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Outline

1. What is Ray?
a. History of open-source project and system architecture

2. Ray Data deep dive

3. What's next for Ray?



Why Ray?

Trends:

1. Al compute demands exploding — Need scale

2. Al application diversity exploding — Need flexibility



Ray: A Unified System for ML

ML libraries

Hyperparameter Distributed : : Data Stream
_ Simulation Inference : :
Search Training Processing processing

On a single node, Python libraries are the key to app development:
+ Performance: Libraries often optimized with native code.
+ Developer productivity: Easily compose libraries with function calls.

Problem: In the distributed setting, need to address domain-specific
problems in scheduling, fault tolerance, etc.



Ray: A Unified System for ML

Distributed Distributed Distributed || Distributed Distributed Distributed
System System System System System System
Hyperparameter Distributed Simulation Inference Data Stream

Search Training Processing processing

- Developer productivity: Orchestration? Data movement?

- Performance: End-to-end performance? Future-proof systems?



Ray: A Unified System for ML
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GitHub star history

® / apache/spark

® % kubeflow/kubeflow
= mlflow/mlflow
> ray—project/ray

30.0k
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Date %} star—history.com



History of Ray

e 2016: Started development of v0.1 at UC Berkeley, in the RISELab

o First version in Rust: https://qithub.com/amplab/orchestra

o C++ prototype with gRPC: https://github.com/ray-project/ray-legacy

o C prototype
o May 2017: v0.1 released



https://github.com/amplab/orchestra
https://github.com/ray-project/ray-legacy
https://github.com/ray-project/ray/tree/ray-0.1.0

History of Ray

e 2016: Started development of v0.1 at UC Berkeley, in the RISELab

e 2017: Tune (hyperparameter search) and RLIib (reinforcement learning)
libraries

e 2018: Rewrite Ray core in C++; first Ray paper at OSDI'18

e 2019: Anyscale founded; began second rewrite of Ray core

e 2020: Ray v1.0 released; first Ray Summit; Serve (ML serving) library
e 2021: Ray v1.0 paper at NSDI'21; Ray Data

e 2022: Ray v2.0; OpenAl releases ChatGPT

e 2023: Ray beats Spark on CloudSort world record



Ray: A Unified System for ML

Libraries
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Ray: A Unified System for ML

Libraries
. RLlIib Ray Serve
Ray Tune/Train- -~~~ -------------- o Ray Data_
1 Hyperparameter |1 | Distributed i Simulation :: Inference : Data Stream
: Search : Training |, i : Processing processing
| 1

____________________________________

N e -

Remote functions and classes

0%) RAY (Core): A general-purpose distributed execution layer
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The Ray API

Tasks

def f(shape):
return np.zeros(shape)

def add(a, b):
return a + b



The Ray API

Tasks

@ray.remote
def f(shape):
return np.zeros(shape)

@ray.remote
def add(a, b):
return a + b



The Ray API

Tasks

@ray.remote
def f(shape):
return np.zeros(shape)

@ray.remote
def add(a, b):
return a + b

@ f.remote([5, 5])

ol is a;

...future: The eventual value will be
computed by f.



The Ray API

Tasks

@ray.remote
def f(shape):
return np.zeros(shape)

@ray.remote
def add(a, b): :
olis a:

return a + b
...future: The eventual value will be
@ f.remote([5, 5]) computed by f.

...remote reference: The value may be
stored on a remote node (in Ray’s
distributed object store).



The Ray API

Tasks

@ray.remote
def f(shape):
return np.zeros(shape)

@ray.remote
def add(a, b):

return a + b olis a:

...future: The eventual value will be

ol = f.remote([5, 5])

02 = f.remote([5, 5]) computed by ¥.

03 = add.remote(ol, o02) ...remote reference: The value may be
result = ray.get(o3) stored on a remote node (in Ray’s

distributed object store).



The Ray API

Tasks

@ray.remote
def f(shape):
return np.zeros(shape)

@ray.remote
def add(a, b):
return a + b

ol = f.remote([5, 5])
02 = f.remote([5, 5])
03 = add.remote(ol, 02)
result = ray.get(o3)

class Counter(object):
def init (self):
self.value = 0
def inc(self):
self.value += 1
return self.value



The Ray API

Tasks

@ray.remote
def f(shape):
return np.zeros(shape)

@ray.remote
def add(a, b):
return a + b

ol = f.remote([5, 5])
02 = f.remote([5, 5])
03 = add.remote(ol, 02)
result = ray.get(o3)

Actors

@ray.remote
class Counter(object):
def init (self):
self.value = 0
def inc(self):
self.value += 1
return self.value



The Ray API

Tasks

@ray.remote
def f(shape):
return np.zeros(shape)

@ray.remote
def add(a, b):
return a + b

ol = f.remote([5, 5])
02 = f.remote([5, 5])
03 = add.remote(ol, 02)
result = ray.get(o3)

Actors

@ray.remote
class Counter(object):
def init (self):
self.value = 0
def inc(self):
self.value += 1
return self.value

c = Counter.remote()

04 = c.inc.remote()

05 = c.inc.remote()

# Returns [1, 2].

result = ray.get([o4, 05])



2018: Ray pre-1.0 Architecture

I Driver II Worker I | Worker " Worker I
1T = = 1 B ol | Distributed object store to
| Object Store Object Store : J
e e —— === - I store task args and returns
Scheduler < : | | : > Scheduler
- | | Debugging |
Lineage Store | Profiling |
I | Web Ul |

Slides from OSDI'18  «GJobal control store” (GCS): holds all system state, other components stateless



2018: Ray pre-1.0 Architecture

I Driver II Worker I

I Worker " Worker

Aetaie‘Store

Objev&w}

Scheduler

= =

Scheduler

?

?

yY¥—

[

Lineage Store

“Global control store” (GCS)

Performance: every task and
object involved multiple
messages with the
scheduler, object store, and
GCS.

Including actors (where
location of worker is already
known).

| Debuggmg I

| Profiling |

| Web Ul
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2018: Ray pre-1.0 Architecture

Fault tolerance:

Didn’t work in a lot of cases: actors,

| Driver || worker | serialized ObjectRefs, etc.

I Object Store I

Decentralized design made system
more unstable.

Scheduler ¢ :

Without automatic memory
management, could not

failures and OOM.

Lineage Store

L | | distinguish between machine
\_ [ ]
|

“Global control store” (GCS)

Web Ul
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2018: Designing Ray v1.0

Problems:
e Decentralized design added a lot of overhead, especially for actor tasks.
e System complexity created instability under load and failures.
e Need automatic memory management for better stability.
o But this would've added even more overhead and complexity!

— Ray v1.0: We need to redesign the metadata control plane.



2018: Designing Ray v1.0

Some parallel Ideas:

e Performance: Reduce load from lower system components by having
workers send tasks directly to each other via RPC.

e Reducing complexity: Instead of decentralizing by storing all system state in
GCS, let’'s keep the decentralized part but introduce some notion of metadata

ownership.

o Who should the owner be? Automatic memory management makes this
answer obvious: the owner should be the original reference holder (the
worker that created the original ObjectRef)!



B Rayo0.7
B Rayo0s
B oRPC 1.2 (Python)

2018: Key metrics leading up to Ray v1.0

Object Transfer Throughput

Actor Call Latency

16MiB object

0 100 200 300 1GiB object

Latency (microseconds)

Stability changes that are harder to quantify:
e Task retries
e Automatic memory management

Transfer throughput (Gbps)



2020: A distributed futures system for fine-grained tasks

For generality, the system must impose low overhead.
Analogy: gRPC can execute millions of tasks/s. Can we do the same for
distributed futures? — futures whose values can be stored anywhere

Goal: Build a distributed futures system that guarantees fault tolerance with low
task overhead. — Note the similarity! :)

Enable applications that dynamically generate fine-grained tasks. — Check
out the paper[1] for more details!

Slides from NSDI'21 [1] Ownership: A Distributed Futures System for Fine-Grained Tasks. NSDI, 2021.



2020: Distributed futures introduce shared state

Legend driver
() Task (RPC)
- --» |nvocation

— Data dependency add(o1,02)

Slides from NSDI’'21



2020: Distributed futures introduce shared state

Multiple processes refer to the same value.

driver
1. The process that specifies how the /Q
value is created and used. g .

£ O
2. The process that creates the value.

3. The process that uses the value. £0) (5/ 02

4. The physical location of the value.

add(ol,02)

Dereferencing a distributed future requires coordination.

Slides from NSDI’'21



2020: Our approach: Ownership

Existing solutions do not take advantage of the inherent structure of
a distributed futures application. Q

driver

1. Task graphs are hierarchical. " 7°- ’O

2. Adistributed future is often
passed within the scope of the
caller.

Slides from NSDI’'21



2020: Our approach: Ownership

Existing solutions do not take advantage of the inherent structure of

a distributed futures application. dri
river

1. Task graphs are hierarchical. Q

2. Adistributed future is often P K *
passed within the scope of the ol ::6
add(ol,02)

caller. ’ —
10 O

Insight: By leveraging the structure of distributed futures applications,

we can decentralize without requiring expensive coordination.
Slides from NSDI'21




2020: Our approach: Ownership

Insight: By leveraging the structure of distributed futures applications,
we can decentralize without requiring expensive coordination.

Architecture Failure handling Performance
Ownership:  Each worker is a No additional writes on
The worker that | “centralized master” for | the critical path of task
calls a task owns the objects that it owns. execution. Scaling
the returned  Use supervision to through nested
distributed future.  handle owner failure. function calls.

Slides from NSDI’'21



Today: When to use Ray Core?

Ray Tune/ RLlib ¥ Ray | Ray vLLM
Train Serve | Data

Coarse-grained (process-level) 4 4 4 4 4

orchestration

Note: There are also benefits when composing libraries!




Ray Data: Scalable datasets for ML



Ray Data is a flexible and scalable data processing library

+ Ease of use: Python-native, easy deployment via Ray Core

+ Transparent scale: Transparent fault tolerance, resource management, data
partitioning and placement, pipelining, heterogeneous clusters

+ Flexibility: Pipelining between CPU and GPU tasks; native support for
tabular, image, (Anyscale-only) audio/video



Ray Data is a flexible and scalable data processing library

Offline use cases: Dataset creation

- Large-scale shuffle operations (deduping, groupby, etc)
- Batch inference
- Vector database and index creation

Online processing: Overlapping and scaling CPU+GPU applications

- Data loading + last-mile preprocessing for (distributed) training
- RAG pipelines



Ray Data is a flexible and scalable data processing library

Offline use cases: Dataset creation

- Large-scale shuffle operations (deduping, groupby, etc)
- Batch inference
- Vector database and index creation

Online processing: Overlapping and scaling CPU+GPU applications

- Data loading + last-mile preprocessing for (distributed) training
- RAG pipelines



Data loading for ML training

Storage
\Cloud storage or/
local disk

HERE GPU

Dataset

HNEEEEEE
‘AN

Needs to be fast, to maximize GPU utilization.
Needs to scale to large datasets and clusters.

— Large dataset — Must stream through memory



Data loading for ML training

Storage
\Cloud storage or/ GPU GPU
local disk — ——y
Dataset
EEEEEEEN GPU GPU
HEEN

Needs to be fast, to maximize GPU utilization.
Needs to scale to large datasets and clusters.
— Large dataset — Must stream through memory

— Cluster — Must send data over the network



Data loading for ML training
N — -

Storage
\Cloud storage or/ GPU ~— GPU
|Oca| d|Sk () —_—Wi
Dataset : I —
EEEEEEEE GPU GPU
HEER B

Needs to be fast, to maximize GPU utilization.
Needs to scale to large datasets and clusters.
Needs to be flexible, to support arbitrary preprocessing.

— Data can have different: storage, modality, preprocessing,
memory footprint, ordering, ...




Ray Data is...

Training ResNet-50 (image Fast . Parallelize S3 reads
classification) on a raw S3 dataset

10 GB/s

7.50 GB/s

5GB/s

15GPUs
2.50 GB/s l | |
mey -
10 GPUs e 12: 1200 W?Tr 14:00 . 14:30 15:00
Same time window
5 GPUs

Control memory usage

Maximize GPU utilization

931GiB
0 GPUs
12:30 13:00 13:30 14:00 14:30 15:00 638.GiB
Streaming execution in v2.4+. e
Shared-memory data loading. O
0B =

11:00 11:30 12:00 2:30 13:00 13:30




Ray Data is...
Fast Scalable

Node GPU (hardware utilization) Ray Data vs. Torch DatalLoader (No caching)

206FU8 = Torch Dataloader = Ray Data
25000 ™ Ray Data (Heterogeneous Cluster)

156PUs 20395

N
o
o
o
o

-
o
o
o
o

10 GPUs
11821

Throughput (img/s)
g
8

5GPUs 50001022 s 2033 164:908 3945
perts 12:30 13:00 13:30 14:00 14:30 ’ 1 2 4 16

' i i # Nodes
Streaming execution. Heterogeneous clusters.

Shared-memory data Automatic failure recovery.

loading.

Flexible

e a
A/

72 NumPy O PyTorch f

TensorFlow
Parquet XﬁER0W>>>

text E
a

Query planner for building
arbitrary data preprocessing
pipelines.

\\ NEK




Ray Data design

node

Rl

LRay shared -memory object store

o

worker

worker

worker

®

Ray task

How are workers implemented?
— Ray core — generic dist. compute



Ray Data design

Additional overheads compared to "multiprocessing :
- Copy preprocessed data in shared memory
- Ray core task overhead (<1ms per task)

But in return:
+ Automatically partition data

+ Scheduler can control execution to dynamically load-balance
and limit memory usage

+ Recover from failures without having to restart

Get distributed features from Ray core “for free”.



Ray Data with distributed trainers

Ray shared+‘memory\object store

|
Ray task ‘

worker | | worker

node
‘ GPU
~Ray object _ ™
(preprocessed
batches)

node

GPU

L.

Ray shared memory object store

oo

worker | | worker

|

Ray Data routes batches based on data locality and load-balancing.




Caching Ray Datasets with ds.materialize()

node

HEEI

Ray shared-memory object store

worker | | worker

node

GPU

L-/

"% am

-J
Ray shared-memory object store

worker

worker

Data can be cached at any stage of preprocessing. Ray core automatically

spills to disk to avoid out-of-memory.




Ray Data with heterogeneous clusters

node node

GPU
/‘\ P w i
LRay shared+‘memory\object store LRay shared -memory object storeJ

worker | | worker worker | | worker

Data produced by remote tasks gets moved to the trainer node in the background.



Data loading for ML training features

Single-node + distributed:
- Automatic dataset partitioning and load-balancing across workers
- Automatic memory limits
- Recover from failures without restarting training
- Cache materialized datasets in-memory and on-disk
Distributed features:

- Heterogeneous clusters: Scale CPU-based data preprocessing separately from
GPU-based training

- Locality-based scheduling

- (soon) Autoscaling clusters

Flexibility!



ImageNet scalability benchmark on S3

0%9 RAY v2.4+
I' LOGCI imqges /ds = ray.data.read_images( \
from S3 pqth “s3://bucket”

)
ds = ds.map (
crop and flip image

N\ Y,




ImageNet scalability benchmark on S3

0S» RAY v2.4+
1. Load imClgeS /ds = ray.data.read images ( \
from S3 pCIth | “s3://bucket”
ds = ds.map (
2. A I crop _and flip image
preprocessing
fn to images Query
optimizer
[ N

ds = ds.map (
read images->
crop and flip image

)

- /




1.

ImageNet scalability benchmark on S3

Load images
from S3 path

Apply
preprocessing
fn to images

Ingest with
Ray Train
TorchTrainer

0S» RAY v2.4+

-~

ds

)
ds

\

= ray.data.read images (
“s3://bucket”

= ds.map (
crop and flip image

~

)

-

def train_loop per_ worker (batch iter :

\

ray.data.Datalterator) :

# Batch Iterator over Ray Dataset/Torch Dataloader

for batch in batch iter:




ImageNet scalability benchmark on S3

Ray Data vs. Torch DatalLoader (No caching)
= Torch Dataloader = Ray Data

12500 11821 12352 Node setup: g4dn.xlarge

e 16 VvCPU

e 1NVIDIAT4 GPU

e 64 GiB memory

Dataset:

e ImageNet, stored as raw
images (JPG) on S3

e Each trainer reads about
10GB of images

10000

7500

5000 3908 3245

2500 20331645
1022 798

Throughput (img/s)

1 2 4 16
# Nodes

Ray Data is fast and scalable, matching manually tuned
Torch Dataloader in a distributed setting.



Implementation Details

Torch required tedious wrangling:

0Sp RAY v2.4+

-~

ds = ray.data.read images (
“s3://bucket”

)

ds =

ds.map (crop and flip image)

\

~

Custom S3 Datal.oader
implementation

Manual tuning of num_workers
Manual partitioning of input
dataset files to each worker

/

O PyTorch dataloader

def load_ image (inputs) :
import io
from PIL import Image

url, fd = inputs
data = fd.file obj.read()
image = Image.open (io.BytesIO(data))
image = image.convert ("RGB")
if transform is not None:

image crop_and_flip image (image)
return image

class FileURLDataset:
def _ init_ (self, file urls):
self. file urls = file urls

def _ iter_(self)
worker_info =
torch.utils.data.get_worker_ info()
assert worker info is not None

torch_worker id = worker info.id
return
iter(self. file urls[torch worker id])

file urls = INPUT_FILES_PER_WORKER|[worker rank]
file urls = [f.tolist() for f in
np.array split(file urls, num workers) ]
file url dp =
IterableWrapper (FileURLDataset (file_urls))
file dp = S3FilelLoader (file_url_dp)
image dp = file dp.map(load_image)




Supporting Heterogeneous Clusters

Ray Data vs. Torch DatalLoader (No caching)

= Torch Dataloader = Ray Data

Node setup: g4dn.xI
-s000 ™ Ray Data (Heterogeneous Cluster) 0de Setup- gdn.xiarge

+ 4 r5.16xlarge

@ 20395 e 16VCPU

g’ 20000 e 1NVIDIAT4 GPU

= 15000 e 64 GiB memory

a8 e +64 vCPU, 512 GiB

S 10000 memory

3 Dataset:

E 5000 e ImageNet, stored as raw

images (JPG) on S3
e [Each trainer reads about
10GB of images

#Nodes  Utjlizing extra CPUs to
maximize throughput
No code changes!



What's next for Ray?



Trend: Model execution is becoming more complex

Post-training

Model routing

Data processing

o E—

N

Pretrained w

Weights

N R

Pl —

N E—

Fine-tuning

Output A Output B
Tower A Tower B

Mixture-of-Experts

Full Prompt

Retrieval Augmented Generation

Quantized
model

Model

Model
quantization

Gaft

model

Target model

Speculative decoding

Model

Dataset experimentation




Trend: Model execution is becoming more complex

Simple scaling of models is getting increasingly expensive.
Before: One model per task, all inputs take the same path.

After: One to many models for many tasks, inputs may take different and
dynamic paths.

Meanwhile, current (distributed) ML systems are highly static!
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Is Ray Core the answer?

Ray Tune/ RLlib ¥ Ray | Ray vLLM

Train Serve | Data
Coarse-grained (process-level) (4 4 4 (4 4
orchestration
Fine-grained (10ms+ function-level) 4 4 (4 4
orchestration

Distributed memory management V|



Is Ray Core the answer?

Ray Tune/ RLlib ¥ Ray | Ray vLLM

Train Serve  Data
Coarse-grained (process-level) 4 4 4 4 v
orchestration
Fine-grained (10ms+ function-level) 4 4 4 4
orchestration
Distributed memory management 4

Problem: GPU “tasks” run at 100s of us.



Is Ray Core the answer?

Ray Tune/ RLlib ¥ Ray | Ray vLLM

Train Serve  Data
Coarse-grained (process-level) 4 V| 4 (4 v
orchestration
Fine-grained (10ms+ function-level) 4 4 (4 4
orchestration
Distributed memory management v

Problem: GPU memory management is often tightly coupled
with GPU compute.



Ray 3.0: Accelerated DAGs

Observation 1: Ray Core is (relatively) slow because it assumes a completely
dynamic workload.

Observation 2: Even complicated GPU schedules like pipeline parallelism are
not very dynamic.
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Ray 3.0: Accelerated DAGs

Key ideas:

- (Initially) Restrict user to static dataflow
- Provide fast, transparent, pipelined data movement between GPUs

Goal: Reduce burden in building (distributed) GPU systems, without loss of
performance.
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Ray 3.0: Accelerated DAGs

Tensor-parallel inference DAG:
dag = ray.dag.MultiOutputNode(
[w.fwd.bind(input) for w in workers])

Driver Driver




Ray 3.0: Accelerated DAGs

Pipeline-parallel DAG:
dag = input
for w in workers:

dag = w.fwd.bind(dag)

O 0 @O




Ray 3.0: Accelerated DAGs

Pipeline-parallel DAG:

GPU-GPU ‘

communication

GPUActor



Ray 3.0: Accelerated DAGs for LLM inference

Current use cases:

- Prefill disaggregation
- Pipeline parallelism

Experimental use cases:

- Mixing tensor parallelism and pipeline parallelism
- CPU offloading

- Heterogeneous GPU systems

- Online prompt processing
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