
DSC 204A: Scalable Data Systems

Winter 2024

1

https://hao-ai-lab.github.io/dsc204a-w24/

Foundations of Data Systems

Cloud

Machine Learning Systems

Big Data



Logistics 

• PA1: Release this Friday

• Topic: Setup Ray and write some distributed programs using Ray

• 2 weeks to finish

• TAs to use their office hours to do recitations for PA1

• Will send out a form for you to vote for preferred length and 

time slot

• Reading summary clarification

• You only need to submit 2 pages in total for all readings per 

week



Logistics 

• Need one more class today to wrap up OS

• This week reading:

• Understanding the cloud computing stack: SaaS, PaaS, and IaaS

• Above the Clouds: A Berkeley View of Cloud Computing 

• Two invited speaker confirmed (Dates TBD):

• Stephanie Wang (Ray core main contributor, Incoming AP@UW)

• Ion Stoica

Understanding the cloud computing stack: SaaS, PaaS, and IaaS



4

Recap Practice

Here is a Gantt Chart for 3 processes of the given lengths 

that arrive at the different times given.

A) What is the rough average response time? 

B) What is the rough average turnaround time?

C) Which scheduling policy/policies discussed in class (FIFO, 

SJF, SCTF, RR) may produce this given schedule? Explain 

clearly.



5

Review Preemption case: SCTF
❖ Shortest Completion Time First

❖ Jobs might not all arrive at same time; preemption possible

P2 P1 P2 P3 P2 P2 P2

0 10 20 25 35 45 55 60 70 80

Time

Example: P1, P2, P3 of lengths 10,40,10 units arrive at different times

P1 arrives; switch P3 arrives; switch



Let’s Implement It!

Physical 

Processor

OS’s virtualized CPU abstraction

PID1 PID2 PID3
…

GAP2: How to virtualize CPU resources temporally and spatially?

“Placement“naturally emerges:

Q: how to place processes on each processor so the objective is optimal?



7

Concurrency

❖ Scheduling for multiprocessing/multicore is more complex

❖ Load Balancing: Ensuring different cores/proc. are kept roughly 

equally busy, i.e., reduce idle times

❖ Multi-queue multiprocessor scheduling (MQMS) is common

❖ Each proc./core has its own job queue

❖ OS moves jobs across queues based on load

❖ Example Gantt chart for MQMS:

CPU 1: P1 P1 P3 P3 P3 P3 P1 P1 P1

CPU 2: P2 P2 P2 P1 P1 P2 P2 P3 P3

0 10 20 30 40 50 60 70 80



Placement in Deep Learning



9

Last Issue in PM: Inter-process communication (IPC)

Physical 

Processor

OS’s virtualized CPU abstraction

PID1 PID2 PID3
…

OS Scheduling

❖ Inter-process communication is provided in System Calls API



Recap

GPU
Registers

Memory

Stack

Heap

Code

Data

CPU
Registers

Memory

Stack

Heap

Code

Data …

GPU
Registers

Memory

Stack

Heap

Code

Data

• Strawman solution -> spatial-temporal sharing of CPUs with scheduling 

• Assign 1/3 of the memory to each APP

G1. Convenient?

G3: protection?

G2. Efficient?

• G2.1 can I run N processes but 

not N times slower?

• G2.2 can I run N apps with total 

mem > physical memory cap



11

Foundation of Data Systems: where we are

• Computer Organization

• Representation of Data

• Processors, memory, storages

• Operating System Basics

• Process, scheduling, concurrency

• Memory management

• File systems



In Reality

• We have a pool of memory shared across many processes

GPU
Registers

Memory

Stack

Heap

Code

Data

CPU
Registers

Stack

Heap

Code

Data …

GPU
Registers

Stack

Heap

Code

Data



13

Memory management v0

P0

P2

P1



14

Memory management v0: Internal fragmentations

Internal Fragmentation

P0

P2

P1

Internal Fragmentation



15

Memory management v1: use a smaller chunk

P0

P2

P1

Q: What is the maximum possible amount of internal 

fragmentation per process?



16

Memory management v1

P4

P1 finishes, P4 arrives
P0

P2

P1

P0

P2



17

Memory: v2

P4

P4 scheduled
P0

P2

P1

P0

P2



18

Memory: v2

P4

P5 arrived
P0

P2

P5

Problem:

There is enough memory for P5, but it 

cannot be scheduled.

external fragmentation

Q: How to address external fragmentation?



Other Problems?

P0

P2

P1

Problem: We can never schedule 

processes with their memory 

consumption greater than memory cap



Other Problems?

P0

P2

P1

Problem:

What if we are unsure about how much 

memory P0/P1/P2 will eventually use?



Other Problems?

P0

P2

P1
Problem:

What if we are unsure about how much 

memory P0/P1/P2 will eventually use?

P1_reserve is the reservation overhead

P1_reserve



Other Problems?

P0

P2

P1

What if we know exactly how much 

memory P0/P1/P2 will eventually use, 

any problem? 



Virtual Address Table

Virtual addresses physical pages

Address translation

Processes is given the 
impression that it is working 

with large, near-infinite, 
contiguous memory

P0

P2

P1

P0

P1

P1

P2

P0

P2

P1



24

Pages and virtual memory

• Page: An abstraction of fixed size chunks of memory/storage

• Page Frame: Virtual slot in DRAM to hold a page’s content

• Page size is usually an OS config

• e.g., 4KB to 16KB

• OS Memory Management can

• Identify pages uniquely

• Read/write page from/to disk when requested by a process

Virtualization of DRAM with Pages



25

Virtual Memory

• Virtual Address vs Physical Address:

• Physical is tricky and not flexible for programs

• Virtual gives “isolation” illusion when using DRAM

• OS and hardware work together to quickly perform address 

translation

• OS maintains free space list to tell which chunks of DRAM are 

available for new processes, avoid conflicts, etc.



Problem addressed?

P0

P2

P1

Problem: We can never schedule processes with 

their memory consumption greater than memory 

cap

Solution: create more virtual addresses than physical 

memory cap. Map additional ones to disk.



Problem addressed?

P0

P2

P1

Problem:

What if we are unsure about how much memory 

P0/P1/P2 will eventually use?

Reserve on virtual tables, resolve the mapping 

between virtual and physical pages on-the-fly



Problem addressed?

P0

P2

P1

What if we know exactly how much memory 

P0/P1/P2 will eventually use, any problem?

Because we do everything on the fly – we minimize 

opportunity cost 



Scheduling in ChatGPT

S1 Please help me on 

assignments…

S2 Please summarize 

the readings…

S3 Please tell a joke 

with 1000 words…

• How to allocate memory for 

LLM query?

• Hint: think each LLM query 

as a process

• Q: Why could this make per 

LLM request cheaper? 



30

Foundation of Data Systems: where we are

• Computer Organization

• Representation of Data

• Processors, memory, storages

• Operating System Basics

• Process, scheduling, concurrency

• Memory management

• File systems



31

Modules

“System Call” APIs

Process 

Management

Main Memory

Management
Filesystems

Device 

Drivers
Networking

Kernel 

Components

• System call: The core of an OS with modules to abstract the 

hardware and APIs for programs to use

Functionality

Virtualize

processor;

“Process”

abstraction;

Concurrency

Virtualize

Main Memory

Virtualize

disks; “File”

abstraction;

Persistence

Talk to

other I/O

devices

Commun.

over

network

Hardware device-specific programs

Hardware



32

Q: What is a file?



33



34

Abstractions: File and Directory

• File: A persistent sequence of bytes that stores a logically coherent 

digital object for an application

• File Format: An application-specific standard that dictates how to 

interpret and process a file’s bytes

• 100s of file formats exist (e.g., TXT, DOC, GIF, MPEG); varying data 

models/types, domain-specific, etc.

• Metadata: Summary or organizing info. about file content (aka 

payload) stored with file itself; format-dependent

• Directory: A cataloging structure with a list of references to files 

and/or (recursively) other directories

• Typically treated as a special kind of file

• Sub dir., Parent dir., Root dir.



35

Filesystem

• Filesystem: The part of OS that helps programs create, manage, and 

delete files on disk (sec. storage)

• Roughly split into logical level and physical level

• Logical level exposes file and dir. abstractions and offers System 

Call APIs for file handling

• Physical level works with disk firmware and moves bytes to/from 

disk to DRAM



36

Filesystem

• Dozens of filesystems exist, e.g., ext2, ext3, NTFS, etc.

• Differ on how they layer file and dir. abstractions as bytes, what 

metadata is stored, etc.

• Differ on how data integrity/reliability is assured, support for 

editing/resizing, compression/encryption, etc.

• Some can work with (“mounted” by) multiple OSs



37

Virtualization of File on Disk

• OS abstracts a file on disk as a virtual object for processes

• File Descriptor: An OS-assigned +ve integer identifier/reference for a 

file’s virtual object that a process can use

• 0/1/2 reserved for STDIN/STDOUT/STDERR

• File Handle: A PL’s abstraction on top of a file descr. (fd)


	幻灯片 1: DSC 204A: Scalable Data Systems Winter 2024
	幻灯片 2: Logistics 
	幻灯片 3: Logistics 
	幻灯片 4: Recap Practice
	幻灯片 5: Review Preemption case: SCTF
	幻灯片 6: Let’s Implement It!
	幻灯片 7: Concurrency
	幻灯片 8: Placement in Deep Learning
	幻灯片 9: Last Issue in PM: Inter-process communication (IPC)
	幻灯片 10: Recap
	幻灯片 11: Foundation of Data Systems: where we are
	幻灯片 12: In Reality
	幻灯片 13: Memory management v0
	幻灯片 14: Memory management v0: Internal fragmentations
	幻灯片 15: Memory management v1: use a smaller chunk
	幻灯片 16: Memory management v1
	幻灯片 17: Memory: v2
	幻灯片 18: Memory: v2
	幻灯片 19: Other Problems?
	幻灯片 20: Other Problems?
	幻灯片 21: Other Problems?
	幻灯片 22: Other Problems?
	幻灯片 23: Virtual Address Table
	幻灯片 24: Pages and virtual memory
	幻灯片 25: Virtual Memory
	幻灯片 26: Problem addressed?
	幻灯片 27: Problem addressed?
	幻灯片 28: Problem addressed?
	幻灯片 29: Scheduling in ChatGPT
	幻灯片 30: Foundation of Data Systems: where we are
	幻灯片 31: Modules
	幻灯片 32
	幻灯片 33
	幻灯片 34: Abstractions: File and Directory
	幻灯片 35: Filesystem
	幻灯片 36: Filesystem
	幻灯片 37: Virtualization of File on Disk

