
DSC 204A: Scalable Data Systems

Winter 2024

1

https://hao-ai-lab.github.io/dsc204a-w24/

Foundations of Data Systems

Cloud

Machine Learning Systems

Big Data

OS: basically, a software between apps and hardware

• Goal 1: Provide convenience to users

• Goal 2: Efficiency -- Manage compute, memory, storage resources

• Goal 2.1: Running N processes Not N times slower

• As fast as possible

• Goal 2.2: Running N apps

• Even when their total memory >> physical memory cap

• Goal 3: Provide protection

• One process won’t mess up the entire computer

• One process won’t mess up with other processes
System calls

Process management

Memory management

3

Process management: Can we do better?

“System Call” APIs: Isolation and protection

Process

Management

Main Memory

Management
Filesystems

Device

Drivers
Networking

Kernel

Components

Functionality

Virtualize

processor;

“Process”

abstraction;

Virtualize

Main Memory

Virtualize

disks; “File”

abstraction;

Talk to

other I/O

devices

Commun.

over

network

Hardware device-specific programs

Hardware

4

Multiprocessing: A strawman solution

• Assign individual memory (say 1/3) to each APP

• Assign CPU to work on an APP until completion -> then next

CPU
Registers

Memory

Stack

Heap

Code

Data

Memory

Stack

Heap

Code

Data …

Memory

Stack

Heap

Code

Data

5

Multiprocessing: A strawman solution

• Assign individual memory (say 1/3) to each APP

• Assign CPU to work on an APP until completion -> then next

CPU
Registers

Memory

Stack

Heap

Code

Data

Memory

Stack

Heap

Code

Data …

Memory

Stack

Heap

Code

Data

6

Multiprocessing: A strawman solution

• Assign individual memory (say 1/3) to each APP

• Assign CPU to work on an APP until completion -> then next

CPU
Registers

Memory

Stack

Heap

Code

Data

Memory

Stack

Heap

Code

Data …

Memory

Stack

Heap

Code

Data

G1. Convenient?

G3: protection?

G2. Efficient?

• G2.1 can I run N processes but

not N times slower?

MemoryMemoryMemory

7

Multiprocessing: Time sharing of processors

CPU
Registers

Stack

Heap

Code

Data

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

…

t = 1

• Idea: Virtualize the CPU time as time slices
• Assign time slices to different processes

8

Multiprocessing: Time sharing of processors

• Save current registers in memory

MemoryMemoryMemory

Stack

Heap

Code

Data

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

…

CPU
Registers

t = 1

9

Multiprocessing: Time sharing of processors

• Save current registers in memory

MemoryMemoryMemory

Stack

Heap

Code

Data

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

…

CPU
Registers

Saved

registers

t = 1

10

Multiprocessing: Time sharing of processors

• Assign time slice t = 2 to the next process

• Resume progress: Move Saved registers from memory to CPU

MemoryMemoryMemory

Stack

Heap

Code

Data

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

…

CPU
Registers

Saved

registers

t = 2

11

Multiprocessing: Time sharing of processors

• Then we repeat.

• This is called context switch

MemoryMemoryMemory

Stack

Heap

Code

Data

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

…

CPU
Registers

Saved

registers

t = N

12

Multiprocessing: Time sharing of multiple processors

Multiple CPU cores?

1. All processors sweep from left (1st process) to right (last process)

2. Each process accounts for ½ of the processes

MemoryMemoryMemory

Stack

Heap

Code

Data

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

…

CPU1
Registers

Saved

registers

CPU2
Registers

Let’s Implement It!

Physical

Processor

OS’s virtualized CPU abstraction

PID1 PID2 PID3
…

GAP1: How to virtualize CPU resources temporally and spatially?

14

Temporal Abstraction: Process State and CPU Time

❖ OS keeps moving processes between 3 states:

❖ Gantt Chart: A viz. to
show what process runs
when (on processor)

P1 Idle P2 P1 P2 …

Time

Scheduling question naturally emerges:

Q: how to schedule processes on time axis so the objective is optimal?

15

Scheduling Policies/Algorithms

• Schedule: Record of what process runs on each CPU when

• Policy controls how OS time-shares CPUs among processes

• Key terms for a process (aka job):

• Arrival Time: Time when process gets created

• Job Length: Duration of time needed for process

• Start Time: Time when process first starts on processor

• Completion Time: Time when process finishes/killed

• Response Time = Start Time — Arrival Time

• Turnaround Time = Completion Time — Arrival Time

• Workload: Set of processes, arrival times, and job lengths that OS

Scheduler has to handle

16

Scheduling Policy: FIFO

❖ First-In-First-Out aka First-Come-First-Serve (FCFS)

❖ Ranking criterion: Arrival Time; no preemption allowed

P1 P2 P2 P2 P2 P3

0 10 20 30 40 50 60 70 80

Time

Example: P1, P2, P3 of lengths 10,40,10 units arrive closely in that order

Process
Arrival
Time

Start
Time

Completion
Time

Response
Time

Turnaround
Time

P1 0 0 10 0 10

P2 0 10 50 10 50

P3 0 50 60 50 60

Avg: 20 40

❖ Main con: Short jobs may wait a lot, aka “Convoy Effect”

17

Scheduling Policy: SJF

❖ Shortest Job (next) First

❖ Ranking criterion: Job Length; no preemption allowed

P1 P3 P2 P2 P2 P2

0 10 20 30 40 50 60 70 80

Time

Example: P1, P2, P3 of lengths 10,40,10 units arrive closely in that order

Process
Arrival
Time

Start
Time

Completion
Time

Response
Time

Turnaround
Time

P1 0 0 10 0 10

P2 0 20 60 20 60

P3 0 10 20 10 20

Avg: 10 30

❖ Main con: Not all Job Lengths might be known beforehand

❖ Long processes may be held off indefinitely

(FIFO Avg: 20 and 40)

18

Example Exam Q1: Round Robin Schedule

❖ RR does not need to know job lengths

❖ Fixed time quantum given to each job; cycle through jobs

Example: P1, P2, P3 of lengths 10,40,10 units arrive closely in that order

❖ RR is often very fair, but Avg Turnaround Time goes up!

P1 P2 P3 P1 P2 P3 P2 P2 P2 P2 P2 P2

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

Quantum is 5 Time

19

Example Exam Q2: SCTF
❖ Shortest Completion Time First

❖ Jobs might not all arrive at same time; preemption possible

P2 P1 P2 P3 P2 P2 P2

0 10 20 25 35 45 55 60 70 80

Time

Example: P1, P2, P3 of lengths 10,40,10 units arrive at different times

P1 arrives; switch P3 arrives; switch

20

Scheduling Policies/Algorithms

• In general, not all Arrival Times and Job Lengths will be known

beforehand. But preemption is possible.

• Key Principle: Inherent tension in scheduling between overall

workload performance and allocation fairness

• Performance metric is usually Average Turnaround Time

• Many fairness metrics exist, e.g., Jain’s fairness index

• 100s of scheduling policies studied! Well-known ones: FIFO, SJF,

STCF, Round Robin, Random, etc.

• Different criteria for ranking; preemptive vs not

• Complex “multi-level feedback queue” schedulers

• ML-based schedulers are “hot” nowadays!

Scheduling in ChatGPT

S1 Please help me on

assignments…

S2 Please summarize

the readings…

S3 Please tell a joke

with 1000 words…

• What is the response time

• What is the turnover time

• What is failrness?

• Do we know the job length?

• Can we run S1/S2/S3

together?

• How to schedule?

Let’s Implement It!

Physical

Processor

OS’s virtualized CPU abstraction

PID1 PID2 PID3
…

GAP2: How to virtualize CPU resources temporally and spatially?

23

Concurrency

• Modern computers often have multiple processors and

multiple cores per processor

• Concurrency: Multiple processors/cores run different/same

set of instructions simultaneously on different/shared data

Let’s Implement It!

Physical

Processor

OS’s virtualized CPU abstraction

PID1 PID2 PID3
…

GAP2: How to virtualize CPU resources temporally and spatially?

“Placement“naturally emerges:

Q: how to place processes on each processor so the objective is optimal?

26

Concurrency

❖ Scheduling for multiprocessing/multicore is more complex

❖ Load Balancing: Ensuring different cores/proc. are kept roughly

equally busy, i.e., reduce idle times

❖ Multi-queue multiprocessor scheduling (MQMS) is common

❖ Each proc./core has its own job queue

❖ OS moves jobs across queues based on load

❖ Example Gantt chart for MQMS:

CPU 1: P1 P1 P3 P3 P3 P3 P1 P1 P1

CPU 2: P2 P2 P2 P1 P1 P2 P2 P3 P3

0 10 20 30 40 50 60 70 80

	幻灯片 1: DSC 204A: Scalable Data Systems Winter 2024
	幻灯片 2: OS: basically, a software between apps and hardware
	幻灯片 3: Process management: Can we do better?
	幻灯片 4: Multiprocessing: A strawman solution
	幻灯片 5: Multiprocessing: A strawman solution
	幻灯片 6: Multiprocessing: A strawman solution
	幻灯片 7: Multiprocessing: Time sharing of processors
	幻灯片 8: Multiprocessing: Time sharing of processors
	幻灯片 9: Multiprocessing: Time sharing of processors
	幻灯片 10: Multiprocessing: Time sharing of processors
	幻灯片 11: Multiprocessing: Time sharing of processors
	幻灯片 12: Multiprocessing: Time sharing of multiple processors
	幻灯片 13: Let’s Implement It!
	幻灯片 14: Temporal Abstraction: Process State and CPU Time
	幻灯片 15: Scheduling Policies/Algorithms
	幻灯片 16: Scheduling Policy: FIFO
	幻灯片 17: Scheduling Policy: SJF
	幻灯片 18: Example Exam Q1: Round Robin Schedule
	幻灯片 19: Example Exam Q2: SCTF
	幻灯片 20: Scheduling Policies/Algorithms
	幻灯片 21: Scheduling in ChatGPT
	幻灯片 22: Let’s Implement It!
	幻灯片 23: Concurrency
	幻灯片 24: Let’s Implement It!
	幻灯片 26: Concurrency

