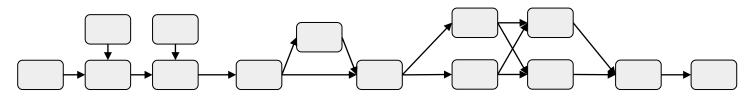
Where We Are

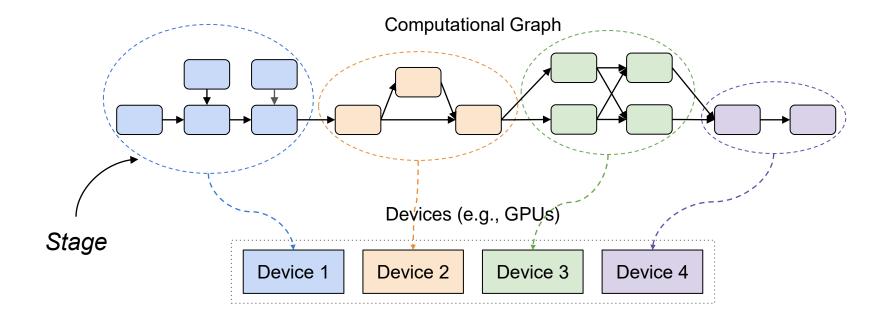
- Motivation
- History
- Parallelism Overview
- Data parallelism
- Model parallelism
 - Inter-op parallelism
 - Intra-op parallelism
- Auto-parallelization

Computational Graph (Neural Networks) → Stages

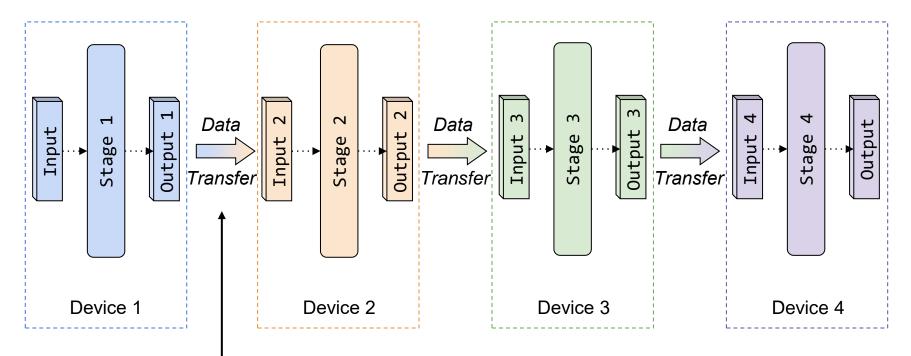


Devices (e.g., GPUs)						
Device 1	Device 2	Device 3	Device 4			

Computational Graph (Neural Networks) → Stages

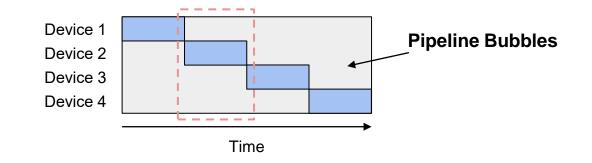


Execution & Data Movement



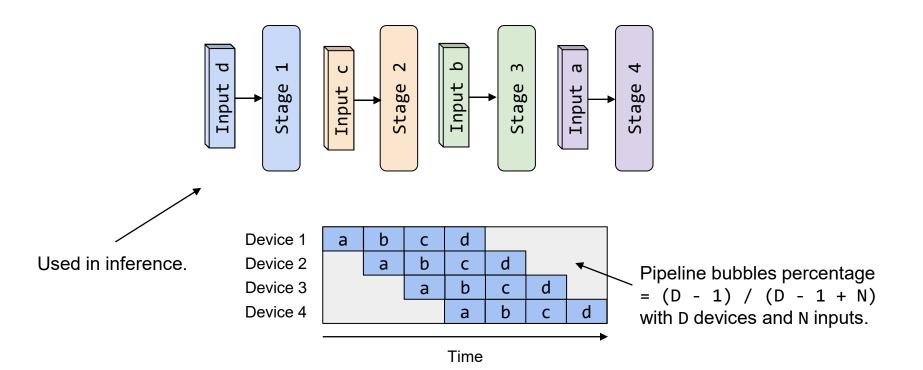
Note: The time spent on data transfer is typically **small**, since we only communicates stage outputs at stage boundaries between two stages.

Timeline: Visualization of Inter-Operator Parallelism

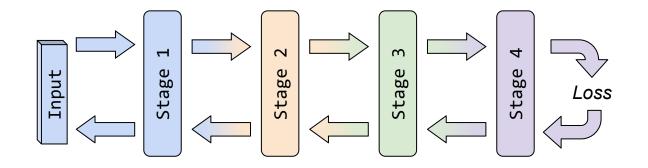


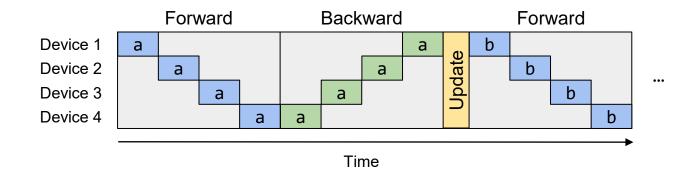
- Gray area (indicates devices being idle (a.k.a. Pipeline bubbles).
- Only 1 device activated at a time.
- Pipeline bubble percentage = bubble_area / total_area
 = (D 1) / D, assuming D devices.

Reduce Pipeline Bubbles via Pipelining Inputs



Training: Forward & Backward Dependency



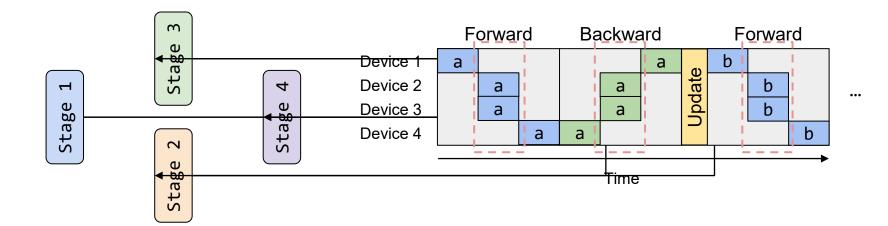


How to Reduce Pipeline Bubbles for Training?

- Device Placement
- Synchronous Pipeline Parallel Algorithms
 - GPipe
 - **1F1B**
 - Interleaved 1F1B
 - TeraPipe
 - Chimera
- Asynchronous Pipeline Parallel Algorithms
 - AMPNet
 - Pipedream/Pipedream-2BW

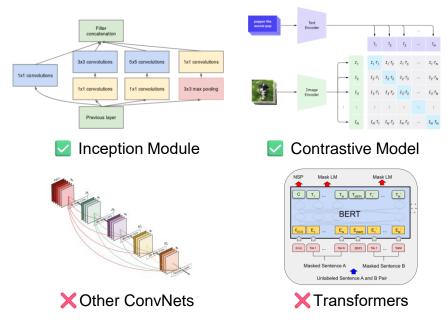
Device Placement

Idea: Slice the branches of a neural network into multiple stages so they can be calculated concurrently.

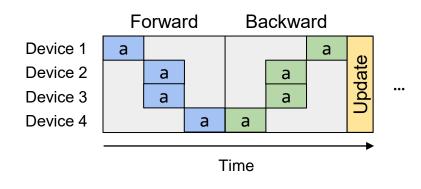


Device Placement: Limitations

Only works for specific NNs with branches:



Device Utilization is still low:



Note: device placement needs to be combined with the other pipeline schedules discussed later to further improve device utilization.

Synchronous Pipeline Parallel Schedule

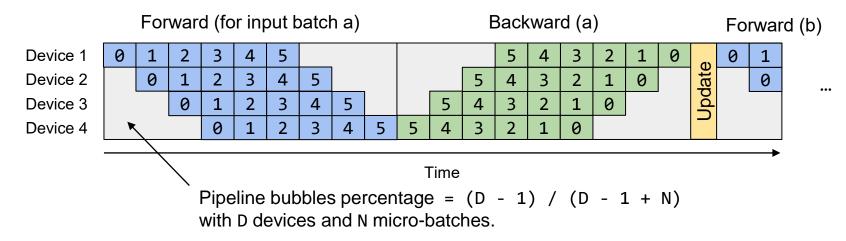
Idea: Modify pipeline schedule to improve efficiency, but keep the computation and convergence semantics exactly the same as if training with a single device.

GPipe

Idea: Partition the input batch into multiple "*micro-batches*". Pipeline the micro-batches. Accumulate the gradients of the micro-batches:

$$\nabla L_{\theta}(x) = \frac{1}{N} \sum_{i=1}^{N} \nabla L_{\theta}(x_i)$$

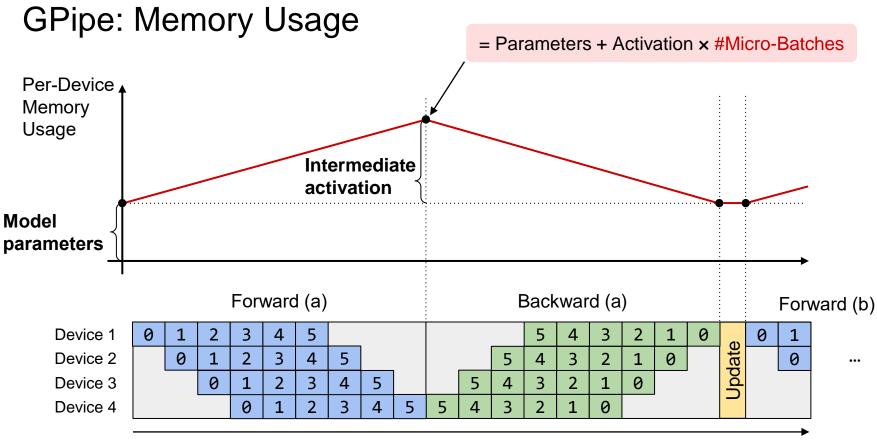
Example: Slice each input batch into 6 micro-batches:



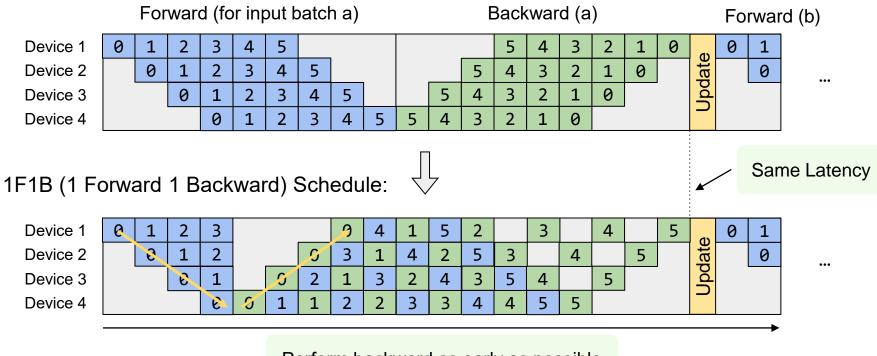
GPipe: Experimental Results

Table: Normalized training throughput using GPipe with different number of devices (stages) and different number of micro-batches M on TPUs.

	#TPUs = 2	#TPUs = 4	#TPUs = 8
#Micro-batches = 1	1	1.07	1.3
#Micro-batches = 4	1.7	3.2	4.8
#Micro-batches = 32	1.8	3.4	6.3

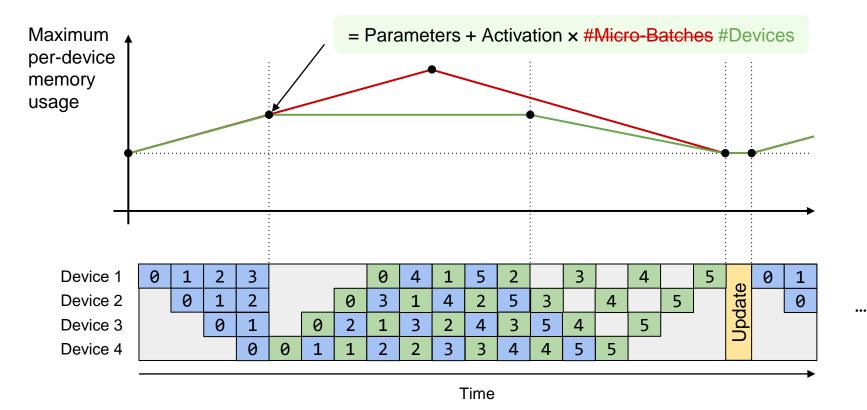


GPipe Schedule:



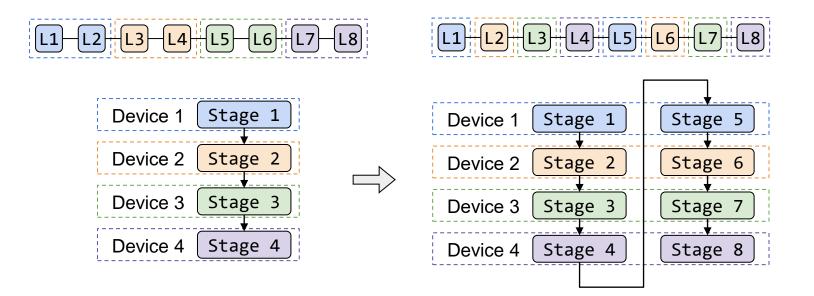
Perform backward as early as possible

1F1B Memory Usage



Interleaved 1F1B

Idea: Slice the neural network into more fine-grained stages and assign multiple stages to reduce pipeline bubble.

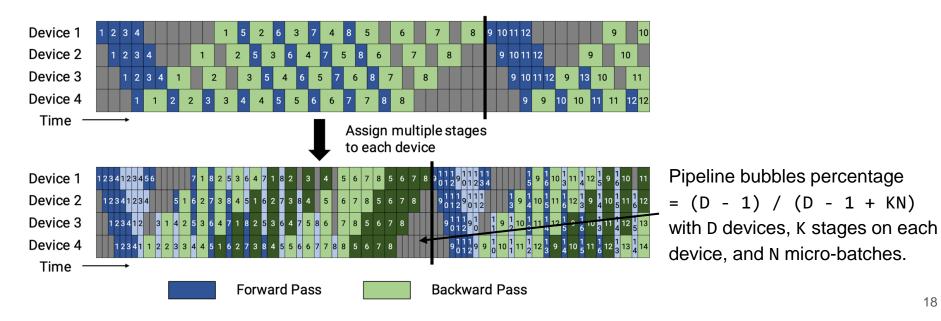


Interleaved 1F1B

Pro:

Higher pipeline efficiency with fewer pipeline bubbles.

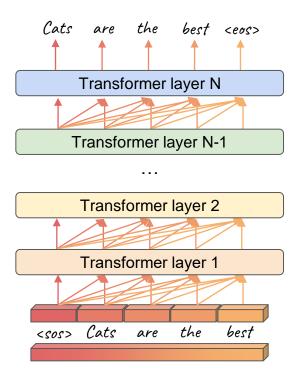
Con: More communication overhead between stages.



TeraPipe

Idea: The computation of an input token only depends on previous tokens but not future tokens for autoregressive models.

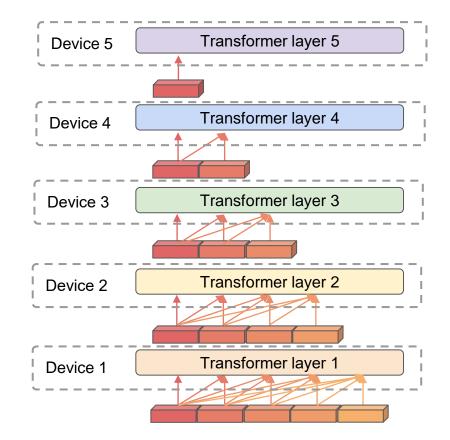
Further reduce the bubble size by pipelining within a sequence.



TeraPipe

Idea: The computation of an input token only depends on previous tokens but not future tokens for autoregressive models.

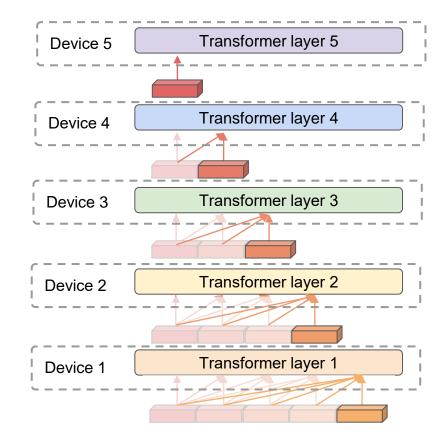
Further reduce the bubble size by pipelining within a sequence.



TeraPipe

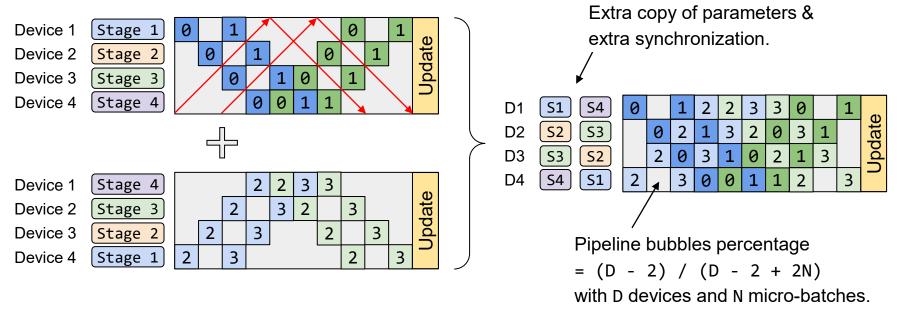
Idea: The computation of an input token only depends on previous tokens but not future tokens for autoregressive models.

Further reduce the bubble size by pipelining within a sequence.



Chimera

Idea: Store bi-directional stages and combine bidirectional pipeline to further reduce pipeline bubbles.



Synchronous Pipeline Schedule Summary

Pros:

• Keep the convergence semantics. The training process is exactly the same as training the neural network on a single device.

X Cons:

- Pipeline bubbles.
- Reducing pipeline bubbles typically requires splitting inputs into smaller components, but too small input to the neural network will reduce the hardware efficiency.

Asynchronous Pipeline Schedules

Idea: Start next round of forward pass before backward pass finishes.

Pros:

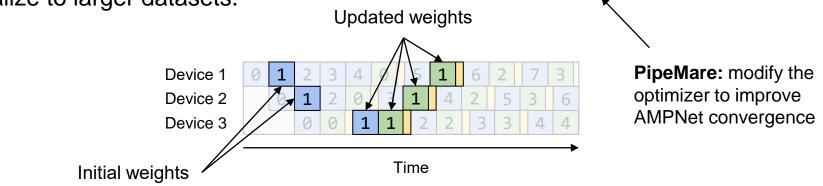
• No Pipeline bubbles.

X Cons:

- Break the synchronous training semantics. Now the training will involve stalled gradient.
- Algorithms may store multiple versions of model weights for consistency.

Idea: Fully asynchronous. Each device performs forward pass whenever free and updates the weights after every backward pass.

Convergence: Achieve similar accuracy on small datasets (MNIST 97%), hard to generalize to larger datasets.



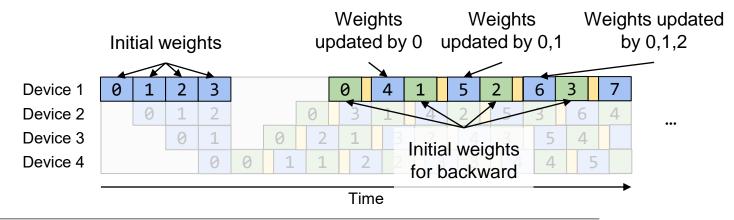
Gaunt, Alexander L., et al. "AMPNet: Asynchronous model-parallel training for dynamic neural networks." *arXiv 2017.* Yang, Bowen, et al. "Pipemare: Asynchronous pipeline parallel dnn training." *MLSys 2021.*

Pipedream

Idea: Enforce the same version of weight for a single input batch by storing multiple weight versions.

Convergence: Similar accuracy on ImageNet with a 5x speedup compared to data parallel.

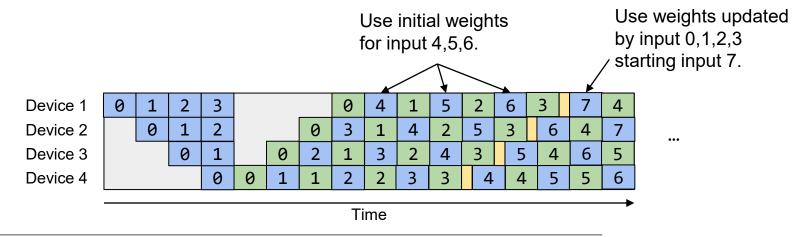
Con: No memory saving compared to single device case.



Pipedream-2BW

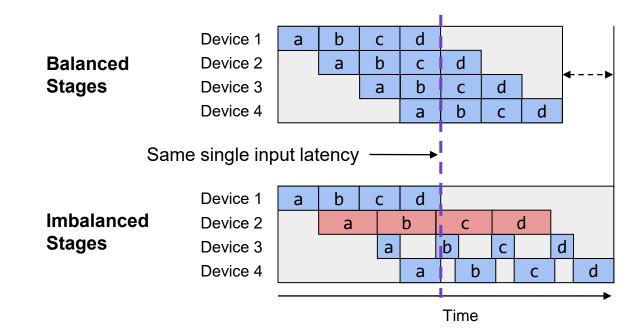
Idea: Reduce Pipedream's memory usage (only store 2 copies) by updating weights less frequently. Weights always stalled by 1 update.

Convergence: Similar training accuracy on language models (BERT/GPT)



Imbalanced Pipeline Stages

Pipeline schedules works best with balanced stages:



Frontier: Automatic Stage Partitioning

Goal: Minimize maximum stage latency & maximize parallelization

Reinforcement Learning Based (mainly for device placement):

- 1. Mirhoseini, Azalia, et al. "Device placement optimization with reinforcement learning." *ICML 2017.*
- 2. Gao, Yuanxiang, et al. "Spotlight: Optimizing device placement for training deep neural networks." *ICML 2018*.
- 3. Mirhoseini, Azalia, et al. "A hierarchical model for device placement." *ICLR 2018.*
- 4. Addanki, Ravichandra, et al. "Placeto: Learning generalizable device placement algorithms for distributed machine learning." *NeurIPS 2019.*
- 5. Zhou, Yanqi, et al. "Gdp: Generalized device placement for dataflow graphs." *Arxiv 2019.*
- 6. Paliwal, Aditya, et al. "Reinforced genetic algorithm learning for optimizing computation graphs." *ICLR 2020*.

7.

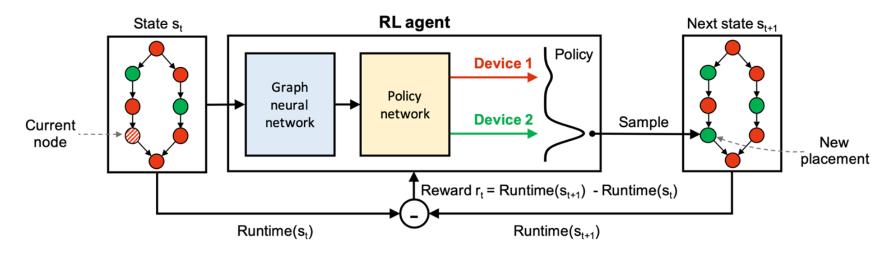
Optimization (Dynamic Programming/Linear Programming) Based:

- 1. Narayanan, Deepak, et al. "PipeDream: generalized pipeline parallelism for DNN training." *SOSP 2019.*
- 2. Tarnawski, Jakub M., et al. "Efficient algorithms for device placement of dnn graph operators." *NeurIPS 2020.*
- 3. Fan, Shiqing, et al. "DAPPLE: A pipelined data parallel approach for training large models." *PPoPP 2021.*
- 4. Tarnawski, Jakub M., Deepak Narayanan, and Amar Phanishayee. "Piper: Multidimensional planner for dnn parallelization." *NeurIPS 2021.*
- 5. Zheng, Lianmin, et al. "Alpa: Automating Inter-and Intra-Operator Parallelism for Distributed Deep Learning." *OSDI* 2022.

6. ..

RL-Based Partitioning Algorithm

State: Device assignment plan for a computational graph.Action: Modify the device assignment of a node.Reward: Latency difference between the new and old placements.Trained with policy gradient algorithm.



Optimization-Based Partitioning Algorithm

min

Integer Linear Programming:

Variable: Decision variable vector for each operator, representing device assignment.

Minimize: Maximum finishing time of all operators.

Constraint: Execution dependency & memory capacity of each device.

TotalLatency $\sum_{i=0}^{k} x_{vi} = 1$ s.t. subgraph $\{v \in V : x_{vi} = 1\}$ is contiguous $M \ge \sum_{v} m_v \cdot x_{vi}$ $\text{CommIn}_{ui} \ge x_{vi} - x_{ui}$ $CommOut_{ui} \ge x_{ui} - x_{vi}$ $TotalLatency > Latency_{u}$ $SubgraphStart_i \geq Latency_v \cdot CommIn_{vi}$ $SubgraphFinish_i = SubgraphStart_i + \sum_v CommIn_{vi} \cdot c_v$ $+\sum_{v} x_{vi} \cdot p_v^{\text{acc}} + \sum_{v} \text{CommOut}_{vi} \cdot c_v$ Latency_v $\geq x_{v0} \cdot p_v^{cpu}$ $Latency_{v} \geq x_{v0} \cdot p_{v}^{cpu} + Latency_{u}$ $Latency_v \geq x_{vi} \cdot SubgraphFinish_i$ $x_{vi} \in \{0, 1\}$

Inter-operator Parallelism Summary

Idea: Assign different operators of the computational graph to different devices and executed in a pipelined fashion.

Method	General computational graph	No pipeline bubbles	Same convergence as single device
Device Placement	×	×	
Synchronous Schedule		×	
Asynchronous Schedule			×

Stage Partitioning: Imbalance stage \rightarrow More pipeline bubble

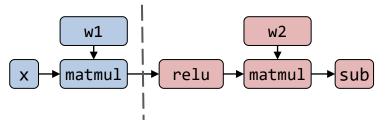
RL-Based / Optimization-Based Automatic Stage Partitioning

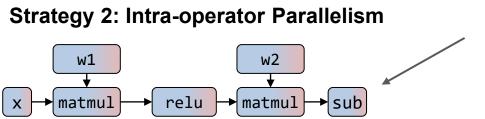
Where We Are

- Motivation
- History
- Parallelism Overview
- Data parallelism
- Model parallelism
 - Inter-op parallelism
 - Intra-op parallelism
- Auto-parallelization

Recap: Intra-op and Inter-op

Strategy 1: Inter-operator Parallelism





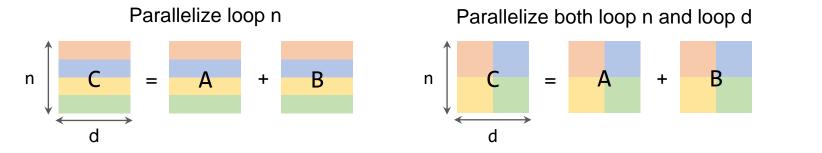
This section:

- 1. How to parallelize an operator ?
- 2. How to parallelize a graph?

Element-wise operators

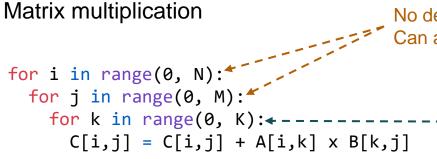
for n in range(0, N): <----- No dependency on the two for-loops.
for d in range(0, D): <---- C[n,d] = A[n,d] + B[n,d]</pre>
No dependency on the two for-loops.
Can arbitrarily split the for-loops on different devices.

device 1 📃 device 2 📃 device 3 📃 device 4



a lot of other variants

. . .



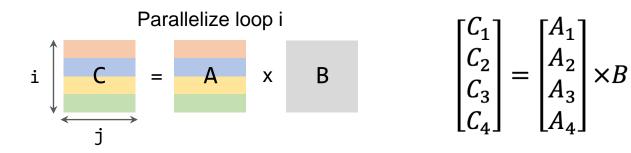
No dependency on the two spatial for-loops. Can arbitrarily split the for-loops on different devices.

> Accumulation on this reduction loop. Have to accumulate partial results if we split this for-loop

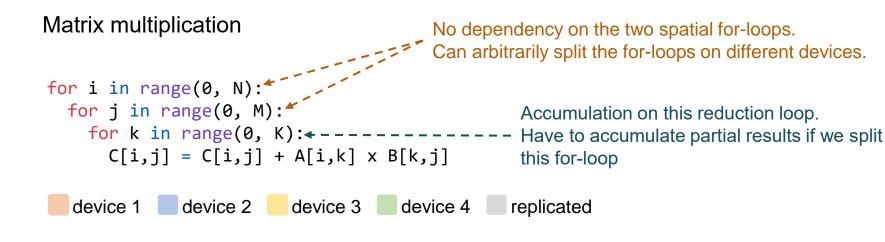
device 1

device 2 device 3

device 4 📃 replicated

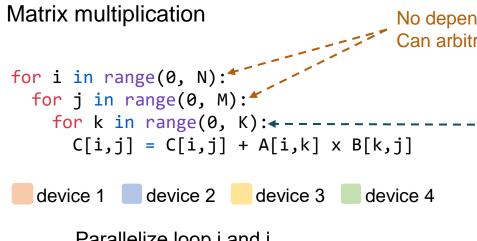


Denelleline Leen L



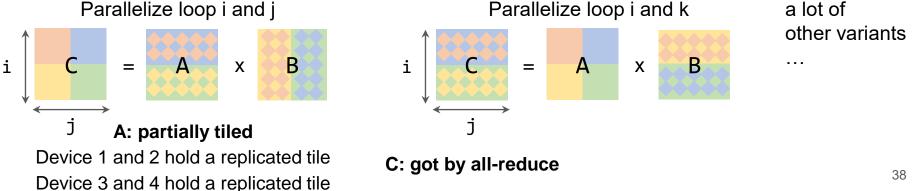
Parallelize loop k

$$C = A \times B \downarrow k \qquad C = [A_1 \ A_2 \ A_3 \ A_4] \begin{bmatrix} B_1 \\ B_2 \\ B_3 \\ B_4 \end{bmatrix} = A_1 B_1 + A_2 B_2 + A_3 B_3 + A_4 B_4$$
got by all-reduce)

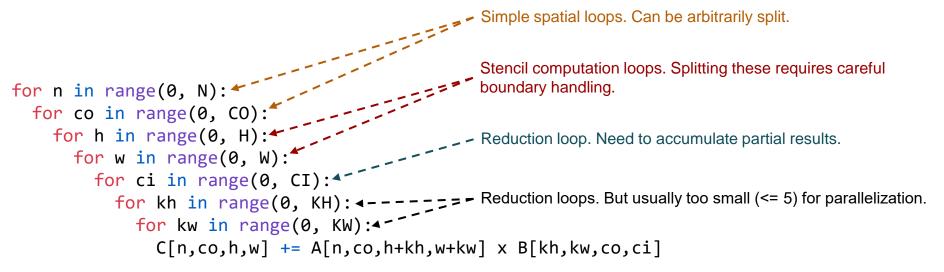


No dependency on the two spatial for-loops. Can arbitrarily split the for-loops on different devices.

> Accumulation on this reduction loop. Have to accumulate partial results if we split this for-loop



2D Convolution



Simple case: Parallelize loop n, co, ci, then the parallelization strategies are almost the same as matmul's.

Complicated case: Parallelize loop h and w