https://hao-ai-lab.github.10/dsc204a-w24/

DSC 204A: Scalable Data Systems
Winter 2024

Machine Learning Systems
Big Data

Cloud

Foundations of Data Systems

Feedback and Logistics

®* Readings are uploaded

* Only 1 per class, multiple optional

®* This week's readings: OS processes and memory management
* Reading summary due: Next Wednesday 1/24

* Submit via GradeScope

* Follow the NeurlPS template: maximum 2 pages.
®* Next week readings will be out:

®* By this Saturday

Week 1 Recap

1. DSC204A: we see everything as data and compute
2. Computer: hardware and software
3. Data rep: bits, bytes, integer, fp16, fp32, bf16, ...

4. How computers work

). To fil the gap: memory hierarchy v E_{’

The CPU-Memory Gap

The gap widens between DRAM, disk, and CPU speeds.

100,000,000.0
10,000,000.0
1,000,000.0
100,000.0
10,000.0

1,000.0

Time (ns)

100.0

10.0

1.0

0.1

0.0

\\ Disk ’

e .
T

SSD

1985 1990 1995 2000 2003 2005 2010 2015
Year

- Disk seek time
= DRAM access time
=+ CPU cycle time

+SSD access time
-+ SRAM access time
--Effective CPU cycle time

Question

How exactly memory hierarchy solves the gape

Howe

Locality

* The key to bridging this CPU-Memory gap is an important

property of computer programs known as locality.

COpVI| V.S copy|i: copy a 2048 X 2048 integer array

void copylij(long int src[2048][2048], long int dst[2048][2048])
{

long int 1i,7;
for (1 = 0; 1 < 2048; 1++)

for (j = 0; j < 2048; j++) 4.3 milliseconds

dst[i][]J] = src[1][]];

}
vold copyji(long int src[2048][2048], long int dst[2048][2048])
{
long int 1i,7;
for (J = 0; J < 2048; J++) 31.8 milliseconds

for (1 = 0; 1 < 2048; i++)
dst[1][]] = src[1][]];

Locality

* Principle of Locality: Many Programs tend to use data and
INnstructions with addresses near or equal to those they have used

recently. O
* Temporallocality: EE:I

® Recently referenced items are likely
to be referenced again in the near future

* Spatial locality: < ?
* |tems with nearby addresses tend EED:I

to be referenced close together in fime

Locality Example

num list = [1, 2, 3, 4, 5, 7]
sum = 0;
for (x in num list)
sum += X;
return sum;

Spatial or Temporal

* Data references Locality?
® Reference array elements in succession (stride-1 reference pattern). spatial
* Reference variable sum each iteration. temporal
® |[nstruction references
* Reference instructions in sequence. spatial

e Cycle through loop repeatedly. temporal

10

Qualitative Estimates of Locality

int sum array rows (int a[M] [N])

Assuming row-major

array

Answer: yes Egi

{

[1]
[O]

int 1, j, sum = O;

for (1 = 0; 1 < M; 1++)
for (j = 0; j < N; j++)
sum += a[1][]];
return sum;

Question: Does this function have good locality with respect to array ae

Locality Example

int sum array cols(int a[M] [N])

{

int 1, j, sum = O;

for (J = 0; J < N; jJ++) . |
for (i = 0; i < M; i++) Answer: no, unless...

sum += a[i] [J];
return sum; M is very small

* Question: Does this function have good locality with respect to array ae

[0 | « « < | [O) | [2] | = =+ < | [1] [M-1]f + - -« [[M-1]
[0] [N-1]] [O] [N-1] [0] [N-1]

12

Example Exam Question

int sum array 3d(int a[M] [N] [N])
{

int 1, j, k, sum = 0;

for (i = 0; i < N; i++)

for (j = 0; j < N; j++)
for (k = 0; k < M; k++)
sum += al[k][i][]3];

return sum;

* Question: Can you permute the loops so that the function scans the 3-d
array a with a stride-1 reference pattern (and thus has good spatial locality)<¢

13

Putting locality into practice: Caches

* Cache: A smadller, faster storage device that acts as a staging area for a subset of the data in

a larger, slower device.

* Fundamental idea of a memory hierarchy:

® For each k, the faster, smaller device at level k serves as a cache for the larger, slower

device at level k+1.

* Why do memory hierarchies work?

® Because of locality: programs tend to access the data at level k more often than they

access the data at level k+1.

®* Thus, the storage at level k+1 can be slower, and thus larger and cheaper per bit.

* Together: The memory hierarchy crea

'es a large pool of storage tha

- Ccosts as much as the

cheap storage near the bottom, but 1
sforage near the top.

nat serves data o programs a:

" the rate of the fast

14

Cache In action

Cache |I||I| |I|

Smaller, faster, more expensive
memory caches a subset of
the blocks

Data is copied in block-sized

transfer units

Larger, slower, cheaper memory
viewed as partitioned into “blocks”

15

General Cache Concepts: Hit

Cache

Memory

Request: 14

[8 J[o J[aa][3]

Lo 2]l 2][3|
L4 s s |l 7 |

s Jl o Jlwo [o]

Data in block 14 is needed

Block 14 is in cache:
Hit!

16

General Cache Concepts: MIss

Request: 12

Request: 12

Data in block 12 is needed

Block 12 is not in cache:
Miss!

Block 12 is fetched from
memory

Block 12 is stored in cache

* Placement policy:
determines where b goes

* Replacement policy:
determines which block
gets evicted (victim)

Cache In action

Processor tﬂ
* |f always cache hit, bandwidth? ‘ ~100GE/s
* |[f always cache miss, bandwidthe Cache
T ~10GB/s

Memory 0000

MTYTITITI

Open Question in Cache: ChatGPT

Processor ‘ '

* ChatGPT: every fime ChatGPT outputs ~100GB/s
foken, it needs to see 350 GB Cache
parameters

* How to optimize this? Y ~10GB/s

Memory
Parameters:

350 GB

19

Foundation of Data Systems: where we are

* Computer Organization

®* Representation of Dato
® Processors, memory, stforages
* Operating System Basics
®* Process, scheduling, concurrency
* Memory management
® File systems

What i1s Operatfion System?@

* |Layers between applications and hardware

9

* OS makes computer hardware useful to programmers
* Otherwise, users need to speak machine code to computer
* [Usually] Provides abstractions for applications

* Manages and hides details of hardware

®* Accesses hardware through low/level interfaces unavailable to applications
* [Often] Provides protection

® Prevents one app/user from clobbering another

A Primitive OS v

® OS vl:just alibrary of standard services [no protection]

9

* Simplifying assumptions:
® System runs one program at a time
®* No bad users or programs (<)
* Problem: poor utilization
e - ..of hardware (e.g., CPU idle while waiting for disk)

® - ..of human user (must wait for each program to finish)

OS v2: Multfi-tasking

* Say: we extend the OS a bit to support many APPs
* When one process blocks (waiting for disk, nhetwork, user input, etc.) run another

9

orocess

* Problem: What can ill-behaved process dowe
* Go info infinite loop and never relinquish CPU

* Scribble over other processes’ memory to make them fail

®* OS provides mechanisms protection to address these problems:
* Preemption — take CPU away from looping process
* Memory protection — protect one process’ memory from one another

Whatis A Real OS¢

* OS: manage and assign hardware resources 1o apps
® Goal: with N users/apps, system not N fimes slower
* ldea: Giving resources to users who actually need them
* What can go wronge
* One app can interfere with other app (heed isolation)
® Users are gluttons, use too much CPU, etfc. (heed scheduling)
* Total memory usage of all apps/users greater than machine’s RAM

(heed memory management)

® Disks are shared across apps / users and must be arranged propertly
(heed file systems)

25

Modules

e System call: The layer for isolation -- it abstracts the hardware
and APIs for programs to use

ystem Call” APls: Isolation and protection

Kernel Process Main Memory Filesystems || Networking De_vu:e
Components :| Management }| Management Drivers |:
| Virtualize . .

rocessor,; Virualize Commun Talk to
SN ,; Virtualize disks; “File’ |
Functionality] “Process . . over other I/O :
: - Main Memory abstraction; . :
:] abstraction; network devices :
Hardware device-specific programs

Hardware

26

Foundation of Data Systems: where we are

* Computer Organization

®* Representation of Dato
® Processors, memory, stforages
* Operatfing System Basics
®* Processes, scheduling, concurrency
* Memory management
® File systems

Processes - the central abstraction in OS

® Definition: A process Is an instance of a running program.

* One of the most profound ideas in computer science

. = Task Manager

File Options View

Processes Performance App history Startup Users

#

Apps (5]
E: Settings
1= Task Manager
D WinaeroTweaker (2)
B Windows Command P 55,

m Windows Explorer

Background processes (21)
[w7] Application Frame Host
(mz| COM Surrogate

B | Cortana ()

A CTF Loader

[w7] Host Process for Windows Tasks
E Microsoft Edge (3)

® | Microsoft Cutlook Communica...,

Fewer details

Details Services

SNO Activity Monitor

O @ @ [All Processes ;j Q- |

- Quit Process Inspect Sample Process Show Filter
| PID Process Name User #CPUw Threads Real Mem Kind
/833 2 Safan 9.5 11 1.11 GB Intel (64 biv)
8181 I3 iTunes 4.6 12 72.8 MB Intel
0 kernel _task 4.5 70 163.1 M8 Intel
7840 Flash Player (Safari Internet plu... 4.2 / 50.4 M8 Intel
55 WindowServer 3.3 5 172.3 M8 Intel (64 bit)
1633 BB Activity Monitor 1.4 2 30.8 MB Intel (64 bit)
1636 actwvitymonitord 1.2 1 1.4 MB Intel (64 bit)
120 synerqys 0.8 5 33.7 M8 Intel
84 SystemUIServer 0.7 4 30.8 MB Intel (64 bit)
568 M Terminal 0.3 S 23.9 M8 Intel (64 bit)
8265 @ A 12ZMP3 0.3 S 27.8 MB Intel

. CPU ~SystemMemory| Disk Activity Disk Usage Network

-

Free: S0.2 MB i3 VM size: 164.09CB
Wired: 8034M8 | Page ins: 6.27 GB .
Active L] Page outs: 831.9M8
Inactive: 1.02GB a Swap used: 169.7 M8
- 3.75 CB
Used: 3.95GB

Main function in python

& test.py

1 print ("Good Morning”)
) zood Morning

" def main(): Food Evening
5 print{"Hello Python")

Hello Python

: print {("Good Evening”)
- | Process finished with exit code 0

11 P if name = " main ":

12 malni)

29

Processes - the central abstraction in OS

* Process provides each program with two key abstractions (for resources):

* Compute Resource
®* Fach program seems to have exclusive use of the CPU
®* Provided by kernel mechanism called context switching
* Memory Resource

®* Fach program seems o have exclusive use of main memory.

* Provided by kernel mechanism called virtual memory

CPU

30

The Abstraction of a Process

High-level steps OS takes to get a process going:

1. Create a process (get Process ID; add to Process List)
2. Assign part of DRAM to process, aka its Address Space
3. Load code and static data (if applicable) to that space

4. Set up the iInputs needed to run program’s main()
5. Update process’ State to Ready

6. When process is scheduled (Running), OS temporarily hands off
control to process to run the show!

/. Eventuadlly, process finishes or run Destroy

31

Virtualization of Hardware Resources

Q: But is It not risky/foolish for OS to hand off control of
hardware to a process (random user-written program)?!

* OS has mechanisms and policies 1o regain conftrol
* Virtualization:

®* Fach hardware resource is tfreated as a virtual entity that OS can
divvy up among processes in a controlled way

* [Imited Direct Execution:

* OS mechanism to time-share CPU and preempt a process to run a
different one, aka “context switch”

* A Scheduling policy tells OS what time-sharing to use

® Processes also must franster control to OS for “privieged”
operations (e.g., I/O); System Calls API

32

Multiprocessing: The lllusion

Registers

® Computer runs many processes simultaneously

Multiprocessing Example

top command in terminal: many processes, ldentified by Process ID (PID)

FrroceEzzez; 1Za LOLgal, Ja ruoring, 3 LUCE ., 1LU3 SIlecpPlhnyg, bll Lhreads I I e W
Load Awvgr 1,04, 1,14, 1,14 CPU usage: 3,278 user, B,1bhE =ys, 91,562 idle

SharedLibs: 57EK resident, OB data, OB linkedit,

emBeqgions: 27958 total, 1127M resident, 35M private, 494 shared,

PhysMem: 10399 wired, 1974M active, 106EM inactive, 4076M uszed, 18M tree, |
VM 280G vsize, 1091M framework wsize, 23075213(1) pageins, 5843367(0) pageouts,

Networks: packets: 410482208/1106 in, BREOSAOSES 7L out, r
Dizks: 1787439173496 read, 128473730940 written, I

i 41 fbZak 7412k 1BH 4l 24 A5l |
ha 91 244k B148k 9376k 44K 24.34H |
A2 IE 2o0k 572k b3k 3700k Z38EK
21 A9 i 21Bk dok 15k 2332 |

A Tt ——]

LDE/E mdworker
L0410 xterm
BOOFE emacs

| el L]

011,17
QL 12
QL 06, 70

s s B | o

+

+

+

FII COMMAMI =LPU TIME #TH #l0 #PUET #MREG EPEWT RSHRD RSIZE WPEMT WSIZE
93217- Microsoft OFf 0,0 02:i23.34 4 1 202 418 Z1M 24 21M =12y fbal
393051 wsbmuxd 0,0 Q004,10 3 1 47 bb 4ibk 216k 450k BOK 2422
93006 iTunesHelper 0,0 00301235 2 1 ha /o F28k 3124k 1124k 43K 2423
o408 bash 0.0 Qozo0,11 1 () 21 24 224k FazZk dodk 17K 2570
od2ah xterm 0,0 Qoo0,E5 1 () 52 IE Babk 72k Balk 3728k ZE3BEK
h3939- Microsoft Ex 0,3 21:58,97 10 3 360 954 1BM =y 450 114K 1057
24701 =leep 0,0 QOO G0] () 17 20 = 212k 3bOk SB3ZE Z370K
4733 launchdadd 0,0 Q000,00 2 1 A3 o qack 220k 1736k 45K 24003
ha757 top .5 002,53 17 0 AL 24 1416k 216k 2124k 17K 2573l
24719 automountd 0,0 Q000,02 7 1 03 b4 cbOk 216k 2184k Bak 241.5H
4701 ocspd 0,0 Qo005 4 1 = hd 1Bk 2B44k 3132k DOK 2425
hd4BEl Lrab 0.6 000,75 b 3 222+ A9+ 1hM+ ZBM+ 40M+ FOM+ ZBBER+
459 cookied 0,0 Qoo0,15 & 1 41 b1 2316k 224k 4085k 42K 2411H
hitls mdworker 0,0 000167 4 1

0,0 3 1

0,0 1 ()

0,0 1 ()

o —— =]

	幻灯片 1: DSC 204A: Scalable Data Systems Winter 2024
	幻灯片 2: Feedback and Logistics
	幻灯片 3: Week 1 Recap
	幻灯片 4: The CPU-Memory Gap
	幻灯片 5: Question
	幻灯片 6: Locality
	幻灯片 7: copyij v.s copyji: copy a 2048 X 2048 integer array
	幻灯片 8: Locality
	幻灯片 9: Locality Example
	幻灯片 10: Qualitative Estimates of Locality
	幻灯片 11: Locality Example
	幻灯片 12: Example Exam Question
	幻灯片 13: Putting locality into practice: Caches
	幻灯片 14: Cache in action
	幻灯片 15: General Cache Concepts: Hit
	幻灯片 16: General Cache Concepts: Miss
	幻灯片 17: Cache in action
	幻灯片 18: Open Question in Cache: ChatGPT
	幻灯片 19: Foundation of Data Systems: where we are
	幻灯片 20: What is Operation System?
	幻灯片 21: A Primitive OS v1
	幻灯片 22: OS v2: Multi-tasking
	幻灯片 23: What is A Real OS?
	幻灯片 25: Modules
	幻灯片 26: Foundation of Data Systems: where we are
	幻灯片 27: Processes - the central abstraction in OS
	幻灯片 28: Main function in python
	幻灯片 29: Processes - the central abstraction in OS
	幻灯片 30: The Abstraction of a Process
	幻灯片 31: Virtualization of Hardware Resources
	幻灯片 32: Multiprocessing: The Illusion
	幻灯片 33: Multiprocessing Example

