
DSC 291: ML Systems

Spring 2024

1

https://hao-ai-lab.github.io/dsc291-s24/

Basics

Single-device Optimization

LLMs

Parallelization

x MSErelu matmul

w2

matmul

w1 Device 1

Device 2

x MSErelu matmul

w2

matmul

w1

Inter-op parallelism:

x MSErelu matmul

w2

matmul

w1

Intra-op parallelism:

x MSErelu matmul

w2

matmul

w1
…

x MSErelu matmul

w2

matmul

w1
…

Requires point-to-point communication but results in device idle

Devices are busy but requires collective communication

Inter-op and Intra-op Parallelism: Characteristics

x MSErelu matmul

w2

matmul

w1 Device 1

Device 2

x MSErelu matmul

w2

matmul

w1

Inter-op parallelism

x MSErelu matmul

w2

matmul

w1

Intra-op parallelism

Inter-operator

Parallelism

Intra-operator

Parallelism

Communication Less More

Device Idle Time More Less

Trade-off

Inter-op and Intra-op Parallelism: Characteristics

node node

node node

Fast connections

Slow connections

x MSE

y

relu matmul

w2

matmul

w1

subsub

matmul

matmul

MSE’

matmul

relu’ Theme problem:

What’s the best way to execute the graph

subject to memory and communication constraints?

ML Parallelization under New View

Terminologies: Point-to-point Communication

matmul matmul

Terminologies: Collective Communication

matmul

matmul

matmul

matmul

ddp_model = DDP(Model(), device_ids=[rank])

for batch in data_loader:

loss = train_step(ddp_model, batch)

Implicit allreduce here

all-reduce

Figure from NCCL documentation

Terminologies: Collective Communication

Reduce-scatter

all-to-all

7

all-gather

Figures from NCCL documentation

Some Basics

• Collective is much more expensive than P2P

• Collective can be assembled using many P2P

• Collective is high optimized throughout the past 20 years

• Look for “X”CCL libraries

• NCCL, MCCL,

• Collective is not fault-tolerant

• Collective: Minimal spanning Tree vs. Ring

• MST: latency ++

• Ring: bandwidth utilization ++

Some Transformations

Reduce-scatter
(p−1)+

p−1

p
n(+)

Scatter
log(p)+

p−1

p
n

Allgather
(p−1)+

p−1

p
n

Gather
log(p)+

p−1

p
n

Allreduce

Reduce(-to-one)

Broadcast

Recap

Reduce-scatter
(p−1)+

p−1

p
n(+)

Scatter
log(p)+

p−1

p
n

Allgather
(p−1)+

p−1

p
n

Gather
log(p)+

p−1

p
n

Allreduce

Reduce(-to-one)
(p − 1 + log(p)) +

p−1

p
n(2 +)

Broadcast

Recap

Reduce-scatter
(p−1)+

p−1

p
n(+)

Scatter
log(p)+

p−1

p
n

Allgather
(p−1)+

p−1

p
n

Gather
log(p)+

p−1

p
n

Allreduce
2(p − 1) +

p−1

p
n(2 +)

Reduce(-to-one)
(p − 1 + log(p)) +

p−1

p
n(2 +)

Broadcast
(log(p) + p − 1) + 2

p−1

p
n

Recap

Reduce-scatter
(p−1)+

p−1

p
n(+)

Scatter
log(p)+

p−1

p
n

Allgather
(p−1)+

p−1

p
n

Gather
log(p)+

p−1

p
n

Allreduce
2(p − 1) +

p−1

p
n(2 +)

Reduce(-to-one)
(p − 1 + log(p)) +

p−1

p
n(2 +)

Broadcast

Recap

Reduce-scatter
(p−1)+

p−1

p
n(+)

Scatter
log(p)+

p−1

p
n

Allgather
(p−1)+

p−1

p
n

Gather
log(p)+

p−1

p
n

Allreduce
2(p − 1) +

p−1

p
n(2 +)

Reduce(-to-one)
(p − 1 + log(p)) +

p−1

p
n(2 +)

Broadcast
(log(p) + p − 1) + 2

p−1

p
n

Where We Are

• Motivation

• History

• Parallelism Overview

• Data parallelism

• Model parallelism

• Inter and intra-op parallelism

• Auto-parallelization

How to Distribute this Equation?

dataobjective

Gradient / backward computation

How to perform this sum?

Two Solutions

• Parameter Server

• AllReduce

• Key assumption:

• The model can fit into an (GPU) worker memoy hence we can

create many replica

Parameter Server Assumption

• Very heavy communication per iteration

• Compute : communication = 1:10 in the era of 2012

Parameter Server Naturally emerges

How to Implement Parameter Server?

• Key considerations:

• Server: Communication bottleneck

• Fault tolerance

• Programming Model

• Handling GPUs

Parameter Server Implementation

• Sharded parameter server: sharded KV stores

• Avoid communication bottleneck

• Redundancy across different PS shards

Programming Model

• Client:

• Push()

• Pull()

• Compute()

• Server:

• Update()

• Very similar to the spirit of Map Reduce

• A lot of flexibility for users to customize

• Recall Mapreduce vs. Spark

Consistency

Device A

Device B

Device C

1 2 3 4

Global Synchronization Barrier

Δ𝐿()

Δ𝐿()

Δ𝐿()

Δ𝐿()

Δ𝐿()

Δ𝐿()

𝐹() 𝐹()

23

BSP’s Weakness: Stragglers

• BSP suffers from stragglers

• Slow devices (stragglers) force all devices to wait

• More devices → higher chance of having a straggler

Time

Device A

Device B

Device C

An interesting property of Gradient Descent (ascent)

Machine Learning is Error-tolerant (under certain

conditions)

26

Background: Asynchronous Communication

(No Consistency)

• Asynchronous (Async): removes all communication barriers

• Maximizes computing time

• Transient stragglers will cause messages to be extremely stale

• Ex: Device 2 is at 𝑡 = 6, but Device 1 has only sent message for 𝑡 = 1

• Some Async software: messages can be applied while computing 𝐹(), Δ𝐿()

• Unpredictable behavior, can hurt statistical efficiency!

1

1

1

1

Device 1

Device 2

Device 3

Device 4

2

2

2

3

3

3

4

4

4

5

5

5 6

6

6

27

Background: Bounded Consistency

Clock

Device A

Device B

Device C

1 2 3 4

Staleness s= 3

5 6

Delay = 3

Block

[Ho et al., 2013; Dai et al., 2015; Wei et al.,

2015]

Bounded consistency models: Middle ground between BSP and fully-asynchronous (no-barrier)

e.g. Stale Synchronous Parallel (SSP): Devices allowed to iterate at different speeds
• Fastest & slowest device must not drift > 𝑠 iterations apart (in this example, 𝑠 = 3)

• 𝑠 is the maximum staleness

28

Impacts of Consistency/Staleness:

Unbounded Staleness

Divergence under high delay

29

Theory: SSP Expectation Bound

Difference between

SSP estimate and true optimum

Summary: Parameter Server

• Why did it emerge?

• Why did it become irrelevant?

AllReduce

Allreduce

• Initially implemented in Horovod

• Being Optimized by nvidia (hw/sw cooptimizaiton)

• Being adopted in PyTorch DDP

Where We Are

• Motivation

• History

• Parallelism Overview

• Data parallelism

• Model parallelism

• Inter and intra-op parallelism

• Auto-parallelization

	幻灯片 1: DSC 291: ML Systems Spring 2024
	幻灯片 2: Inter-op and Intra-op Parallelism: Characteristics
	幻灯片 3: Inter-op and Intra-op Parallelism: Characteristics
	幻灯片 4: ML Parallelization under New View
	幻灯片 5: Terminologies: Point-to-point Communication
	幻灯片 6: Terminologies: Collective Communication
	幻灯片 7: Terminologies: Collective Communication
	幻灯片 8: Some Basics
	幻灯片 9: Some Transformations
	幻灯片 10: Recap
	幻灯片 11: Recap
	幻灯片 12: Recap
	幻灯片 13: Recap
	幻灯片 14: Where We Are
	幻灯片 15: How to Distribute this Equation?
	幻灯片 16: Two Solutions
	幻灯片 17: Parameter Server Assumption
	幻灯片 18: Parameter Server Naturally emerges
	幻灯片 19: How to Implement Parameter Server?
	幻灯片 20: Parameter Server Implementation
	幻灯片 21: Programming Model
	幻灯片 22: Consistency
	幻灯片 23: BSP’s Weakness: Stragglers
	幻灯片 24: An interesting property of Gradient Descent (ascent)
	幻灯片 25: Machine Learning is Error-tolerant (under certain conditions)
	幻灯片 26: Background: Asynchronous Communication (No Consistency)
	幻灯片 27: Background: Bounded Consistency
	幻灯片 28: Impacts of Consistency/Staleness: Unbounded Staleness
	幻灯片 29: Theory: SSP Expectation Bound
	幻灯片 30: Summary: Parameter Server
	幻灯片 31: AllReduce
	幻灯片 32: Allreduce
	幻灯片 33: Where We Are

