
DSC 204A: Scalable Data Systems

Winter 2024

1

https://hao-ai-lab.github.io/dsc204a-w24/

Foundations of Data Systems

Cloud

Machine Learning Systems

Big Data

Feedback and Logistics

Request: Upload slide deck before class?

• Yes – we’re catching up

Book: Design data-intensive applications

• Been in student folder

Practice Qs (review next class)

Q1: How much space do I need to store GPT-3 ?

Q2: What do exponent and fraction control in float point

representation?

Q3: What is the difference between BF16 and FP16?

Q1: How much space do I need to store GPT-3 ?

• What is GPT-3

• An ML model with trained weights

• = a software with some built-in data

GPT-3 = +

A few KBs?
Parameters:

How large is this?

Q1: How much space do I need to store GPT-3 ?

Parameters:
How large is this?

Data type?
Bf16: 16-bit 175B

data

2 bytes x 175B

= 350 B bytes

= 350 GB

Practice Qs (review next class)

Q1: How much space do I need to store GPT-3 ?

Q2: What do exponent and fraction control in float point

representation?

Q3: What is the difference between BF16 and FP16?

7

8

Let’s design a fix-point FP6

Sign Integer Fraction

+ 2 1 1/2 1/4 1/8

1+1/4= 1.25

Can represent numbers from -3.875 (111111) to 3.875 (011111).

9

An Example

10

An Example (Cont.)

13

• Float:

• Standard IEEE format for single (aka binary32):

Digital Representation of Data

14

Q2: What do exponent and fraction control?

• Exponent controls: range, offset

• Fraction controls: actual value, precision

Q2: What do exponent and fraction control?

Any problem about floating point (compared to fixed point)?

• More complex (to both human and computers)

• Inconsistent precision

Q3: What is the difference between BF16 and FP16?

Less exponent -> smaller range -> easier to overflow

more exponent -> larger range -> harder to overflow

More fraction -> more precise

less fraction -> less precise

Why BF16 is better in ML/AI?

1. ML/AI is error-tolerant (why? what is not error-tolerant?). 7-bit

precision is sufficient

2. Deep learning is easy to overflow

3. Conversion between fp32 and bf16 is less effortless

18

Examples in the final exam: FP8

19

Digital Representation of Data

• Representing Character (char) and String:

• Letters, numerals, punctuations, etc.

• A string is typically just a variable-sized array of char

• C char is 1B; Java char is 2B; Python does not have a char

type (use str or bytes)

• American Standard Code for Information Interchange (ASCII)

for encoding characters; initially 7-bit; later extended to 8-bit

• Examples: ‘A’ is 61, ‘a’ is 97, ‘@’ is 64, ‘!’ is 33, etc.

• Unicode UTF-8 is now common, subsumes ASCII; 4B for ~1.1

million “code points” incl. many other language scripts, math

symbols, , etc. 

20

Digital Representation of Data

• All digital objects are collections of basic data types (bytes,

integers, floats, and characters)

• SQL dates/timestamp: string (w/ known format)

• ML feature vector: array of floats (w/ known length)

• Neural network weights: set of multi-dimensional arrays

(matrices or tensors) of floats (w/ known dimensions)

• Graph: an abstract data type (ADT) with set of vertices

(say, integers) and set of edges (pair of integers)

• Program in PL, SQL query: string (w/ grammar)

• Other data structures or digital objects?

21

Foundation of Data Systems: where we are

• Computer Organization

• Representation of Data

• Processors, memory, storages

• Operating System Basics (next week)

GPT Again

Parameters:
350 GB

GPT = +

A few KBs

Disk

str

[0, 500, 32768, 1008, 922, ….] List[integers]

[0, 25116, 1234, 5984, 6, …] List[integers]

str

23

Disk
SpindleArm

Actuator

Platters

Electronics
(including a
processor
and memory!)SCSI

connector

Image courtesy of Seagate Technology

24

Disk Geometry

• Disks consist of platters, each with two surfaces.

• Each surface consists of concentric rings called tracks.

• Each track consists of sectors separated by gaps.

Spindle

Surface
Tracks

Track k

Sectors

Gaps

25

Disk Capacity

• Capacity: maximum number of bits that can be stored.

• Determined by these technology factors:

• Recording density (bits/in): number of bits that can be squeezed

into a 1 inch segment of a track.

• Track density (tracks/in): number of tracks that can be squeezed

into a 1 inch radial segment.

• Area density (bits/in2): product of

recording and track density.

Tracks

26

Disk Operation (Single-Platter View)

The disk surface
spins at a fixed
rotational rate.
E.g. 7200 RPM

By moving radially, the arm can
position the read/write head
over any track.

The read/write head
is attached to the end
of the arm and flies over
the disk surface on
a thin cushion of air.

sp
in

d
le

spindle

sp
in

d
le

spindlespindle

27

Disk Operation (Multi-Platter View)

Arm

Read/write heads
move in unison
from cylinder to
cylinder

Spindle

28

Disk Access – Service Time Components

After BLUE read Seek for RED Rotational latency After RED read

Data transfer Seek Rotational
latency

Data transfer

29

Disk Access Time

• Average time to access some target sector approximated by:

• Taccess = Tavg seek + Tavg rotation + Tavg transfer

• Seek time (Tavg seek)

• Time to position heads over cylinder containing target sector.

• Typical Tavg seek is 3—9 ms

• Rotational latency (Tavg rotation)

• Time waiting for first bit of target sector to pass under r/w head.

• Tavg rotation = 1/2 x 1/RPMs x 60 sec/1 min

• Typical rotational rate = 7,200 RPMs

• Transfer time (Tavg transfer)

• Time to read the bits in the target sector.

• Tavg transfer = 1/RPM x 1/(avg # sectors/track) x 60 secs/1 min

time for one rotation (in minutes) fraction of a rotation to be read

30

Disk Access Time Example

• Given:

• Rotational rate = 7,200 RPM

• Average seek time = 9 ms

• Avg # sectors/track = 400

• Derived:

• Tavg rotation = 1/2 x (60 secs/7200 RPM) x 1000 ms/sec = 4 ms

• Tavg transfer = 60/7200 x 1/400 x 1000 ms/sec = 0.02 ms

• Taccess = 9 ms + 4 ms + 0.02 ms

• Important points:

• Access time dominated by seek time and rotational latency.

• First bit in a sector is the most expensive, the rest are free.

HDD reading speed (7200 RPM):
80 – 160 MB/s

GPT Again

Parameters:
350 GB

GPT = +

A few KBs

Disk

[0, 500, 32768, 1008, 922, ….] List[integers]

[0, 25116, 1234, 5984, 6, …] List[integers]

32

Basics of Processors

• Processor: Hardware to orchestrate and execute instructions to

manipulate data as specified by a program

• Examples: CPU, GPU, FPGA, TPU, embedded, etc.

• ISA (Instruction Set Architecture):

• The vocabulary of commands of a processor

Program in PL

Compile/Interpret

Program in Assembly Language

Assemble

Machine code tied to ISA

Run on processor

33

Basics of Processors

• Most common approach: load-store architecture

• Registers: Tiny local memory (“scratch space”) on proc. into which

instructions and data are copied

• ISA specifies bit length/format of machine code commands

• ISA has several commands to manipulate register contents

Q: How does a processor execute machine code?

34

Instruction

Register names

addq %rbx, %rax

rax += rbx

is

Bus interface

ALU

Register file

CPU chip

%rax
%rbx

How Fast is Processor

• Instruction / second: number of instructions a processor can do

• Data science: We care more about computation on floating

point numbers

• FLOPS: number of floating point operations a process can do

Problem?

CPU

Magnetic Hard Disk Drive (HDD)

100 GFLOPs/s

1. Assume we use 0.5s to perform 50 FLOPs
2. We need to read 50x2=100 GB in the rest of 0.5s to keep the CPU busy
3. We need the CPU to read at a speed of 100GB / 0.5s = 200 GB/s

80 – 160 MB/s

37

Memory/Storage Hierarchy

Flash Storage

CPU

Main
Memory

Magnetic Hard Disk Drive (HDD)

Cache

Non-Volatile RAM

~GB/s

~10GB/s

~100GB/s
~MBs

~$2/MB

~10GBs

~$5/GB

~TBs

~$200/TB

~PBs; ~$10/TB

~10TBs

~$30/TB~200MB/s

~50MB/s

38

Writing & Reading Memory Instructions

• Write

• Transfer data from memory to CPU

movq %rax, %rsp

• “Store” operation

• Read

• Transfer data from CPU to memory

movq %rsp, %rax

• “Load” operation

39

Processor

Bus

Control

Unit

Arithmetic

& Logic

Unit

Caches

Dynamic Random

Access Memory

(DRAM)

Input

Devices

Output

Devices
Secondary Storage

(e.g., Magnetic hard

disk, Flash SSD, etc.)

Store; Retrieve

Store; Retrieve

Input; Output; Retrieve

Retrieve;

Process

Registers

Abstract Computer Parts and Data

40

Bus Structure Connecting CPU and Memory

• A bus is a collection of parallel wires that carry address, data, and control

signals.

• Buses are typically shared by multiple devices.

Main
memory

I/O
bridge

Bus interface

ALU

Register file

CPU chip

System bus Memory bus

41

Memory Read Transaction (1)

• CPU places address A on the memory bus.

ALU

Register file

Bus interface

A
0

Ax

Main memory
I/O bridge

%rax

Load operation: movq A, %rax

42

Memory Read Transaction (2)

• Main memory reads A from the memory bus,

retrieves word x, and places it on the bus.

ALU

Register file

Bus interface

x 0

Ax

Main
memory

%rax

I/O bridge

Load operation: movq A, %rax

43

Memory Read Transaction (3)

• CPU reads word x from the bus and copies it into register %rax.

ALU

Register file

Bus interface x

Main memory
0

A

%rax

I/O bridge

Load operation: movq A, %rax

x

44

Memory Write Transaction (1)

• CPU places address A on bus. Main memory reads it and

waits for the corresponding data word to arrive.

y
ALU

Register file

Bus interface

A

Main memory
0

A

%rax

I/O bridge

Store operation: movq %rax, A

45

Memory Write Transaction (2)

• CPU places data word y on the bus.

y
ALU

Register file

Bus interface

y

Main memory
0

A

%rax

I/O bridge

Store operation: movq %rax, A

46

Memory Write Transaction (3)

• Main memory reads data word y from the bus

and stores it at address A.

y
ALU

Register file

Bus interface y

Main memory
0

A

%rax

I/O bridge

Store operation: movq %rax, A

47

Basics of Processors

• Types of ISA commands to manipulate register contents:

• Memory access: load (copy bytes from a DRAM address to

register); store (reverse); put constant

• Arithmetic & logic on data items in registers: add/multiply/etc.;

bitwise ops; compare, etc.; handled by ALU

• Control flow (branch, call, etc.); handled by CU

• Caches: Small local memory to buffer instructions/data

If interested in more details: https://www.youtube.com/watch?v=cNN_tTXABUA

Q: How does a processor execute machine code?

https://www.youtube.com/watch?v=cNN_tTXABUA

What is GPT doing?

Parameters:
350 GB

GPT = +

A few KBs

Disk

[0, 500, 32768, 1008, 922, ….] List[integers]

[0, 25116, 1234, 5984, 6, …]

List[integers]

49

Example

Bus

CU ALU

Caches

DRAM

Disk

Store; Retrieve

Store; Retrieve

Retrieve;

Process
Registers

CPU

Commands interpreted

Arithmetic done within Processors

Monitor
I/O for Display I/O for code I/O for data

50

Foundation of Data Systems: where we are

• Computer Organization

• Representation of Data

• Processors, memory, storages

• Operating System Basics (next week)

	幻灯片 1: DSC 204A: Scalable Data Systems Winter 2024
	幻灯片 2: Feedback and Logistics
	幻灯片 3: Practice Qs (review next class)
	幻灯片 4: Q1: How much space do I need to store GPT-3 ?
	幻灯片 5: Q1: How much space do I need to store GPT-3 ?
	幻灯片 6: Practice Qs (review next class)
	幻灯片 7
	幻灯片 8: Let’s design a fix-point FP6
	幻灯片 9: An Example
	幻灯片 10: An Example (Cont.)
	幻灯片 13: Digital Representation of Data
	幻灯片 14: Q2: What do exponent and fraction control?
	幻灯片 15: Q2: What do exponent and fraction control?
	幻灯片 16: Q3: What is the difference between BF16 and FP16?
	幻灯片 17: Why BF16 is better in ML/AI?
	幻灯片 18: Examples in the final exam: FP8
	幻灯片 19: Digital Representation of Data
	幻灯片 20: Digital Representation of Data
	幻灯片 21: Foundation of Data Systems: where we are
	幻灯片 22: GPT Again
	幻灯片 23: Disk
	幻灯片 24: Disk Geometry
	幻灯片 25: Disk Capacity
	幻灯片 26: Disk Operation (Single-Platter View)
	幻灯片 27: Disk Operation (Multi-Platter View)
	幻灯片 28: Disk Access – Service Time Components
	幻灯片 29: Disk Access Time
	幻灯片 30: Disk Access Time Example
	幻灯片 31: GPT Again
	幻灯片 32: Basics of Processors
	幻灯片 33: Basics of Processors
	幻灯片 34: Instruction
	幻灯片 35: How Fast is Processor
	幻灯片 36: Problem?
	幻灯片 37: Memory/Storage Hierarchy
	幻灯片 38: Writing & Reading Memory Instructions
	幻灯片 39: Abstract Computer Parts and Data
	幻灯片 40: Bus Structure Connecting CPU and Memory
	幻灯片 41: Memory Read Transaction (1)
	幻灯片 42: Memory Read Transaction (2)
	幻灯片 43: Memory Read Transaction (3)
	幻灯片 44: Memory Write Transaction (1)
	幻灯片 45: Memory Write Transaction (2)
	幻灯片 46: Memory Write Transaction (3)
	幻灯片 47: Basics of Processors
	幻灯片 48: What is GPT doing?
	幻灯片 49: Example
	幻灯片 50: Foundation of Data Systems: where we are

