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Computational Graph (Neural Networks) → Stages
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Computational Graph (Neural Networks) → Stages

Computational Graph
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Execution & Data Movement
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Note: The time spent on data transfer is typically small, since we only 

communicates stage outputs at stage boundaries between two stages.
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Timeline: Visualization of Inter-Operator Parallelism

Device 4

Device 3

Device 2

Device 1

Time

Pipeline Bubbles

● Gray area (         ) indicates devices being idle (a.k.a. Pipeline bubbles).

● Only 1 device activated at a time.

● Pipeline bubble percentage = bubble_area / total_area

= (D - 1) / D, assuming D devices.
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Reduce Pipeline Bubbles via Pipelining Inputs
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Pipeline bubbles percentage
= (D - 1) / (D - 1 + N)
with D devices and N inputs.
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Training: Forward & Backward Dependency
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How to Reduce Pipeline Bubbles for Training?

● Device Placement

● Synchronous Pipeline Parallel Algorithms

○ GPipe

○ 1F1B 

○ Interleaved 1F1B

○ TeraPipe

○ Chimera

● Asynchronous Pipeline Parallel Algorithms

○ AMPNet

○ Pipedream/Pipedream-2BW
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Device Placement
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Idea: Slice the branches of a neural network into multiple stages so they can be 

calculated concurrently.

Mirhoseini, Azalia, et al. "Device placement optimization with reinforcement learning." ICML 2017.
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Device Placement: Limitations

Only works for specific NNs with 

branches:
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Device Utilization is still low:

Inception Module Contrastive Model

Other ConvNets Transformers

Note: device placement needs to be combined 

with the other pipeline schedules discussed 

later to further improve device utilization.
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Synchronous Pipeline Parallel Schedule 

Idea: Modify pipeline schedule to improve efficiency, but 

keep the computation and convergence semantics exactly 

the same as if training with a single device.
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GPipe
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Huang, Yanping, et al. "Gpipe: Efficient training of giant neural networks using pipeline parallelism." NeurIPS 2019.

Idea: Partition the input batch into multiple “micro-batches”. Pipeline the micro-

batches. Accumulate the gradients of the micro-batches:

Pipeline bubbles percentage = (D - 1) / (D - 1 + N)
with D devices and N micro-batches.

Example: Slice each input batch into 6 micro-batches:
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GPipe: Experimental Results

#TPUs = 2 #TPUs = 4 #TPUs = 8

#Micro-batches = 1 1 1.07 1.3

#Micro-batches = 4 1.7 3.2 4.8

#Micro-batches = 32 1.8 3.4 6.3

Table: Normalized training throughput using GPipe with different number of 

devices (stages) and different number of micro-batches M on TPUs.

Huang, Yanping, et al. "Gpipe: Efficient training of giant neural networks using pipeline parallelism." NeurIPS 2019.
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GPipe: Memory Usage
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GPipe Schedule:

Fan, Shiqing, et al. "DAPPLE: A pipelined data parallel approach for training large models." PPoPP 2021.

Perform backward as early as possible

Same Latency
1F1B (1 Forward 1 Backward) Schedule:
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1F1B Memory Usage
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Fan, Shiqing, et al. "DAPPLE: A pipelined data parallel approach for training large models." PPoPP 2021.

= Parameters + Activation ×#Micro-Batches #Devices 
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Device 1

Device 2

Device 3

Device 4

Interleaved 1F1B

Stage 1

Stage 2

Stage 3

Stage 4

Idea: Slice the neural network into more fine-grained stages and assign multiple 

stages to reduce pipeline bubble. 

Narayanan, Deepak, et al. "Efficient large-scale language model training on gpu clusters using megatron-lm." SC 2021.
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Stage 8
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Interleaved 1F1B

Pro: 
Higher pipeline efficiency with fewer
pipeline bubbles.

Con:

More communication overhead 

between stages.

Pipeline bubbles percentage

= (D - 1) / (D - 1 + KN) 

with D devices, K stages on each 

device, and N micro-batches.
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TeraPipe

… 

Cats

<sos>

are

Cats

the

are

best

the

<eos>

best

Transformer layer 1

Transformer layer 2

Transformer layer N-1

Transformer layer N

Li, Zhuohan, et al. "TeraPipe: Token-Level Pipeline Parallelism for Training Large-Scale Language Models." ICML 2021.

Idea: The computation of an input token 

only depends on previous tokens but 

not future tokens for autoregressive 

models.

Further reduce the bubble size by 

pipelining within a sequence.
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TeraPipe

Transformer layer 1
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Li, Zhuohan, et al. "TeraPipe: Token-Level Pipeline Parallelism for Training Large-Scale Language Models." ICML 2021.
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Idea: The computation of an input token 

only depends on previous tokens but 

not future tokens for autoregressive 

models.

Further reduce the bubble size by 

pipelining within a sequence.



TeraPipe

Transformer layer 1

Transformer layer 2
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Li, Zhuohan, et al. "TeraPipe: Token-Level Pipeline Parallelism for Training Large-Scale Language Models." ICML 2021.
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Idea: The computation of an input token 

only depends on previous tokens but 

not future tokens for autoregressive 

models.

Further reduce the bubble size by 

pipelining within a sequence.



Chimera

Idea: Store bi-directional stages and combine bidirectional pipeline to further reduce 
pipeline bubbles.
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Pipeline bubbles percentage

= (D - 2) / (D - 2 + 2N) 

with D devices and N micro-batches.

Li, Shigang, and Torsten Hoefler. "Chimera: efficiently training large-scale neural networks with bidirectional pipelines." SC 21. 22

Extra copy of parameters & 

extra synchronization.



Synchronous Pipeline Schedule Summary

Pros:

● Keep the convergence semantics. The training process is exactly the same 

as training the neural network on a single device.

Cons:

● Pipeline bubbles.

● Reducing pipeline bubbles typically requires splitting inputs into smaller 

components, but too small input to the neural network will reduce the 

hardware efficiency.
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Asynchronous Pipeline Schedules

Idea: Start next round of forward pass before backward pass finishes.

Pros:

● No Pipeline bubbles.

Cons:

● Break the synchronous training semantics. Now the training will involve 

stalled gradient.

● Algorithms may store multiple versions of model weights for consistency.
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AMPNet

Idea: Fully asynchronous. Each device performs forward pass whenever free and 

updates the weights after every backward pass.

Gaunt, Alexander L., et al. "AMPNet: Asynchronous model-parallel training for dynamic neural networks." arXiv 2017.
Yang, Bowen, et al. "Pipemare: Asynchronous pipeline parallel dnn training." MLSys 2021.

Convergence: Achieve similar accuracy on small datasets (MNIST 97%), hard to 

generalize to larger datasets.
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optimizer to improve 

AMPNet convergence
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Pipedream

Idea: Enforce the same version of weight for a single input batch by storing 

multiple weight versions.

Convergence: Similar accuracy on ImageNet with a 5x speedup compared to 

data parallel.

Narayanan, Deepak, et al. "PipeDream: generalized pipeline parallelism for DNN training." SOSP 2019.
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Narayanan, Deepak, et al. "Memory-efficient pipeline-parallel dnn training." ICML 2021.

Pipedream-2BW

Idea: Reduce Pipedream’s memory usage (only store 2 copies) by updating 

weights less frequently. Weights always stalled by 1 update.

Convergence: Similar training accuracy on language models (BERT/GPT)
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Imbalanced Pipeline Stages 
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Frontier: Automatic Stage Partitioning

Reinforcement Learning Based (mainly for 
device placement):

1. Mirhoseini, Azalia, et al. "Device placement optimization 
with reinforcement learning." ICML 2017.

2. Gao, Yuanxiang, et al. "Spotlight: Optimizing device 
placement for training deep neural networks." ICML 2018.

3. Mirhoseini, Azalia, et al. "A hierarchical model for device 
placement." ICLR 2018.

4. Addanki, Ravichandra, et al. "Placeto: Learning 
generalizable device placement algorithms for distributed 
machine learning." NeurIPS 2019.

5. Zhou, Yanqi, et al. "Gdp: Generalized device placement 
for dataflow graphs." Arxiv 2019.

6. Paliwal, Aditya, et al. "Reinforced genetic algorithm 
learning for optimizing computation graphs." ICLR 2020.

7. …

29

Goal: Minimize maximum stage latency & maximize parallelization

Optimization (Dynamic Programming/Linear 
Programming) Based:

1. Narayanan, Deepak, et al. "PipeDream: generalized 
pipeline parallelism for DNN training." SOSP 2019.

2. Tarnawski, Jakub M., et al. "Efficient algorithms for device 
placement of dnn graph operators." NeurIPS 2020.

3. Fan, Shiqing, et al. "DAPPLE: A pipelined data parallel 
approach for training large models." PPoPP 2021.

4. Tarnawski, Jakub M., Deepak Narayanan, and Amar 
Phanishayee. "Piper: Multidimensional planner for dnn 
parallelization." NeurIPS 2021.

5. Zheng, Lianmin, et al. "Alpa: Automating Inter-and Intra-
Operator Parallelism for Distributed Deep Learning." OSDI 
2022.

6. …



RL-Based Partitioning Algorithm

30Addanki, Ravichandra, et al. "Placeto: Learning generalizable device placement algorithms for distributed machine learning." NeurIPS 2019.

State: Device assignment plan for a computational graph.

Action: Modify the device assignment of a node.

Reward: Latency difference between the new and old placements.

Trained with policy gradient algorithm.



Optimization-Based Partitioning Algorithm

31
Tarnawski, Jakub M., et al. "Efficient algorithms for device placement of dnn graph operators." NeurIPS 2020.

Integer Linear Programming:

Variable: Decision variable vector for 

each operator, representing device 

assignment.

Minimize: Maximum finishing time of all 

operators.

Constraint: Execution dependency & 

memory capacity of each device.



Inter-operator Parallelism Summary

Idea: Assign different operators of the computational graph to different devices 

and executed in a pipelined fashion.

Method General 

computational graph

No pipeline 

bubbles

Same convergence 

as single device

Device Placement

Synchronous Schedule

Asynchronous Schedule

Stage Partitioning: Imbalance stage → More pipeline bubble

RL-Based / Optimization-Based Automatic Stage Partitioning
32



Where We Are

● Motivation

● History

● Parallelism Overview

● Data parallelism

● Model parallelism
○ Inter-op parallelism
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● Auto-parallelization



Recap: Intra-op and Inter-op

x subrelu matmul

w2

matmul

w1

Strategy 1: Inter-operator Parallelism

x subrelu matmul

w2

matmul

w1

Strategy 2: Intra-operator Parallelism

This section:

1. How to parallelize an operator ?

2. How to parallelize a graph ?

34



Parallelize One Operator

for n in range(0, N):
for d in range(0, D):

C[n,d] = A[n,d] + B[n,d]  

No dependency on the two for-loops.

Can arbitrarily split the for-loops on different devices.

Element-wise operators

= +C A Bn

d

Parallelize loop n 

= +C A Bn

d

Parallelize both loop n and loop d a lot of

other variants

…

device 1 device 2 device 3 device 4
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for i in range(0, N):
for j in range(0, M):

for k in range(0, K):
C[i,j] = C[i,j] + A[i,k] x B[k,j]  

Parallelize One Operator

No dependency on the two spatial for-loops.

Can arbitrarily split the for-loops on different devices.

Accumulation on this reduction loop.

Have to accumulate partial results if we split 

this for-loop

Matrix multiplication

= xC A Bi

j

Parallelize loop i 

device 1 device 2 device 3 device 4 replicated
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for i in range(0, N):
for j in range(0, M):

for k in range(0, K):
C[i,j] = C[i,j] + A[i,k] x B[k,j]  

Parallelize One Operator

No dependency on the two spatial for-loops.

Can arbitrarily split the for-loops on different devices.

Accumulation on this reduction loop.

Have to accumulate partial results if we split 

this for-loop

Matrix multiplication

device 1 device 2 device 3 device 4 replicated

k

k

Parallelize loop k 

(got by all-reduce)

= xC A B
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for i in range(0, N):
for j in range(0, M):

for k in range(0, K):
C[i,j] = C[i,j] + A[i,k] x B[k,j]  

Parallelize One Operator

No dependency on the two spatial for-loops.

Can arbitrarily split the for-loops on different devices.

Accumulation on this reduction loop.

Have to accumulate partial results if we split 

this for-loop

a lot of

other variants

…

Matrix multiplication

device 1 device 2 device 3 device 4

= xC Ai

j

Parallelize loop i and j 

A: partially tiled

Device 1 and 2 hold a replicated tile

Device 3 and 4 hold a replicated tile

B = xAi

j

Parallelize loop i and k 

C B

C: got by all-reduce
38



for n in range(0, N):
for co in range(0, CO):

for h in range(0, H):
for w in range(0, W):

for ci in range(0, CI):
for kh in range(0, KH):

for kw in range(0, KW):
C[n,co,h,w] += A[n,co,h+kh,w+kw] x B[kh,kw,co,ci]  

Parallelize One Operator

2D Convolution

Simple case: Parallelize loop n, co, ci, then the parallelization strategies are almost the same as matmul’s.

Complicated case: Parallelize loop h and w

Simple spatial loops. Can be arbitrarily split.

Reduction loop. Need to accumulate partial results.

Stencil computation loops. Splitting these requires careful 

boundary handling.

Reduction loops. But usually too small (<= 5) for parallelization.
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