A brief history of the SPAY ecosystem

UCSD 3/3/24 Stephanie Wang

> Website: stephanie-wang.github.io Email: smwang@cs.washington.edu

- Incoming assistant professor at UW CSE
- Software engineer at Anyscale
- Lead author and committer of the Ray project, created at UC Berkeley

Outline

- 1. What is Ray?
 - a. History of open-source project and system architecture
- 2. Ray Data deep dive
- 3. What's next for Ray?

Why Ray?

Trends:

- 1. Al compute demands exploding \rightarrow Need scale
- 2. All application diversity exploding \rightarrow Need **flexibility**

ML libraries							
Hyperparameter Search	Distributed Training	Simulation	Inference	Data Processing	Stream processing		

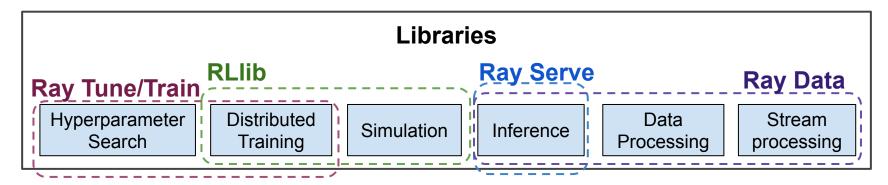
On a single node, Python libraries are the key to app development:

- + **Performance:** Libraries often optimized with native code.
- + **Developer productivity:** Easily compose libraries with function calls.

Problem: In the distributed setting, need to address domain-specific problems in scheduling, fault tolerance, etc.

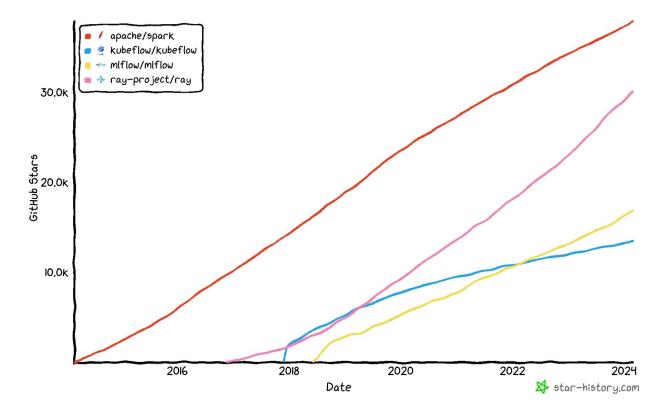
Distributed	Distributed	Distributed	Distributed	Distributed	Distributed
System	System	System	System	System	System
Hyperparameter Search	Distributed Training	Simulation	Inference	Data Processing	Stream processing

- Developer productivity: Orchestration? Data movement?
- **Performance:** End-to-end performance? Future-proof systems?



RAY (Core): A general-purpose distributed execution layer

GitHub star history

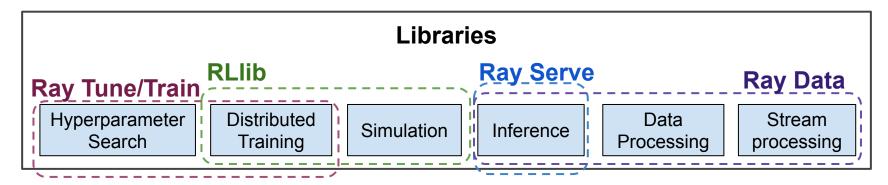


History of Ray

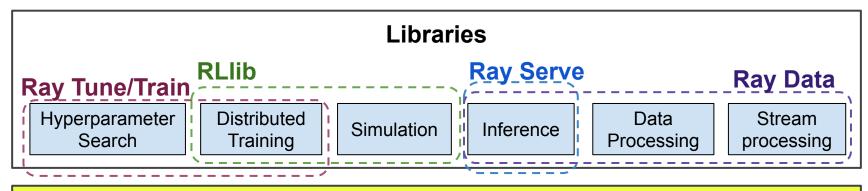
- 2016: Started development of v0.1 at UC Berkeley, in the RISELab
 - First version in Rust: <u>https://github.com/amplab/orchestra</u>
 - C++ prototype with gRPC: <u>https://github.com/ray-project/ray-legacy</u>
 - C prototype
 - May 2017: <u>v0.1 released</u>

History of Ray

- 2016: Started development of v0.1 at UC Berkeley, in the RISELab
- 2017: Tune (hyperparameter search) and RLlib (reinforcement learning) libraries
- 2018: Rewrite Ray core in C++; first Ray paper at OSDI'18
- 2019: Anyscale founded; began second rewrite of Ray core
- 2020: Ray v1.0 released; first Ray Summit; Serve (ML serving) library
- 2021: Ray v1.0 paper at NSDI'21; Ray Data
- 2022: Ray v2.0; OpenAl releases ChatGPT
- 2023: Ray beats Spark on CloudSort world record



RAY (Core): A general-purpose distributed execution layer



Remote functions and classes

RAY (Core): A general-purpose distributed execution layer

<u>Tasks</u>

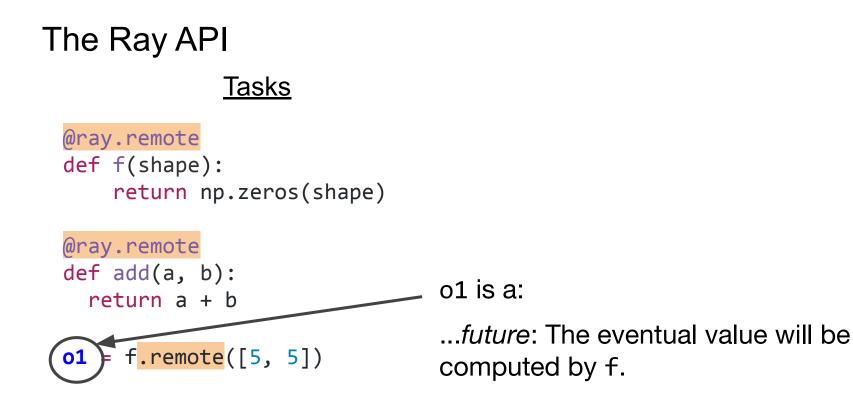
```
def f(shape):
    return np.zeros(shape)
```

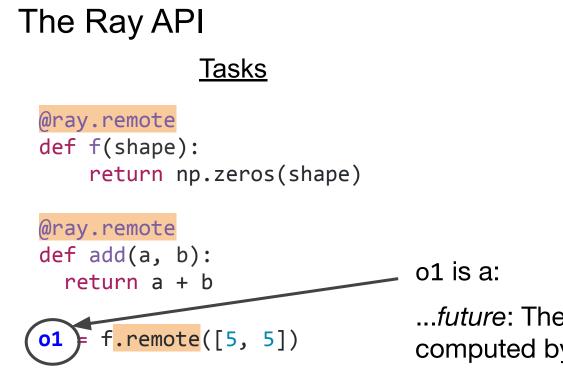
```
def add(a, b):
    return a + b
```

<u>Tasks</u>

```
@ray.remote
def f(shape):
    return np.zeros(shape)
```

```
@ray.remote
def add(a, b):
    return a + b
```





...*future*: The eventual value will be computed by f.

...*remote reference*: The value may be stored on a remote node (in Ray's distributed object store).

<u>Tasks</u>

```
@ray.remote
def f(shape):
    return np.zeros(shape)
```

```
@ray.remote
def add(a, b):
    return a + b
```

o1 is a:

...*future*: The eventual value will be computed by f.

...*remote reference*: The value may be stored on a remote node (in Ray's distributed object store).

<u>Tasks</u>

```
@ray.remote
def f(shape):
    return np.zeros(shape)
```

```
@ray.remote
def add(a, b):
    return a + b
```

```
o1 = f.remote([5, 5])
o2 = f.remote([5, 5])
o3 = add.remote(01, 02)
result = ray.get(03)
```

```
class Counter(object):
    def __init__(self):
        self.value = 0
    def inc(self):
        self.value += 1
        return self.value
```

<u>Tasks</u>

```
@ray.remote
def f(shape):
    return np.zeros(shape)
```

```
@ray.remote
def add(a, b):
    return a + b
```

```
o1 = f.remote([5, 5])
o2 = f.remote([5, 5])
o3 = add.remote(01, 02)
result = ray.get(03)
```

<u>Actors</u>

```
@ray.remote
class Counter(object):
    def __init__(self):
        self.value = 0
    def inc(self):
        self.value += 1
        return self.value
```

<u>Tasks</u>

```
@ray.remote
def f(shape):
    return np.zeros(shape)
```

```
@ray.remote
def add(a, b):
    return a + b
```

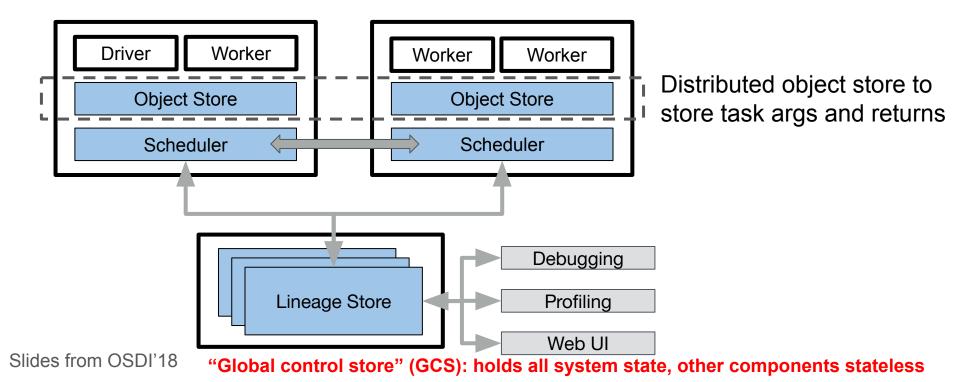
```
o1 = f.remote([5, 5])
o2 = f.remote([5, 5])
o3 = add.remote(01, 02)
result = ray.get(03)
```

<u>Actors</u>

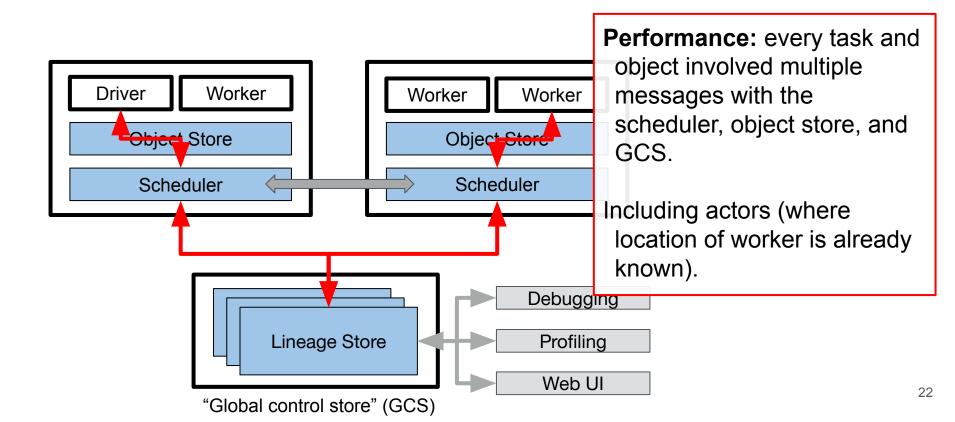
```
@ray.remote
class Counter(object):
    def __init__(self):
        self.value = 0
    def inc(self):
        self.value += 1
        return self.value
```

```
c = Counter.remote()
o4 = c.inc.remote()
o5 = c.inc.remote()
# Returns [1, 2].
result = ray.get([04, 05])
```

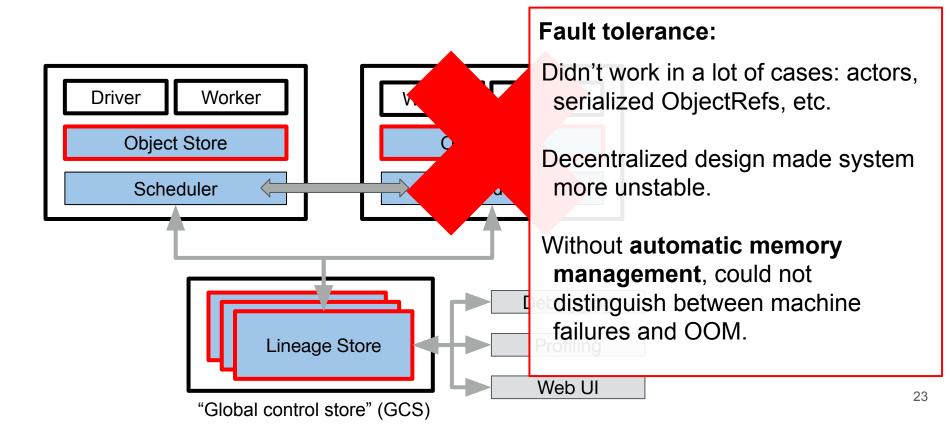
2018: Ray pre-1.0 Architecture



2018: Ray pre-1.0 Architecture



2018: Ray pre-1.0 Architecture



2018: Designing Ray v1.0

Problems:

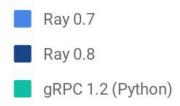
- Decentralized design added a lot of **overhead**, especially for actor tasks.
- System **complexity** created instability under load and failures.
- Need automatic memory management for better stability.
 - But this would've added even more overhead and complexity!
- \rightarrow Ray v1.0: We need to redesign the metadata control plane.

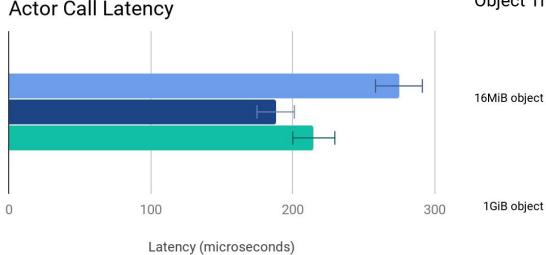
2018: Designing Ray v1.0

Some parallel Ideas:

- **Performance:** Reduce load from lower system components by having workers send tasks **directly** to each other via RPC.
- **Reducing complexity:** Instead of decentralizing by storing all system state in GCS, let's keep the decentralized part but introduce some notion of metadata **ownership**.
 - Who should the owner be? Automatic memory management makes this answer obvious: *the owner should be the original reference holder* (the worker that created the original ObjectRef)!

2018: Key metrics leading up to Ray v1.0

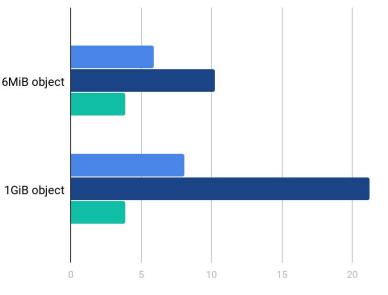




Stability changes that are harder to quantify:

- Task retries
- Automatic memory management

Object Transfer Throughput



Transfer throughput (Gbps)

2020: A distributed futures system for fine-grained tasks

For generality, the system must impose low overhead.

Analogy: gRPC can execute millions of tasks/s. Can we do the same for distributed futures? \rightarrow futures whose values can be stored anywhere

Goal: Build a distributed futures system that guarantees **fault tolerance** with **low task overhead**. \rightarrow Note the similarity! :)

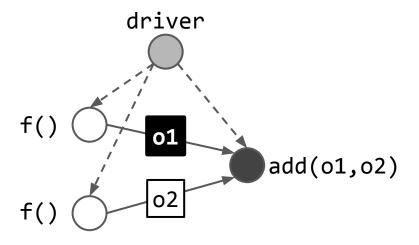
Enable applications that *dynamically* generate *fine-grained* tasks. \rightarrow Check out the paper[1] for more details!

Slides from NSDI'21

[1] Ownership: A Distributed Futures System for Fine-Grained Tasks. NSDI, 2021.

2020: Distributed futures introduce shared state

→ Data dependency



Slides from NSDI'21

2020: Distributed futures introduce shared state

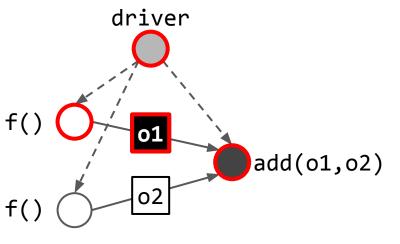
Multiple processes refer to the same value.

1. The process that specifies how the value is created and used.

2. The process that creates the value.

3. The process that uses the value.

4. The physical location of the value.



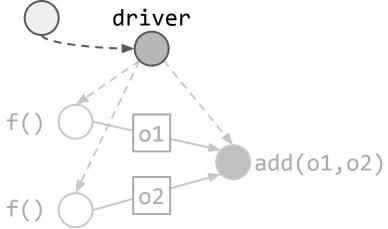
Dereferencing a distributed future requires coordination.

Slides from NSDI'21

2020: Our approach: Ownership

Existing solutions do not take advantage of the inherent **structure** of a distributed futures application.

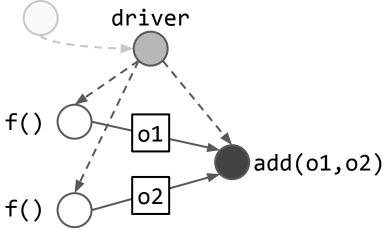
- 1. Task graphs are hierarchical.
- 2. A distributed future is often passed within the scope of the caller.



2020: Our approach: Ownership

Existing solutions do not take advantage of the inherent **structure** of a distributed futures application.

- 1. Task graphs are hierarchical.
- 2. A distributed future is often passed within the scope of the caller.



Insight: By leveraging the structure of distributed futures applications, we can decentralize without requiring expensive coordination. Slides from NSDI'21

2020: Our approach: Ownership

Insight: By leveraging the structure of distributed futures applications, we can decentralize without requiring expensive coordination.

Architecture	Failure handling	Performance
Ownership:	Each worker is a	No additional writes on
The worker that	"centralized master" for	the critical path of task
calls a task owns	the objects that it owns.	execution. Scaling
the returned	Use <i>supervision</i> to	through nested
distributed future.	handle owner failure.	function calls.

Today: When to use Ray Core?

	Ray Tune/ Train	RLlib	Ray Serve	Ray Data	vLLM
Coarse-grained (process-level) orchestration		\checkmark			

Note: There are also benefits when <u>composing</u> libraries!

Ray Data: Scalable datasets for ML

Ray Data is a flexible and scalable data processing library

- + **Ease of use**: Python-native, easy deployment via Ray Core
- + **Transparent scale**: Transparent fault tolerance, resource management, data partitioning and placement, pipelining, heterogeneous clusters
- + **Flexibility**: Pipelining between **CPU and GPU tasks**; native support for tabular, image, (Anyscale-only) audio/video

Ray Data is a flexible and scalable data processing library

Offline use cases: Dataset creation

- Large-scale shuffle operations (deduping, groupby, etc)
- Batch inference
- Vector database and index creation

Online processing: Overlapping and scaling CPU+GPU applications

- Data loading + last-mile preprocessing for (distributed) training
- RAG pipelines

Ray Data is a flexible and scalable data processing library

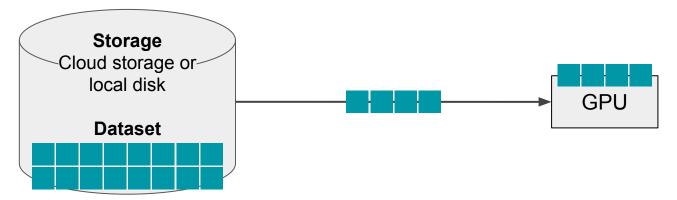
Offline use cases: Dataset creation

- Large-scale shuffle operations (deduping, groupby, etc)
- Batch inference
- Vector database and index creation

Online processing: Overlapping and scaling CPU+GPU applications

- Data loading + last-mile preprocessing for (distributed) training
- RAG pipelines

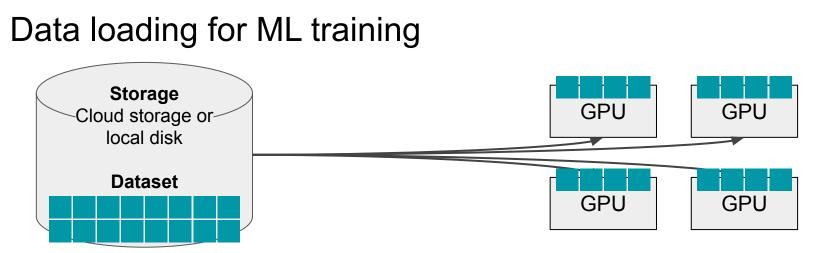
Data loading for ML training



Needs to be **fast**, to maximize GPU utilization.

Needs to scale to large datasets and clusters.

 \rightarrow Large dataset \rightarrow Must stream through memory



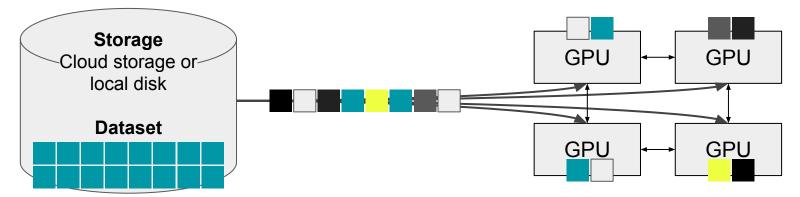
Needs to be **fast**, to maximize GPU utilization.

Needs to scale to large datasets and clusters.

 \rightarrow Large dataset \rightarrow Must stream through memory

 \rightarrow Cluster \rightarrow Must send data over the network

Data loading for ML training



Needs to be **fast**, to maximize GPU utilization.

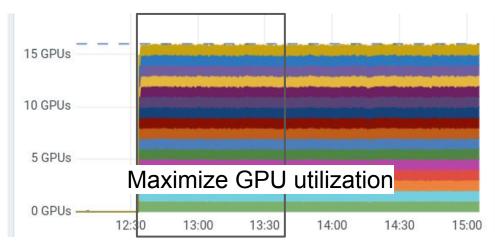
Needs to scale to large datasets and clusters.

Needs to be **flexible**, to support arbitrary preprocessing.

→ Data can have different: storage, modality, preprocessing, memory footprint, ordering, ...

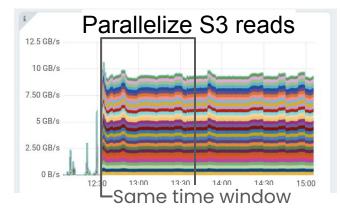
Ray Data is...

Training ResNet-50 (image classification) on a raw S3 dataset

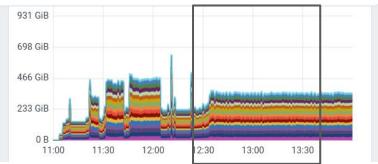


Fast

Streaming execution in v2.4+. **Shared-memory** data loading.



Control memory usage



Ray Data is… **Fast**

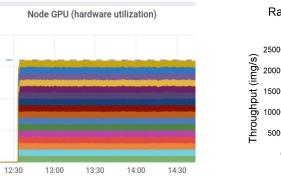
20 GPUs

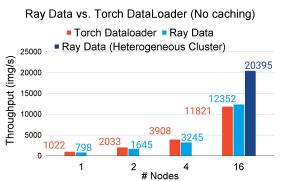
15 GPUs

10 GPUs

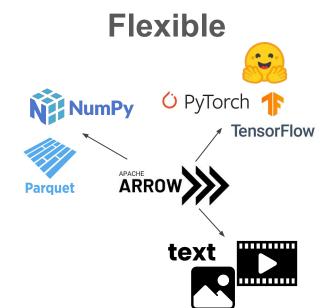
5 GPUs

0 GPUs





Scalable

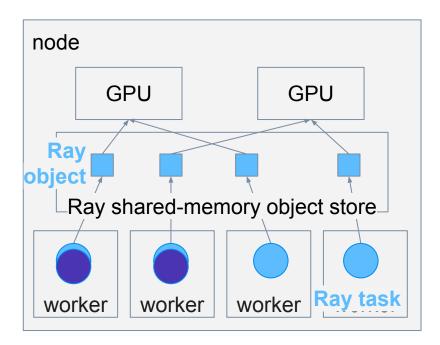


Streaming execution. Shared-memory data loading.

Heterogeneous clusters. Automatic failure **recovery**.

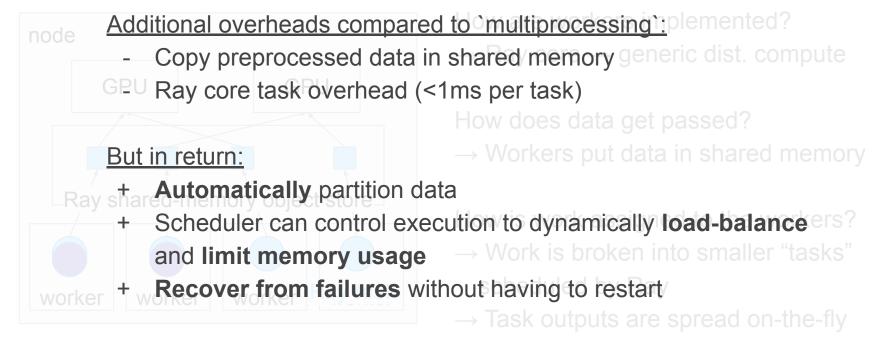
Query planner for building arbitrary data preprocessing pipelines.

Ray Data design



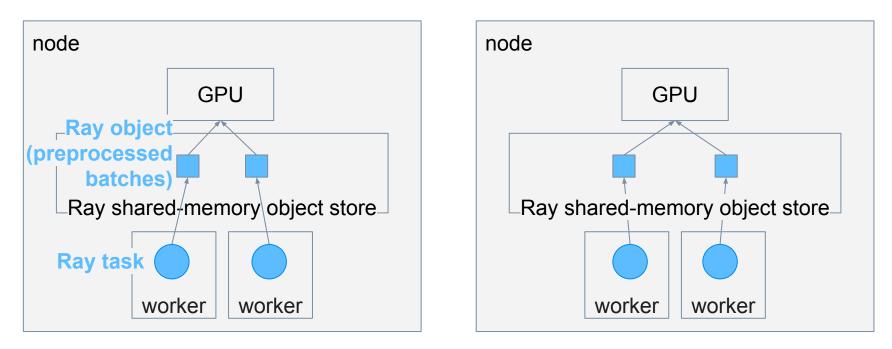
How are workers implemented? \rightarrow Ray core \rightarrow generic dist. compute

Ray Data design



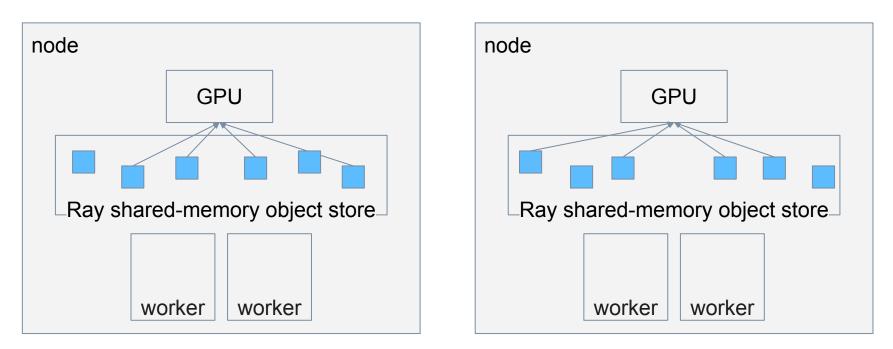
Get distributed features from Ray core "for free".

Ray Data with **distributed** trainers



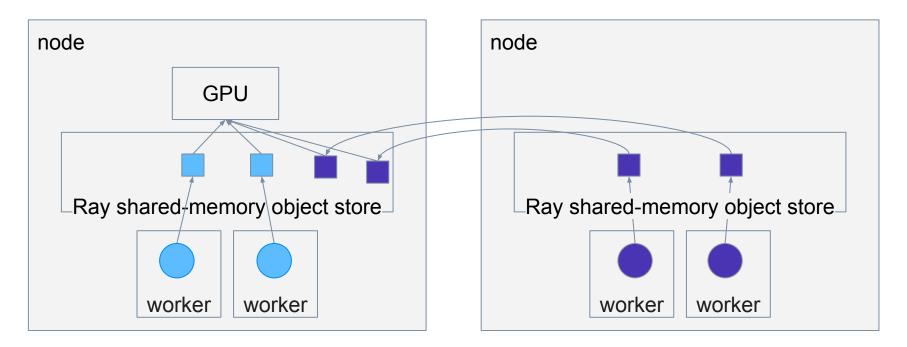
Ray Data routes batches based on **data locality** and **load-balancing**.

Caching Ray Datasets with ds.materialize()



Data can be cached at **any stage** of preprocessing. Ray core **automatically spills** to disk to avoid out-of-memory.

Ray Data with heterogeneous clusters



Data produced by remote tasks gets moved to the trainer node in the background.

Data loading for ML training features

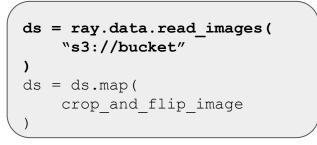
Single-node + distributed:

- Automatic dataset partitioning and load-balancing across workers
- Automatic memory limits
- Recover from **failures without restarting** training
- **Cache** materialized datasets in-memory and on-disk

Distributed features:

- Heterogeneous clusters: Scale CPU-based data preprocessing separately from GPU-based training
- Locality-based scheduling
- (soon) Autoscaling clusters

1. Load images from S3 path



- 1. Load images from S3 path
- 2. Apply preprocessing fn to images

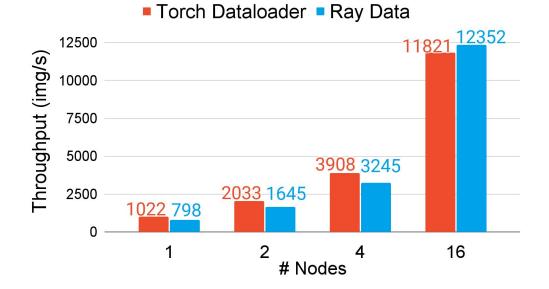
- 1. Load images from S3 path
- 2. Apply preprocessing fn to images

crop_and_flip_image

3. Ingest with Ray Train TorchTrainer

```
def train_loop_per_worker(batch_iter : ray.data.DataIterator):
    # Batch Iterator over Ray Dataset/Torch DataLoader
    for batch in batch_iter:
    ...
```

Ray Data vs. Torch DataLoader (No caching)



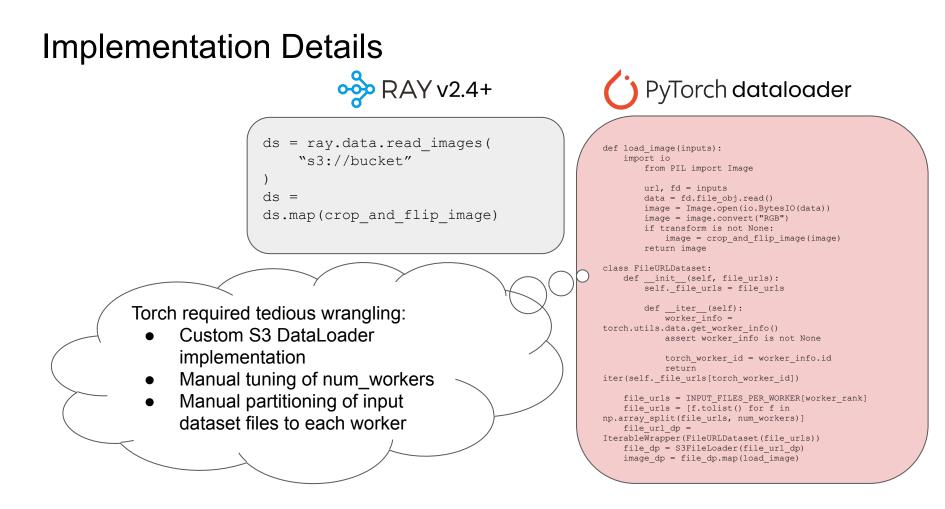
Node setup: g4dn.xlarge

- 16 vCPU
- 1 NVIDIA T4 GPU
- 64 GiB memory

Dataset:

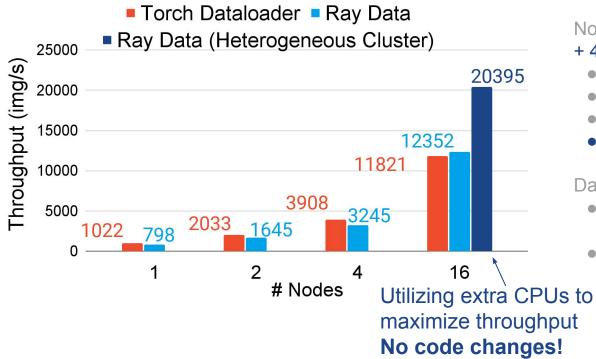
- ImageNet, stored as raw images (JPG) on S3
- Each trainer reads about 10GB of images

Ray Data is **fast** and **scalable**, matching manually tuned Torch Dataloader in a distributed setting.



Supporting Heterogeneous Clusters

Ray Data vs. Torch DataLoader (No caching)



Node setup: g4dn.xlarge

+ 4 r5.16xlarge

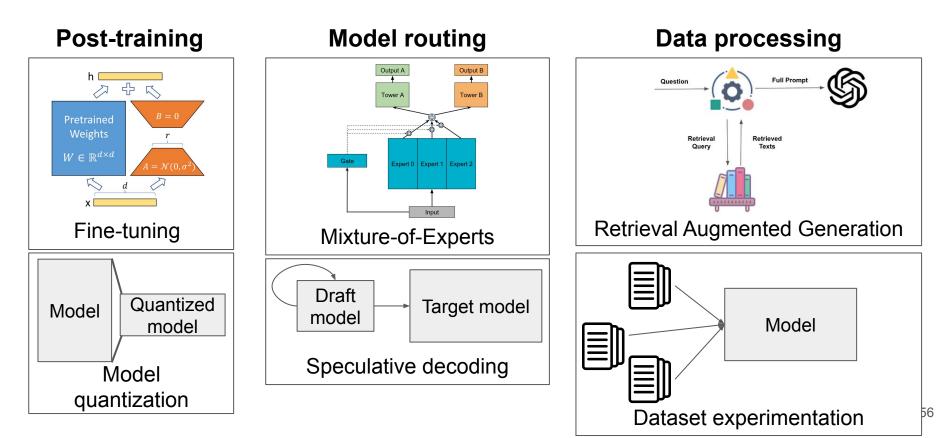
- 16 vCPU
- 1 NVIDIA T4 GPU
- 64 GiB memory
- +64 vCPU, 512 GiB memory

Dataset:

- ImageNet, stored as raw images (JPG) on S3
- Each trainer reads about 10GB of images

What's next for Ray?

Trend: Model execution is becoming more complex



Trend: Model execution is becoming more complex

Simple scaling of models is getting increasingly expensive.

Before: One model per task, all inputs take the same path.

<u>After:</u> **One to many models** for **many tasks**, inputs may take **different and dynamic paths**.

Meanwhile, current (distributed) ML systems are highly static!

Is Ray Core the answer?

	Ray Tune/ Train	RLlib	Ray Serve	Ray Data	vLLM
Coarse-grained (process-level) orchestration		\checkmark	\checkmark	\checkmark	
Fine-grained (10ms+ function-level) orchestration		\checkmark		\checkmark	
Distributed memory management				\checkmark	

Is Ray Core the answer?

	Ray Tune/ Train	RLlib	Ray Serve	Ray Data	vLLM
Coarse-grained (process-level) orchestration				\checkmark	
Fine-grained (10ms+ function-level) orchestration				\checkmark	
Distributed memory management				\checkmark	

Problem: GPU "tasks" run at 100s of us.

Is Ray Core the answer?

	Ray Tune/ Train	RLlib	Ray Serve	Ray Data	vLLM
Coarse-grained (process-level) orchestration		\checkmark	\checkmark	\checkmark	
Fine-grained (10ms+ function-level) orchestration		\checkmark		\checkmark	
Distributed memory management				\checkmark	

Problem: GPU memory management is often tightly coupled with GPU compute.

Observation 1: Ray Core is (relatively) slow because it assumes a completely dynamic workload.

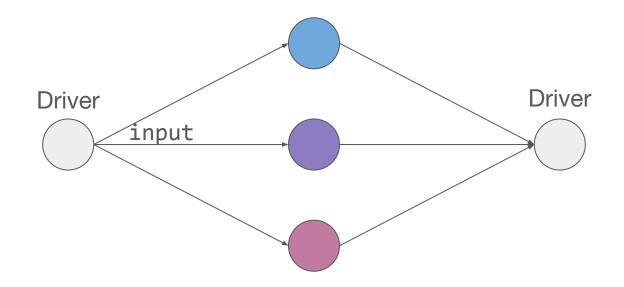
Observation 2: Even complicated GPU schedules like pipeline parallelism are not very dynamic.

Key ideas:

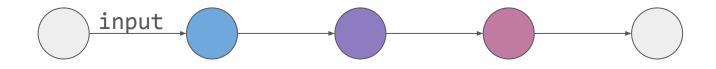
- (Initially) Restrict user to static dataflow
- Provide fast, transparent, pipelined data movement between GPUs

Goal: Reduce burden in building (distributed) GPU systems, without loss of performance.

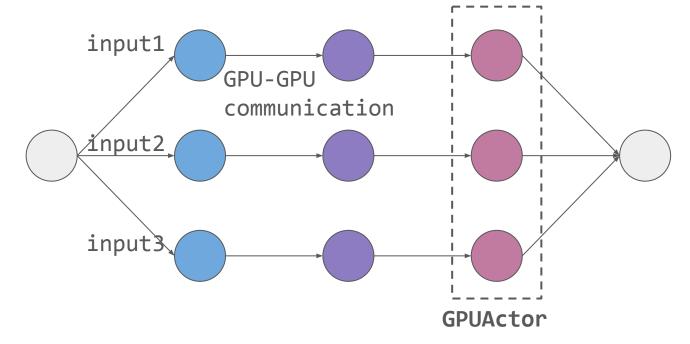
Tensor-parallel inference DAG: dag = ray.dag.MultiOutputNode([w.fwd.bind(input) for w in workers])



```
Pipeline-parallel DAG:
dag = input
for w in workers:
  dag = w.fwd.bind(dag)
```



Pipeline-parallel DAG:



Ray 3.0: Accelerated DAGs for LLM inference

Current use cases:

- Prefill disaggregation
- Pipeline parallelism

Experimental use cases:

- Mixing tensor parallelism and pipeline parallelism
- CPU offloading
- Heterogeneous GPU systems
- Online prompt processing