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Basics

Single-device Optimization

LLMs

Parallelization
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Requires point-to-point communication but results in device idle

Devices are busy but requires collective communication 

Inter-op and Intra-op Parallelism: Characteristics
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Communication Less More

Device Idle Time More Less
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Inter-op and Intra-op Parallelism: Characteristics
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relu’ Theme problem:

What’s the best way to execute the graph

subject to memory and communication constraints? 

ML Parallelization under New View



Terminologies: Point-to-point Communication
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Terminologies: Collective Communication
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ddp_model = DDP(Model(), device_ids=[rank])

for batch in data_loader:

loss = train_step(ddp_model, batch)

Implicit allreduce here

all-reduce

Figure from NCCL documentation



Terminologies: Collective Communication

Reduce-scatter

all-to-all

7

all-gather

Figures from NCCL documentation



Some Basics

• Collective is much more expensive than P2P

• Collective can be assembled using many P2P

• Collective is high optimized throughout the past 20 years

• Look for “X”CCL libraries

• NCCL, MCCL, 

• Collective is not fault-tolerant

• Collective: Minimal spanning Tree vs. Ring

• MST: latency ++

• Ring: bandwidth utilization ++



Some Transformations
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Recap
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Where We Are

• Motivation

• History

• Parallelism Overview

• Data parallelism

• Model parallelism

• Inter and intra-op parallelism

• Auto-parallelization



How to Distribute this Equation?

dataobjective

Gradient / backward computation

How to perform this sum?



Two Solutions

• Parameter Server

• AllReduce

• Key assumption:

• The model can fit into an (GPU) worker memoy hence we can 

create many replica



Parameter Server Assumption

• Very heavy communication per iteration

• Compute : communication = 1:10 in the era of 2012



Parameter Server Naturally emerges



How to Implement Parameter Server?

• Key considerations:

• Server: Communication bottleneck

• Fault tolerance

• Programming Model

• Handling GPUs



Parameter Server Implementation

• Sharded parameter server: sharded KV stores

• Avoid communication bottleneck

• Redundancy across different PS shards



Programming Model

• Client: 

• Push()

• Pull()

• Compute()

• Server:

• Update()

• Very similar to the spirit of Map Reduce

• A lot of flexibility for users to customize

• Recall Mapreduce vs. Spark



Consistency
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BSP’s Weakness: Stragglers

• BSP suffers from stragglers

• Slow devices (stragglers) force all devices to wait

• More devices → higher chance of having a straggler

Time

Device A

Device B

Device C



An interesting property of Gradient Descent (ascent)



Machine Learning is Error-tolerant (under certain 

conditions)
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Background: Asynchronous Communication

(No Consistency)

• Asynchronous (Async): removes all communication barriers

• Maximizes computing time

• Transient stragglers will cause messages to be extremely stale

• Ex: Device 2 is at 𝑡 = 6, but Device 1 has only sent message for 𝑡 = 1

• Some Async software: messages can be applied while computing 𝐹(), Δ𝐿()

• Unpredictable behavior, can hurt statistical efficiency!
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Background: Bounded Consistency

Clock

Device A
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Staleness s= 3 

5 6

Delay = 3

Block

[Ho et al., 2013; Dai et al., 2015; Wei et al., 

2015]

Bounded consistency models: Middle ground between BSP and fully-asynchronous (no-barrier)

e.g. Stale Synchronous Parallel (SSP): Devices allowed to iterate at different speeds
• Fastest & slowest device must not drift > 𝑠 iterations apart (in this example, 𝑠 = 3)

• 𝑠 is the maximum staleness
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Impacts of Consistency/Staleness:

Unbounded Staleness

Divergence under high delay
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Theory: SSP Expectation Bound

Difference between

SSP estimate and true optimum



Summary: Parameter Server

• Why did it emerge?

• Why did it become irrelevant?



AllReduce



Allreduce

• Initially implemented in Horovod

• Being Optimized by nvidia (hw/sw cooptimizaiton)

• Being adopted in PyTorch DDP



Where We Are

• Motivation

• History

• Parallelism Overview

• Data parallelism

• Model parallelism

• Inter and intra-op parallelism

• Auto-parallelization
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