https://hao-ai-lab.github.10/dsc204a-w24/

DSC 204A: Scalable Data Systems
Winter 2024

Machine Learning Systems
Big Data

Cloud

Foundations of Data Systems

OS: basically, a software between apps and hardware

* Goal 1: Provide convenience to users
* Goal 2: Efficiency -- Manage compute, memory, storage resources
* Goal 2.1: Running N processes Not N times slower

* As fast as possible Process management

* Goal 2.2: Running N apps Memory management

* Fven when thelir total memory >> physical memory cap
* Goal 3: Provide protection
® One process won't mess up the entire computer

. fem |
® One process won't mess up with other processes >ystem calls

Process management: Can we do befttere

ystem Call” APls: Isolation and protection

Kernel Process Main Memory Filesystems || Networking De_V|ce
Components | Management j| Management Drivers |
| Virtualize . .

pProcessor; virualize Commun Talk to

Main Memory abstraction;

abstraction:

network devices

Hardware device-specific programs

Hardware

Multiprocessing: A strawman solution

* Assign individual memory (say 1/3) to each APP

* Assign CPU to work on an APP until completion -> then next

CPU

Multiprocessing: A strawman solution
* Assign individual memory (say 1/3) to each APP

* Assign CPU tfo work on an APP unftil completion -> then next

CPU

Multiprocessing: A strawman solution
* Assign individual memory (say 1/3) to each APP

* Assign CPU tfo work on an APP unftil completion -> then next

G1. Conveniente

G3: profectione

G2. Efficient?

« G2.1 canlrun N processes but
not N fimes slowere

CPU

Multiprocessing: Time sharing of processors

Saved Saved
registers registers
CPU
=1

» |dea: Virtualize the CPU time as time slices
* Assign fime slices to different processes

Multiprocessing: Time sharing of processors

Saved
reqisters

Saved
reqisters

® Save current registers in memory

Multiprocessing: Time sharing of processors

Memory Memory

Memory

Code
Saved Saved Saved
registers registers registers
| CPU |
5 5

® Save current registers in memory

10

Code

Saved
reqisters

Saved
reqisters

Saved

reqisters

—F
| _CPU [
| [Registers | |

t=2

® Assign time slice t = 2 to the next process
® Resume progress. Move Saved registers from memory to CPU

Multiprocessing: Time sharing of processors

Memory Memory Memory

Code
registers registers registers

| CPU |:

5 5
f=N

* Then we repeat.
* This Is called context switch

12

Memory Memory

Code

Saved Saved
reqisters reqisters

[cput |i[cpuz |
| [Registers | | :| [Registers] |

Code

Saved
reqisters

Multiple CPU corese
1. All processors sweep from left (15t process) to right (last process)

2. Each process accounts for 2 of the processes

Let’s Implement [t

PID1: (PID2] :PID3]

-1 Physical
wn1 Processor

14

Temporal Abstraction: Process State and CPU Time

OS keeps moving processes between 3 states:

Descheduled . Gantt Chart: A viz. to
N Y show what process runs
when (on processor)
I/0: i”iﬁat\ /'/O: done P1 Idle P2 P1 P2
Blocked Time

Scheduling question naturally emerges:
Q: how to schedule processes on fime axis so the objective is optimale

Scheduling Policies/Algorithms

®* Schedule: Record of what process runs on each CPU when
® Policy controls how OS time-shares CPUs among processes
®* Key terms for a process (aka job):

* Arrival Time: Time when process gets created

* Job Length: Duration of time needed for process
* Start Time: Time when process first starts on processor
* Completion Time: Time when process finishes/killed

® Response Time = Start Time — Arrival Time
* Turnaround Time = Completion Time — Arrival Time

* Workload: Set of processes, arrival times, and job lengths that OS
Scheduler has to handle

Scheduling Policy: FIFO

First-In-First-Out aka First-Come-First-Serve (FCFS)
Ranking criterion: Arrival Time; no preemption allowed

Example: P1, P2, P3 of lengths 10,40,10 units arrive closely in that order

P1

Process

P1
P2
°3

Main con: Short jobs may wait a lot, aka "Convoy Effect”

16

10

P2 P2 P2 P2 P3
20 30 40 50 60 70 80
Time —mMmMmM™M™M™M™M8M8 ™™™
Arrival Start Completion Response Turnaround
Time Time Time Time Time
0 0 10 0 10
0 10 50 10 50
0 50 60 50 60
Avg: 20 40

Scheduling Policy: SJF

Shortest Job (next) First
Ranking criterion: Job Length; no preemption allowed

Example: P1, P2, P3 of lengths 10,40,10 units arrive closely in that order

P1 P3 P2 P2 P2 P2
0 10 20 30 40 50 60 /0 30

Time —m—mmmm™™@8@8@8@™

Arrival Start Completion Response Turnaround
Process , . | | .
Time Time Time Time Time
P1 0 0 10 0 10
P2 0 20 60 20 60
P3 0 10 20 10 20
(FIFO Avg: 20 and 40) Avg: 10 30

Main con: Not all Job Lengths might be known beforehand
Long processes may be held off indefinitely

18

Example Exam Q1: Round Robin Schedule

RR does not need to know job lengths
Fixed time quantum given to each job; cycle through jobs

Example: P1, P2, P3 of lengths 10,40,10 units arrive closely in that order

PL P2 P3 P1 P2 P3 P2 P2 P2 P2 P2 P2

0O 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
Quantum is 5 101111 ——

RR Is often very fair, but Avg Turnaround Time goes up!

19

Example Exam Q2: SCTF

Shortest Completion Time First
Jobs might not all arrive at same time; preemption possible

Example: P1, P2, P3 of lengths 10,40,10 units arrive at different times

P2 P1 P2 P3 P2 P2 P2

0 10 20 B5 35 45 55 60 70 30
Time —m™m™m™™™@@™@8™@™™™

P1 arrives: switch P3 arrives: switch

20

Scheduling Policies/Algorithms

* In general, not all Arrival Times and Job Lengths will be known
betorehand. But preemption is possible.

® Key Principle: Inherent tension in scheduling between overdll
workload performance and allocation fairness

®* Performance metric is usually Average Turnaround Time

* Many fairness metrics exist, e.g., Jain’s fairness index

® 100s of scheduling policies stud

led! Well-known ones: FIFO, SJF,
STCF, Round Robin, Random, et

C.

® Different criteria for ranking; preemptive vs not

* Complex “multi-level feedback queue” schedulers

* ML-based schedulers are “hot” howadays!

Scheduling iIn ChatGPT

* Whatis the response fime

/ e Whatis the turnover time

-— 32 e What is failrness?

* Do we know the job lengthe

Can we run S1/52/S3
" E:CBINSIGHTS [o we serve v

FriendliAl & Analyst Briefing Submitted

‘ I— 7 Friendlial friendli.ai
inlly &

S3

Orca: A Distributed Serving System for Transformer-Based

Overview & Products Financials Alternatives & Competitors Customers
G e n e ra t Ive IVI o d e I S Founded Year Stage Total Raised
2021 Series A | Alive $6.74M
Authors: _ ‘ . . . Last Raised
Gyeong-In Yu and Joo Seong Jeong, Seoul National University; Geon-Woo Kim, FriendliAl and Seoul National University; Soojeong Kim, FriendliAl; Byung-Gon Chun, $6.74M | 2 yrs ago

FriendliAl and Seoul National University

Let’s Implement [t

PID1: (PID2] :PID3]

8- Physical
=, Processor

23

Concurrency

 Modern computers offen have multiple processors and

multiple cores per processor

« Concurrency: Multiple processors/cores run different/same
set of instructions simultaneously on different/shared data

| System-|
Agent &8

- il 'Memory!
==y | Controlles|

“including |

Hili Display;
BiEr T ilia DMI and
| 1] Misc: 1/0 7

Processor 0

Processor 1

Cora 0

Core 1

Cora 2

Cora 3

CPU

CPU

CPU

CPU

L1 Cache L1 Cache

L1 Cache L1 Cache

L2 Cache

L2 Cache

L=

System Memory

Let’s Implement [t

PID1: (PID2] :PID3]

—— Physical
=, | Processor

“Placement* naturally emerges:
Q: how 1o place processes on each processor so the objective is optimal?

Concurrency

Scheduling for multiprocessing/multicore Is more complex

Load Balancing: Ensuring different cores/proc. are kept roughly
equally busy, I.e., reduce idle times

Multi-queue multiprocessor scheduling (MOQMS) Is common
Each proc./core has its own job queue

OS moves jobs across queues based on load
Example Gantt chart for MQMS:

CPU 1: P1 P1 P3 P3 P3 P3 P1 P1 P1

CPU 2: P2 P2 P2 P1 P1 P2 P2 P3 P3
0 10 20 30 40 50 60 /0 30

26

	幻灯片 1: DSC 204A: Scalable Data Systems Winter 2024
	幻灯片 2: OS: basically, a software between apps and hardware
	幻灯片 3: Process management: Can we do better?
	幻灯片 4: Multiprocessing: A strawman solution
	幻灯片 5: Multiprocessing: A strawman solution
	幻灯片 6: Multiprocessing: A strawman solution
	幻灯片 7: Multiprocessing: Time sharing of processors
	幻灯片 8: Multiprocessing: Time sharing of processors
	幻灯片 9: Multiprocessing: Time sharing of processors
	幻灯片 10: Multiprocessing: Time sharing of processors
	幻灯片 11: Multiprocessing: Time sharing of processors
	幻灯片 12: Multiprocessing: Time sharing of multiple processors
	幻灯片 13: Let’s Implement It!
	幻灯片 14: Temporal Abstraction: Process State and CPU Time
	幻灯片 15: Scheduling Policies/Algorithms
	幻灯片 16: Scheduling Policy: FIFO
	幻灯片 17: Scheduling Policy: SJF
	幻灯片 18: Example Exam Q1: Round Robin Schedule
	幻灯片 19: Example Exam Q2: SCTF
	幻灯片 20: Scheduling Policies/Algorithms
	幻灯片 21: Scheduling in ChatGPT
	幻灯片 22: Let’s Implement It!
	幻灯片 23: Concurrency
	幻灯片 24: Let’s Implement It!
	幻灯片 26: Concurrency

