

Main
memory

—_— T~

Bus interface

oo

Memory Read Transaction (1)

Register file

$rax

10

: ALU

Bus interface

Load operation:movg A, $%$rax

1/0O bridge

/
N

* CPU places address A on the memory bus.

41

/

A

Main memory

A

N
/

0

A

Memory Read Transaction (2)

Register file

$rax

10

: ALU

Bus interface

/1

AN

N

/

Load operation:movg A, $%$rax

1/0 bridge

A

X

N

N

/

Main
memory
0
X A

* Main memory reads A from the memory bus,

retrieves word X, and places it on the bus.

42

Memory Read Transaction (3)

Register file

: ALU

X
i E Main memory
1/O bridge 0
Bus interface < > < > X A

Load operation:movg A, $%$rax

$rax

* CPUreads word x from the bus and coples it Info register $rax.

Memory Write Transaction (1)

Register file

$rax y

10

: ALU

Bus interface

Store operation: movqg %rax, A

1/0O bridge

/
N

/

A

Main memory
0

N
) A

A

* CPU places address A on bus. Main memory reads It and

waits for the corresponding data word to arrive.

44

Memory Write Transaction (2)

Register file

: ALU

y
i E Main memory
1/0 bridge 0

A YN
N / A

Store operation: movqg %rax, A

Srax

. A N
Bus interface \I l/

* CPU places data word y on the bus.

Memory Write Transaction (3)

Register file

: Store operation: movg %rax, A
. ALU
srax y

ﬁ Main memory
1/O bridge 0
Bus interface < > < > v A

* Main memory reads data word y from the bus

and stores It at address A.

47

Basics of Processors

Q: How does a processor execute machine code¢

®* Types of ISA commands to manipulate register contents:

* Memory access: load (copy bytes from a DRAM address 1o
reqgister); store (reverse); put constant

* Arithmetic & logic on data items in registers: add/multiply/etc.;
bitwise ops; compare, etc.; handled by ALU

* Control flow (branch, call, etc.); handled by CU
® Caches: Small local memory to bufter instructions/dato

If interested In more detalls: https://www.youtube.com/watch?v=cNN_ tTXABUA

https://www.youtube.com/watch?v=cNN_tTXABUA

@ You

| cannot believe Artificial general intelligence is just a few Python files and 350GB of
weights

What is GPT doing? 0, 500, 32768, 1008,922, ... List[integers]
|

Disk
P -

& + [@
PY ‘ U
A few KBs Pc';g'geéeBrs:

!

[0, 25116,1234, 59846, ...]

GPT

List[integers]

©) chatGPT
It's understandable to be amazed by the progress in artificial intelligence, especially

when considering something as advanced as Artificial General Intelligence (AGI).
However, the reality is a bit more complex than just a few Python files and a large

dataset.

49

Example

Retrieve;| |Rregisters
-
Caches &F D

Commands Iinterpreted

Process

Bus

/O for Display

ChatGPT

It's understandable to be amazed by the progress in artificial intelligence, especially
when considering something as advanced as Artificial General Intelligence (AGI).

the reality is a bit more complex than just a few Python files and a large

Arithmetic done within Processors

Store: Retrieve

/O far code .

Store: Retrieve

| cannot believe Artificial
weights

50

Foundation of Data Systems: where we are

* Computer Organization

®* Representation of Dato
® Processors, memory, stforages
* Operating System Basics (next week)

	幻灯片 1: DSC 204A: Scalable Data Systems Winter 2024
	幻灯片 2: Feedback and Logistics
	幻灯片 3: Practice Qs (review next class)
	幻灯片 4: Q1: How much space do I need to store GPT-3 ?
	幻灯片 5: Q1: How much space do I need to store GPT-3 ?
	幻灯片 6: Practice Qs (review next class)
	幻灯片 7
	幻灯片 8: Let’s design a fix-point FP6
	幻灯片 9: An Example
	幻灯片 10: An Example (Cont.)
	幻灯片 13: Digital Representation of Data
	幻灯片 14: Q2: What do exponent and fraction control?
	幻灯片 15: Q2: What do exponent and fraction control?
	幻灯片 16: Q3: What is the difference between BF16 and FP16?
	幻灯片 17: Why BF16 is better in ML/AI?
	幻灯片 18: Examples in the final exam: FP8
	幻灯片 19: Digital Representation of Data
	幻灯片 20: Digital Representation of Data
	幻灯片 21: Foundation of Data Systems: where we are
	幻灯片 22: GPT Again
	幻灯片 23: Disk
	幻灯片 24: Disk Geometry
	幻灯片 25: Disk Capacity
	幻灯片 26: Disk Operation (Single-Platter View)
	幻灯片 27: Disk Operation (Multi-Platter View)
	幻灯片 28: Disk Access – Service Time Components
	幻灯片 29: Disk Access Time
	幻灯片 30: Disk Access Time Example
	幻灯片 31: GPT Again
	幻灯片 32: Basics of Processors
	幻灯片 33: Basics of Processors
	幻灯片 34: Instruction
	幻灯片 35: How Fast is Processor
	幻灯片 36: Problem?
	幻灯片 37: Memory/Storage Hierarchy
	幻灯片 38: Writing & Reading Memory Instructions
	幻灯片 39: Abstract Computer Parts and Data
	幻灯片 40: Bus Structure Connecting CPU and Memory
	幻灯片 41: Memory Read Transaction (1)
	幻灯片 42: Memory Read Transaction (2)
	幻灯片 43: Memory Read Transaction (3)
	幻灯片 44: Memory Write Transaction (1)
	幻灯片 45: Memory Write Transaction (2)
	幻灯片 46: Memory Write Transaction (3)
	幻灯片 47: Basics of Processors
	幻灯片 48: What is GPT doing?
	幻灯片 49: Example
	幻灯片 50: Foundation of Data Systems: where we are

