https://hao-ai-lab.github.io/dsc204a-w24/

DSC 204A: Scalable Data Systems
Winter 2024

Machine Learning Systems
Big Data

Cloud

Foundations of Data Systems

Where We Are

Machine Learning Systems

Big Data

Cloud 2000 - 2016

Foundations of Data Systems 1980 - 2000

L OgistiCS

* AWS did not response to UCSD request this quarter

* Hence most courses requiring AWS Educate do not get credits
®* TAs slightly adjust PA1 to make it compatible with your laptop
* Future PA will still need access to clusters/GPUs

®* But we are figuring our alternative solutions

Part 2: Cloud Computing and Distributed Systems

* Infro to Cloud Compute

®* Neftworking

® Distributed Storage and file systems
® Distributed Computing

* Parallelism and consistency

* Advanced Topics

Today's topic

* Why cloud computinge
* Need-based argument
* Utility-based argument
* High-level Intfroduction of Cloud Computing:
* Cloud computing evolution - sharing granularity
* Cloud computing layers
* Advantages of Cloud computing

Background of Cloud Computing

* 1990: Heyday of parallel computing, multi-processors

* 52% growth Iin performance per year!

107 -

e 2002: The thermal wall
* Speed (frequency) peaks,

—

=
]
1

but transistors keep
shrinking

MIF S/ CPU clock speed

—
=
|

* The Multicore revolution
* 15-20 years later than

107 -

predicted, we have hit

th e p e rfo rm an Ce Wal I 'IQ:EEI 19:55 1EIIEI:I r‘l EIIELE EIIII:II:I .'EI:I::IE EEII'II:I

At the same time...

* Amount of stored data is exploding...
il

me |
FLODOIISL m?ﬁ;::‘g?éﬂ“
sasizussasd il benses Jﬁ!:!ﬂ!i-thﬂ"
The data deluge

Competing on

nature Analytics

Vi ot By ot v

FROMSCAL CruoMe :
I R ekt ’,‘ :

SCIENCE IN THE
PETABYTEERA

Data Explosion

* Billions of users connected through the net
* WWW, FB, twitter, cell phones, ...

* Storage getting cheaper
* Store more data!
* Processing these data e
Q.01 3 o
* Need more FLOPS! L

Year

Solving the Impedance Mismatch

* Computers not getting faster, and we are drowning Iin data

* How to resolve the dilemma?

* Solution adopted by web-scale companies

* Go massively distributed and parallel

Enter the World of Distributed Systems

* Distributed Systems/Computing
°* Loosely coupled set of computers, communicating through message
passing, solving a common goal

* Distributed computing is challenging
* Dealing with partial failures (examples?)
* Dealing with asynchrony (examples?)

* Distributed Computing versus Parallel Computing?
* distributed computing=parallel computing + partial failures

Dealing with Distribution: Programming (Part 3)

* We have seen several of the tools that help with distributed
programming
* Message Passing Interface (MPI)
* Distributed Shared Memory (DSM)
* Remote Procedure Calls (RPC)

* But, distributed programming Is still very hard

* Programming for scale, fault-tolerance, consistency, ...

Recap: Basics of Computer Organization

To store and retneve data, we need:
» Storages and Disks

 Memory

To process data:

* Processors: CPU and GPU

To retneve data from remote

o Networks

Fverything Goes Distributed

To store and retneve data, we need:
» Distnbuted storage and disks
 Distributed and shared Memory
To process data:

« Disnouted CPU and GPU

To retneve data from remote

e Networks

The Datacenter is the new Computer

% MORGANN CLAYPOOL PUBLISHERS

The Datacenter

as a Computer

An Introduction to the Design
of Warehouse-Scale Machines

Luiz Andre Barroso
Urs Holzle

SYNTHESIS LECTURES ON
CoMPUTER ARCHITECTURE

Mk D, Hill, Seies Editr

* ‘Program” == Web search, emall,
map/GIS, ...

+ “Computer”==10,000's computers,
storage, network

o \Warehouse-sized facilities and
workloads

» Built from less reliable components
than traditional datacenters

Datacenter/Cloud Computing OS

* |f the datacenter/cloud is the new computer

* What is its Operating System?

Classical Operating Systems

* Data storage and sharing

® files, Inter-Process Communication, ...

* Programming Abstractions

* system calls, APlIs, libraries, ...

* Multiplexing of resources

®* Scheduling, virtfual memory, file systems, ...

Datacenter/Cloud Operating System

®* Data sharing

®* key/value stores, distributed storage, data warehouse

* Programming Abstractions

* MapReduce, PIG, Hive, Spark, Ray

* Multiplexing of resources
* YARN (MRvV2), ZooKeeper, BookKeeper, K8&S, ...

Pioneer: Google Cloud Infrastructure

* Google File System (GFS), 2003
* Distributed File System for entire

cluster

* Google MapReduce (MR), 2004
® Runs queries/jobs on data
* Manages work distribution & fauli-
tolerance
* Colocated with file system

* Apache open source versions Hadoop

The Google File System

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung

Google-

ABSTRACT
We have designed and implemented the Google File Sys-
tem, a scalable distributed file system for large distributed
data-intensive applications. It provides fault tolerance while
runaing on inexpensive commodity hardware, and it delivers
high aggregate performance to a large number of clients.

While zharing many of the same goalz asz previous dis
tributed fle systems, our design has been driven by obser-
vations of our application workloads and technological envi-
ronment, both current and anticipated, that reflect a marked
departure from some earlier file system assumptions. This
has led us to reexamine traditional choices and explore rad-
ically different design pointa.

The file system has successfully met our storage needs,
It iz widely deployed within Google as the storage platform
£ P I - L - E——— -

T T N - -

1. INTRODUCTION

We have designed and implemented the Google File Sys-
tem (GFS) to meet the rapidly growing demands of Google's
data processing needs. GFS shares many of the same goals
as previous distributed file svstems such as performance,
scalability, reliability, and availability, However, its design
has been driven by key observations of our application work-
loads and technological environment, both current and an-
ticipated, that reflect a marked departure from some earlier
file system design assumpitions. We have reexamined tradi-
tional cholces and explored radically different points in the
design space.

First, component failures are the norm rather than the
exception. The file systom consists of hundreds or even
thousands of storage machines built from inexpensive com-

wenmlitse sawts amed de scsossod e s sesseaeslbhle s bae sf

MapReduce: Simplified Data Processing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat

jeff@ google.com, sanjay @ google.com

Google, Inc.

Abstract

MapReduce 1s a programming model and an associ-
ated implementation for processing and generating large
data sets. Users specify a map function that processes a
key/value pair to generate 2 set of intermediate key/value
pairs, and a reduce function that merges all intermediate
values associated with the same intermediate key, Many
real world tasks are expressible in this model, as shown
in the paper.

Programs written in this functional style are automati-
cally parallehized and executed on a large cluster of com-
modity machines. The run-time system takes care of the
details of partitioning the input data, scheduling the pro-

given day, ete. Most such computations are conceplu-
ally straightforward. However, the input data 1s usually
large and the computations have to be distributed across
hundreds or thousands of machines in order to fimish in
& reasonable amount of tme. The 1ssues of how o par-
allelize the computation, distribute the data, and handle
failures conspire to obscure the original simple compu-
tation with large amounts of complex code to deal with
these issues.

As a reaction to this complexity, we designed a new
abstraction that allows us 1o express the simple computa-
tions we were trying to perform but hides the messy de-
tzils of parallelization, fault-tolerance, data distribution
and load balancing in a library. Our abstraction 1s in-

DFS and Hadoop MR

Open Question after class

Google has pioneered and created many distributed systems and
technologies that shape today’s cloud computing, but why Amazon (and
even Microsoft) wins over Google Cloud (GCP) on Cloud computing market

sharese

Summary: need-based argument

Need more compute and sforage Single computer hits physical limits

|

Distributed Computing

Cloud has a lot of compute and storage

Summary: need-based argument

Need more compute and sforage Single computer hits physical limits

Distnbuted Computing

On-premise or supercomputers
also have alot of compute and
storage

Cloud has a lot of compute and storage

22

Today's topic

* Why cloud computinge
* Need-based argument
* Utility-based argument
* High-level Intfroduction of Cloud Computing:
* Cloud computing evolution - sharing granularity
* Cloud computing layers
* Advantages of Cloud computing

Consider a Use Case

* A company needs more compute and storage

Traditional Model

 We manage and store
computes on premise

« Responsible for secunty

« Responsible for power

* Responsible for network

« Responsible for ...

Consider a Use Case

* A company needs more compute and storage

Traditional Model

f we heed more computers (a.k.a.

we want to scale)

* We order computers

« They are delivered to our site

* We install them and connect
them to the cluster via network.

Summit

Supercomputer :

Consider a Use Case

* A company needs more compute and s

—

Traditional Model
If updates or secunty patches are

Issued : Summit or OLCF-4 is a supercomputer developed by IBM for
use at Oak Ridge Leadership Computing Facility, a facility at

° We mO ke Sure This iS TO ken COre the Oak Ridge National Laboratory, capable of 200

petaFLOPS thus making it the 5th fastest supercomputer in

Of for eOCh Compu-l-er in The the world after Frontier, Fugaku, LUMI, and Leonardo, with

Frontier being the fastest. Wikipedia

C\USTGI’ Speed: 200 petaFLOPS (peak)

Architecture: 9,216 POWERS 22-core CPUs; 27,648 Nvidia
Tesla V100 GPUs

Q More images

Operating system: Red Hat Enterprise Linux (RHEL)
Power: 13 MW

Purpose: Scientific research

Ranking: TOP500: 5

Storage: 250 PB

Cloud Computing Early Concept: Utility computing

* Utility computing
* From concept of a public utility such as water or electricity
* Consider: everyday electricity usage
® |[tis summer, we turn on A/C
* We do not nofity electric company when we need more electricity.
It Is Just There.
* We do not go to hardware store buy/install more generators
* |fis Spring, we furn off A/C
* We do not notity electric company when we need less
* [tIs Winter, we turn on heater
* My usage goes up and down, but | just use

Early Concept: Utllity computing

* Utility computing
* Compute power is avallable on demand
®* | can scale up or down as needed
* | don't need to determine needs in advance

* Not the case any more for GPU market

Consider a Use Case

* A company needs distributed compute and storage

Traditional Model Utility computing
e Determine needs in advance * Don't worry about accurately
« QOverestmate -> unused estimating needs
compute « Paywhatitis used
» Underestimate -> shortage and » Scale up and down

walting

Consider a Use Case

* A company needs distributed compute and storage

Traditional Model Utility computing

« The company provides on-site « Cloud infra company provides
securnty securnty

» We provide backup power for » Cloud infra company provide

emergencies emergency or fault folerance

30

Cloud Computing

* Compute, storage, memory, networking, etc. are virtualized
and exist on remofte servers; rented by application users

* The opposite:

* On-premises refers to IT infrastructure hardware and
software applications that are hosted on-site.

32

Evolution of Cloud Infrastructure

* Data Center: Physical space from which a cloud is operated
* 3 generations of data centers/clouds:

* Cloud 1.0 (Past)

* Cloud 2.0 (Current)

* Cloud 3.0 (Ongoing Research)

Car Analogy

Own a car Rent a car City car-sharing
(Bare metal servers) (VPS) SIEESY

Cars are parked 95% of the time (loige.link/car-parked-95)
How much do you use the car?

s://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona

https://www.slideshare.net/loige/building-a-serverless-company-with-nodejs-react-and-the-serverless-framework-jsday-2017-verona

34

Cloud 1.0 (Past)

* Networked servers:

® Userrents servers (time-sliced access) needed for
data/software

35

From Lecture 5;
Virtualization of Hardware Resources

Q: But is It not risky/foolish for OS to hand off control of
hardware to a process (random user-written program)?!

* OS has mechanisms and policies 1o regain conftrol
* Virtualization:

* Fach hardware resource is tfreated as a virtual entity that OS can
divvy up among processes in a controlled way

* [Imited Direct Execution:

* OS mechanism to time-share CPU and preempt a process to run a
different one, aka “context switch”

* A Scheduling policy tells OS what time-sharing to use

® Processes also must franster control to OS for “privieged”
operations (e.g., I/O); System Calls API

36

Cloud 2.0 (Current)

* “Virtualization” of networked servers;
® User rents amount of resource capacity (e.g., memory, disk);

* Cloud provider has a lot more flexibility on provisioning (multi-
tenancy, load balancing, more elasticity, etc.)

37

Parallelism in the Cloud

ll

. . .
T T T

Shared-Disk
Parallelism

Modern networks in data centers have
become much faster: T00GbE 1o even TbE!

®* Decoupling of compute+memory
from storage is common in cloud

* Hybrids of shared-disk parallelism +
shared-nothing parallelism

®* £.g, store datasets on S3 and read
as needed to local EBS

Cloud 3.0 (Ongoing Research)

* Full resource disaggregation! That is,
compute, memory, storage, efc. are
all network-attached and elastically
added/removed

® User gives a program (function) to =

Request

run and specifies CPU and DRAM m
needed alﬁ

* Cloud provider abstracts away all
resource provisioning entirely

* Aka Function-as-a-Service (Faas)

33

Reguest-1D

Public VM IP

Virtual Machine (VM)
Public VM IF, CPU / Memory, Uptime

Container
Instance-Root-1D
Function Instance Private IP
<f=
Container
Function _
Name, Runtime, Memory Fugmn

Function-Instance-1D

L@

Serverless Provider

Instance-Launching /
Auto Scaling

request round-trip-time (ms)
request processing time (ms)

Cloud 3.0 (Ongoing Research)

® “Serverless” and disaggregated resources all
connected to fast networks

® Serverless paradigm gaining traction for some

applications, e.g., online ML prediction serving OUSer call
on welbsites .
. .. ’ Response time .
¢ ngher resource efficiency; much cheaper, _
. i Cold Start User
often by 10x vs Spot instances 3
) Life of the Lambda ”
Cold start
Keep warm - t_
E esponse iime

Life of the Lambda . Life of the Lambda

39

New Cloud Renting Paradigms

Cloud 2.0’s flexibility enables radically different paradigms
AWS example below; Azure and GCP have similar gradations

AWS EC2 Consumption Models

On-Demand Reserved Spot

Pay for compute capacity by Significant discount comparedto | Spare EC2 capacity for up to 90%
the second or hour with no On-Demand instance pricing off the On-Demand price.
long-term commitments

For spiky workloads or to Steady state applications or For fault tolerant, instance flexible
define needs initially predictable usage, databases or time-insensitive workloads

NI

40

https://www.slideshare.net/ AWSUsersGroupBengalu/amazon-ec2-spot-instances

https://www.slideshare.net/AWSUsersGroupBengalu/amazon-ec2-spot-instances

More on Spoft vs On-Demand

Launch time

Available
capacity

Hourly price

Rebalance
recommendation

Instance
interruption

Spot Instances

Can only be launched immediately if the Spot Request is active and capacity is available.

If capacity is not available, the Spot Request continues to automatically make the launch
request until capacity becomes available.

The hourly price for Spot Instances varies based on demand.

The signal that Amazon EC2 emits for a running Spot Instance when the instance is at an
elevated risk of interruption.

You can stop and start an Amazon EBS-backed Spot Instance. In addition, the Amazon EC2
Spot service can interrupt an individual Spot Instance if capacity is no longer available, the
Spot price exceeds your maximum price, or demand for Spot Instances increases.

On-Demand Instances

Can only be launched
immediately if you make a
manual launch request and
capacity is available.

If capacity is not available when
you make a launch request, you

get an insufficient capacity error
(ICE).

The hourly price for On-Demand
Instances is static.

You determine when an On-
Demand Instance is interrupted
(stopped, hibernated, or
terminated).

You determine when an On-
Demand Instance is interrupted
(stopped, hibernated, or
terminated).

41

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html

42

Advantage and disadvantage

* Cloud 1.0:
* +: Simple, Perfect isolation,
* - : Expensive.
* Cloud 2.0:
* +: Cheaper than Cloud 1.0.
® - . Some resource waste
* Cloud 3.0:
* +: Cheapest
* - . Cold-start issues, Security & Privacy, Hard to manage.

43

Recap: Cloud Computing v.s. on-premise clusters

* Compute, storage, memory, networking, etc. are virfualized
and exist on remote servers; rented by application users

* Main pros of cloud vs on-premise clusters:
* Manageability: Managing hardware is not user’s problem
®* Pay-as-you-go: Fine-grained pricing economics based on
actual usage (granularity: seconds to years!)

* Elasticity: Can dynamically add or reduce capacity based
on actual workload’s demand

* |Infrastructure-as-a-Service (laas); Platform-as-a-Service (Paas);
Software-as-a-Service (Saas)

However, we are In an awkward ero

@ OpenAl GO

Google DeepMind

O\ Meta

@t Microsoft ~ aws £y Google Cloud

uipoyo 11014

However

There Is a trend of bullding on-premise super computers again

‘J @‘ SN oM o
| g |
L B B B B N
TR T T S

SOOI O LI - Cow

	幻灯片 1: DSC 204A: Scalable Data Systems Winter 2024
	幻灯片 2: Where We Are
	幻灯片 3: Logistics
	幻灯片 4: Part 2: Cloud Computing and Distributed Systems
	幻灯片 5: Today’s topic
	幻灯片 6: Background of Cloud Computing
	幻灯片 7: At the same time…
	幻灯片 8: Data Explosion
	幻灯片 9: Solving the Impedance Mismatch
	幻灯片 10: Enter the World of Distributed Systems
	幻灯片 11: Dealing with Distribution: Programming (Part 3)
	幻灯片 12: Recap: Basics of Computer Organization
	幻灯片 13: Everything Goes Distributed
	幻灯片 14: The Datacenter is the new Computer
	幻灯片 15: Datacenter/Cloud Computing OS
	幻灯片 16: Classical Operating Systems
	幻灯片 17: Datacenter/Cloud Operating System
	幻灯片 18: Pioneer: Google Cloud Infrastructure
	幻灯片 19: Open Question after class
	幻灯片 20: Summary: need-based argument
	幻灯片 21: Summary: need-based argument
	幻灯片 22: Today’s topic
	幻灯片 23: Consider a Use Case
	幻灯片 24: Consider a Use Case
	幻灯片 25: Consider a Use Case
	幻灯片 26: Cloud Computing Early Concept: Utility computing
	幻灯片 27: Early Concept: Utility computing
	幻灯片 28: Consider a Use Case
	幻灯片 29: Consider a Use Case
	幻灯片 30: Cloud Computing
	幻灯片 32: Evolution of Cloud Infrastructure
	幻灯片 33: Car Analogy
	幻灯片 34: Cloud 1.0 (Past)
	幻灯片 35: From Lecture 5: Virtualization of Hardware Resources
	幻灯片 36: Cloud 2.0 (Current)
	幻灯片 37: Parallelism in the Cloud
	幻灯片 38: Cloud 3.0 (Ongoing Research)
	幻灯片 39: Cloud 3.0 (Ongoing Research)
	幻灯片 40: New Cloud Renting Paradigms
	幻灯片 41: More on Spot vs On-Demand
	幻灯片 42: Advantage and disadvantage
	幻灯片 43: Recap: Cloud Computing v.s. on-premise clusters
	幻灯片 44: However, we are in an awkward era
	幻灯片 45: However

