

DSC 291: ML Systems Spring 2024

Parallelization

Single-device Optimization

Basics

https://hao-ai-lab.github.io/dsc291-s24/

LLMs

Intra-op parallelism:

Devices are busy but requires collective communication

Requires point-to-point communication but results in device idle

... ...

Inter-op parallelism

Intra-op parallelism

Trade-off

	Inter-operator Parallelism	Intra-operato Parallelism
Communication	Less	More
Device Idle Time	More	Less

or

ML Parallelization under New View

Terminologies: Point-to-point Communication

Terminologies: Collective Communication

ddp_model = DDP(Model(), device_ids=[rank])
for batch in data_loader:

loss = train_step(ddp_model, batch)

Implicit allreduce here

Figure from NCCL documentation

Terminologies: Collective Communication

all-gather

all-to-all

Reduce-scatter

outY[i] = sum(inX[Y*count+i])

Figures from NCCL documentation

Some Basics

- Collective is much more expensive than P2P
 - Collective can be assembled using many P2P
- Collective is high optimized throughout the past 20 years
 - Look for "X"CCL libraries
 - NCCL, MCCL,
- Collective is not fault-tolerant
- Collective: Minimal spanning Tree vs. Ring
 - MST: latency ++
 - Ring: bandwidth utilization ++

nt g Tree vs. Ring

Some Transformations Reduce-scatter $(p-1)\alpha + \frac{p-1}{p}n(\beta + \gamma)$

Gather $log(p)\alpha + \frac{p-1}{p}n\beta$

Reduce(-to-one)

Allreduce

Broadcast

Recap

Reduce-scatter $(p-1)\alpha + \frac{p-1}{p}n(\beta+\gamma)$

Reduce(-to-one) $(p-1+log(p))\alpha + \frac{p-1}{p}n(2\beta + \gamma)$

Allreduce

Broadcast

Recap Reduce-scatter $(p-1)\alpha + \frac{p-1}{p}n(\beta+\gamma)$

Gather $log(p)\alpha + \frac{p-l}{p}n\beta$

Algather $(p-1)\alpha + \frac{p-1}{p}n\beta$

Reduce(-to-one) $(p-1+log(p))\alpha + \frac{p-1}{p}n(2\beta + \gamma)$

Allreduce $2(p-1)\alpha + \frac{p-1}{p}n(2\beta + \gamma)$

Broadcast $(log(p) + p - 1)\alpha + 2\frac{p-1}{p}n\beta$

Recap Reduce-scatter $(p-1)\alpha + \frac{p-1}{p}n(\beta+\gamma)$

 $\frac{\text{Scatter}}{\log(p)\alpha + \frac{p-1}{p}n\beta}$

Gather $log(p)\alpha + \frac{p-1}{p}n\beta$

Allgather $(p-1)\alpha + \frac{p-1}{p}n\beta$

Reduce(-to-one) $(p-1+log(p))\alpha + \frac{p-1}{p}n(2\beta + \gamma)$

All reduce $2(p-1)\alpha + \frac{p-1}{p}n(2\beta + \gamma)$

Broadcast

Recap Reduce-scatter $(p-1)\alpha + \frac{p-1}{p}n(\beta+\gamma)$

Scatter $log(p)\alpha + \frac{p-1}{p}n\beta$

Gather $log(p)\alpha + \frac{p-1}{p}n\beta$

Algather $(p-1)\alpha + \frac{p-1}{p}n\beta$

Reduce(-to-one) $(p-1+log(p))\alpha + \frac{p-1}{p}n(2\beta + \gamma)$

All reduce $2(p-1)\alpha + \frac{p-1}{p}n(2\beta + \gamma)$

Broadcast $(log(p) + p - 1)\alpha + 2\frac{p-1}{p}n\beta$

Where We Are

- Motivation
- History
- Parallelism Overview
- Data parallelism
- Model parallelism
 - Inter and intra-op parallelism
- Auto-parallelization

How to Distribute this Equation?

Gradient / backward computation

$$\boldsymbol{\theta}^{(t)} = \boldsymbol{\theta}^{(t-1)} + \boldsymbol{\varepsilon} \cdot \nabla_{\mathcal{L}}(\boldsymbol{\theta}^{(t-1)}, \boldsymbol{D}^{(t)})$$

$$\stackrel{\dagger}{\underset{objective}{\uparrow}} \stackrel{\dagger}{\underset{data}{\uparrow}}$$

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} + \boldsymbol{\varepsilon} \sum_{p=1}^{P} \nabla_{\mathcal{L}}(\boldsymbol{\theta}^{(t)}, \boldsymbol{D}_{p}^{(t)})$$
How to perform this sum?

$$\boldsymbol{\theta}^{(t)} = \boldsymbol{\theta}^{(t-1)} + \boldsymbol{\varepsilon} \cdot \nabla_{\mathcal{L}}(\boldsymbol{\theta}^{(t-1)}, \boldsymbol{D}^{(t)})$$

$$\stackrel{\uparrow}{\underset{objective}{\uparrow}} \stackrel{\uparrow}{\underset{data}{\uparrow}}$$

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} + \boldsymbol{\varepsilon} \sum_{p=1}^{P} \nabla_{\mathcal{L}}(\boldsymbol{\theta}^{(t)}, \boldsymbol{D}_{p}^{(t)})$$
How to perform this sum

Two Solutions

- Parameter Server
- AllReduce
- Key assumption:
 - The model can fit into an create many replica

The model can fit into an (GPU) worker memoy hence we can

Parameter Server Assumption

- Very heavy communication per iteration
- Compute : communication = 1:10 in the era of 2012

 $\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} + \boldsymbol{\varepsilon} \sum_{p}^{P} \nabla_{\mathcal{L}}(\boldsymbol{\theta}^{(t)}, D_{p}^{(t)})$ p=1

Parameter Server Naturally emerges

How to Implement Parameter Server?

- Key considerations:
 - Server: Communication bottleneck
 - Fault tolerance
 - Programming Model
 - Handling GPUs

Parameter Server Implementation

- Sharded parameter server: sharded KV stores
 - Avoid communication bottleneck
 - Redundancy across different PS shards **Parameter Servers**

Workers

Programming Model

- Client:
 - Push()
 - Pull()
 - Compute()
- Server:
 - Update()
- Very similar to the spirit of Map Reduce
- A lot of flexibility for users to customize
 - Recall Mapreduce vs. Spark

ap Reduce customize

Consistency

 $\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} + \boldsymbol{\varepsilon} \sum_{l=1}^{P} \nabla_{\mathcal{L}}(\boldsymbol{\theta}^{(t)}, D_{p}^{(t)})$ p=1

1 *F*() 2 *F*() 3 4

BSP's Weakness: Stragglers

• BSP suffers from stragglers

- Slow devices (stragglers) force all devices to wait
- More devices \rightarrow higher chance of having a straggler

Time

An interesting property of Gradient Descent (ascent)

 $\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} + \boldsymbol{\varepsilon} \sum_{1}^{P} \nabla_{\mathcal{L}}(\boldsymbol{\theta}^{(t)}, D_{p}^{(t)})$ p=1

Machine Learning is Error-tolerant (under certain conditions)

Background: Asynchronous Communication (No Consistency)

- **Asynchronous (Async):** removes all communication barriers
 - Maximizes computing time
 - Transient stragglers will cause messages to be extremely stale
 - Ex: Device 2 is at t = 6, but Device 1 has only sent message for t = 1
- Some Async software: messages can be applied while computing F(), $\Delta_L()$
 - Unpredictable behavior, can hurt statistical efficiency!

Background: Bounded Consistency

27 2015]

Bounded consistency models: Middle ground between BSP and fully-asynchronous (no-barrier)

e.g. Stale Synchronous Parallel (SSP): Devices allowed to iterate at different speeds Fastest & slowest device must not drift > s iterations apart (in this example, s = 3) • *s* is the maximum staleness

Impacts of Consistency/Staleness: Unbounded Staleness

Theory: SSP Expectation Bound

$$\leq 4FL\sqrt{\frac{2(s+1)P}{T}}$$

Summary: Parameter Server

- Why did it emerge?
- Why did it become irrelevant?

AllReduce

Allreduce

- Initially implemented in Horovod
- Being Optimized by nvidia (hw/sw cooptimization)
- Being adopted in PyTorch DDP

Where We Are

- Motivation
- History
- Parallelism Overview
- Data parallelism
- Model parallelism
 - Inter and intra-op parallelism
- Auto-parallelization