
DSC 204A: Scalable Data Systems

Winter 2024

1

https://hao-ai-lab.github.io/dsc204a-w24/

Foundations of Data Systems

Cloud

Machine Learning Systems

Big Data

Feedback and Logistics

• Readings are uploaded

• Only 1 per class, multiple optional

• This week’s readings: OS processes and memory management

• Reading summary due: Next Wednesday 1/24

• Submit via GradeScope

• Follow the NeurIPS template: maximum 2 pages.

• Next week readings will be out:

• By this Saturday

Week 1 Recap

1. DSC204A: we see everything as data and compute

2. Computer: hardware and software

3. Data rep: bits, bytes, integer, fp16, fp32, bf16, …

4. How computers work

To fill the gap: memory hierarchy

4

The CPU-Memory Gap

The gap widens between DRAM, disk, and CPU speeds.

0.0

0.1

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

1,000,000.0

10,000,000.0

100,000,000.0

1985 1990 1995 2000 2003 2005 2010 2015

T
im

e
 (

n
s
)

Year

Disk seek time SSD access time

DRAM access time SRAM access time

CPU cycle time Effective CPU cycle time

DRAM

CPU

SSD

Disk

5

Question

How exactly memory hierarchy solves the gap?

How?

6

Locality

• The key to bridging this CPU-Memory gap is an important

property of computer programs known as locality.

7

copyij v.s copyji: copy a 2048 X 2048 integer array

4.3 milliseconds

81.8 milliseconds

8

Locality

• Principle of Locality: Many Programs tend to use data and

instructions with addresses near or equal to those they have used

recently.

• Temporal locality:

• Recently referenced items are likely

to be referenced again in the near future

• Spatial locality:

• Items with nearby addresses tend

to be referenced close together in time

9

Locality Example

• Data references

• Reference array elements in succession (stride-1 reference pattern).

• Reference variable sum each iteration.

• Instruction references

• Reference instructions in sequence.

• Cycle through loop repeatedly.

num_list = [1, 2, 3, 4, 5, 7]

sum = 0;

for (x in num_list)

sum += x;

return sum;

Spatial or Temporal
Locality?

temporal

spatial
temporal

spatial

10

Qualitative Estimates of Locality

Question: Does this function have good locality with respect to array a?

int sum_array_rows(int a[M][N])

{

int i, j, sum = 0;

for (i = 0; i < M; i++)

for (j = 0; j < N; j++)

sum += a[i][j];

return sum;

}

Answer: yes

Assuming row-major
array

• • •

a

[0]

[0]

a

[0]

[N-1]

• • •

a

[1]

[0]

a

[1]

[N-1]

• • •

a

[M-1]

[0]

a

[M-1]

[N-1]

• • •

11

Locality Example

• Question: Does this function have good locality with respect to array a?

int sum_array_cols(int a[M][N])

{

int i, j, sum = 0;

for (j = 0; j < N; j++)

for (i = 0; i < M; i++)

sum += a[i][j];

return sum;

}

Answer: no, unless…

M is very small

• • •

a

[0]

[0]

a

[0]

[N-1]

• • •

a

[1]

[0]

a

[1]

[N-1]

• • •

a

[M-1]

[0]

a

[M-1]

[N-1]

• • •

12

Example Exam Question

• Question: Can you permute the loops so that the function scans the 3-d

array a with a stride-1 reference pattern (and thus has good spatial locality)?

int sum_array_3d(int a[M][N][N])

{

int i, j, k, sum = 0;

for (i = 0; i < N; i++)

for (j = 0; j < N; j++)

for (k = 0; k < M; k++)

sum += a[k][i][j];

return sum;

}

13

Putting locality into practice: Caches

• Cache: A smaller, faster storage device that acts as a staging area for a subset of the data in

a larger, slower device.

• Fundamental idea of a memory hierarchy:

• For each k, the faster, smaller device at level k serves as a cache for the larger, slower

device at level k+1.

• Why do memory hierarchies work?

• Because of locality: programs tend to access the data at level k more often than they

access the data at level k+1.

• Thus, the storage at level k+1 can be slower, and thus larger and cheaper per bit.

• Together: The memory hierarchy creates a large pool of storage that costs as much as the

cheap storage near the bottom, but that serves data to programs at the rate of the fast

storage near the top.

14

Cache in action

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory
Larger, slower, cheaper memory
viewed as partitioned into “blocks”

Data is copied in block-sized
transfer units

Smaller, faster, more expensive
memory caches a subset of
the blocks

4

4

4

10

10

10

15

General Cache Concepts: Hit

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block 14 is neededRequest: 14

14
Block 14 is in cache:
Hit!

16

General Cache Concepts: Miss

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block 12 is neededRequest: 12

Block 12 is not in cache:
Miss!

Block 12 is fetched from
memory

Request: 12

12

12

12

Block 12 is stored in cache
• Placement policy:

determines where b goes
• Replacement policy:

determines which block
gets evicted (victim)

Cache in action

Cache

Memory

Processor

~100GB/s

~10GB/s

• If always cache hit, bandwidth?

• If always cache miss, bandwidth?

Open Question in Cache: ChatGPT

Cache

Memory

Processor

~100GB/s

~10GB/s

Parameters:
350 GB

• ChatGPT: every time ChatGPT outputs

token, it needs to see 350 GB

parameters

• How to optimize this?

19

Foundation of Data Systems: where we are

• Computer Organization

• Representation of Data

• Processors, memory, storages

• Operating System Basics

• Process, scheduling, concurrency

• Memory management

• File systems

What is Operation System?

• Layers between applications and hardware

• OS makes computer hardware useful to programmers

• Otherwise, users need to speak machine code to computer

• [Usually] Provides abstractions for applications

• Manages and hides details of hardware

• Accesses hardware through low/level interfaces unavailable to applications

• [Often] Provides protection

• Prevents one app/user from clobbering another

Hardware

OS

A Primitive OS v1

• OS v1: just a library of standard services [no protection]

• Simplifying assumptions:

• System runs one program at a time

• No bad users or programs (?)

• Problem: poor utilization

• - . . . of hardware (e.g., CPU idle while waiting for disk)

• - . . . of human user (must wait for each program to finish)

Hardware

OS: interfaces above hw drivers

OS v2: Multi-tasking

• Say: we extend the OS a bit to support many APPs

• When one process blocks (waiting for disk, network, user input, etc.) run another

process

• Problem: What can ill-behaved process do?

• Go into infinite loop and never relinquish CPU

• Scribble over other processes’ memory to make them fail

• OS provides mechanisms protection to address these problems:

• Preemption – take CPU away from looping process

• Memory protection – protect one process’ memory from one another

Hardware

OS: support > 1 apps

What is A Real OS?

• OS: manage and assign hardware resources to apps

• Goal: with N users/apps, system not N times slower

• Idea: Giving resources to users who actually need them

• What can go wrong?

• One app can interfere with other app (need isolation)

• Users are gluttons, use too much CPU, etc. (need scheduling)

• Total memory usage of all apps/users greater than machine’s RAM

(need memory management)

• Disks are shared across apps / users and must be arranged propertly

(need file systems)

25

Modules

“System Call” APIs: Isolation and protection

Process

Management

Main Memory

Management
Filesystems

Device

Drivers
Networking

Kernel

Components

• System call: The layer for isolation -- it abstracts the hardware

and APIs for programs to use

Functionality

Virtualize

processor;

“Process”

abstraction;

Virtualize

Main Memory

Virtualize

disks; “File”

abstraction;

Talk to

other I/O

devices

Commun.

over

network

Hardware device-specific programs

Hardware

26

Foundation of Data Systems: where we are

• Computer Organization

• Representation of Data

• Processors, memory, storages

• Operating System Basics

• Processes, scheduling, concurrency

• Memory management

• File systems

27

Processes - the central abstraction in OS

• Definition: A process is an instance of a running program.

• One of the most profound ideas in computer science

• Not the same as “program” or “processor”

28

Main function in python

29

Processes - the central abstraction in OS

• Process provides each program with two key abstractions (for resources):

• Compute Resource

• Each program seems to have exclusive use of the CPU

• Provided by kernel mechanism called context switching

• Memory Resource

• Each program seems to have exclusive use of main memory.

• Provided by kernel mechanism called virtual memory

CPU
Registers

Memory

Stack

Heap

Code

Data

30

The Abstraction of a Process

❖ High-level steps OS takes to get a process going:

1. Create a process (get Process ID; add to Process List)

2. Assign part of DRAM to process, aka its Address Space

3. Load code and static data (if applicable) to that space

4. Set up the inputs needed to run program’s main()

5. Update process’ State to Ready

6. When process is scheduled (Running), OS temporarily hands off

control to process to run the show!

7. Eventually, process finishes or run Destroy

31

Virtualization of Hardware Resources

• OS has mechanisms and policies to regain control

• Virtualization:

• Each hardware resource is treated as a virtual entity that OS can

divvy up among processes in a controlled way

• Limited Direct Execution:

• OS mechanism to time-share CPU and preempt a process to run a

different one, aka “context switch”

• A Scheduling policy tells OS what time-sharing to use

• Processes also must transfer control to OS for “privileged”

operations (e.g., I/O); System Calls API

Q: But is it not risky/foolish for OS to hand off control of
hardware to a process (random user-written program)?!

32

Multiprocessing: The Illusion

• Computer runs many processes simultaneously

CPU
Registers

Memory

Stack

Heap

Code

Data

CPU
Registers

Memory

Stack

Heap

Code

Data …

CPU
Registers

Memory

Stack

Heap

Code

Data

33

Multiprocessing Example

top command in terminal: many processes, Identified by Process ID (PID)

	幻灯片 1: DSC 204A: Scalable Data Systems Winter 2024
	幻灯片 2: Feedback and Logistics
	幻灯片 3: Week 1 Recap
	幻灯片 4: The CPU-Memory Gap
	幻灯片 5: Question
	幻灯片 6: Locality
	幻灯片 7: copyij v.s copyji: copy a 2048 X 2048 integer array
	幻灯片 8: Locality
	幻灯片 9: Locality Example
	幻灯片 10: Qualitative Estimates of Locality
	幻灯片 11: Locality Example
	幻灯片 12: Example Exam Question
	幻灯片 13: Putting locality into practice: Caches
	幻灯片 14: Cache in action
	幻灯片 15: General Cache Concepts: Hit
	幻灯片 16: General Cache Concepts: Miss
	幻灯片 17: Cache in action
	幻灯片 18: Open Question in Cache: ChatGPT
	幻灯片 19: Foundation of Data Systems: where we are
	幻灯片 20: What is Operation System?
	幻灯片 21: A Primitive OS v1
	幻灯片 22: OS v2: Multi-tasking
	幻灯片 23: What is A Real OS?
	幻灯片 25: Modules
	幻灯片 26: Foundation of Data Systems: where we are
	幻灯片 27: Processes - the central abstraction in OS
	幻灯片 28: Main function in python
	幻灯片 29: Processes - the central abstraction in OS
	幻灯片 30: The Abstraction of a Process
	幻灯片 31: Virtualization of Hardware Resources
	幻灯片 32: Multiprocessing: The Illusion
	幻灯片 33: Multiprocessing Example

