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Computational Graph (Neural Networks) — Stages
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Computational Graph (Neural Networks) — Stages
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Execution & Data Movement
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Note: The time spent on data transfer is typically small, since we only

communicates stage outputs at stage boundaries between two stages.



Timeline: Visualization of Inter-Operator Parallelism
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e Gray area ( indicates devices being idle (a.k.a. Pipeline bubbles).

e Only 1 device activated at a time.

e Pipeline bubble percentage = bubble area / total area
= (D - 1) / D, assuming D devices.



Reduce Pipeline Bubbles via Pipelining Inputs
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Training: Forward & Backward Dependency
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How to Reduce Pipeline Bubbles for Training?

e Device Placement
e Synchronous Pipeline Parallel Algorithms
o GPipe
o 1F1B
o Interleaved 1F1B
o TeraPipe
o Chimera
e Asynchronous Pipeline Parallel Algorithms
o AMPNet
o Pipedream/Pipedream-2BW



Device Placement

Idea: Slice the branches of a neural network into multiple stages so they can be
calculated concurrently.
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Device Placement:; Limitations

Only works for specific NNs with Device Utilization is still low:
branches:
= T1 71 Forward Backward
g — — | ! Devicel | a a_| o
e [ L Device 2 a a §
— Device 3 a a S—
Device 4 a a
£ Inception Module [/ Contrastive Model : >
RN Time
ﬁ r O e G| ;
| ]f I GIEIE- & Note: device placement needs to be combined
r r‘ EE- @ﬁfg} with the other pipeline schedules discussed
N Sy later to further improve device utilization.

> Other ConvNets X Transformers



Synchronous Pipeline Parallel Schedule

Idea: Modify pipeline schedule to improve efficiency, but
keep the computation and convergence semantics exactly
the same as if training with a single device.
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GPipe

Idea: Partition the input batch into multiple “micro-batches”. Pipeline the micro-
batches. Accumulate the gradients of the micro-batches:

VLg(x)= % Ziv_l VLg(z;)

Example: Slice each input batch into 6 micro-batches:

Forward (for input batch a) Backward (a) Forward (b)
Device 1 011(2(3[|4]5 5143|2160 o 01
Device 2 (112|345 5(4(3|2|1]|6 § (%)
Device 3 01112 (3|45 5(4(3|2|1]|6 %
Device 4 N 0e11(2(3|4|5|5(4|3|2|1]|6

4

\ Time
Pipeline bubbles percentage = (D - 1) / (D - 1 + N)
with D devices and N micro-batches.
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GPipe: Experimental Results

Table: Normalized training throughput using GPipe with different number of
devices (stages) and different number of micro-batches M on TPUs.

#TPUs =2 #TPUs =4 #TPUs =8
#Micro-batches = 1 1 1.07 1.3
#Micro-batches = 4 1.7 3.2 4.8

#Micro-batches = 32 1.8 3.4 6.3
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GPipe: Memory Usage

= Parameters + Activation x #Micro-Batches

Per-Device , /
Memory ?
Usage 5
Intermediate
activation :
Model
parameters
Forward (a) Backward (a) . Forward (b)
Devicel @ |1 (2]|3|4]|5 5432100961
Device 2 0112345 51432 |1]|60 § (%)
Device 3 01112 (3|45 5(4(3|2|1|6 :C)L
Device 4 0e11(2(3|4|5|5(4|3|2|1]|6
Time
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GPipe Schedule:

Device 1
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Device 3
Device 4

Device 1
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Device 3

Forward (for input batch a) Backward (a) Forward (b)
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1F1B Memory Usage

Maximum , = Parameters + Activation x #Micro-Batches
per-device
memory
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Interleaved 1F1B

Idea: Slice the neural network into more fine-grained stages and assign multiple
stages to reduce pipeline bubble.

Device 4 | Stage 4
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Interleaved 1F1B

Pro: con:
Higher pipeline efficiency with fewer More communication overhead

pipeline bubbles.
between stages.

Devie n-apnanen -
Devioe 2 no-ononRn -

Device 3
Device 4

Time —— 1 Assign multiple stages

to each device
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Device 2 1234|HHI sns7asnﬁ1azaa4 E ; = (D-1) / (D -1 + KN)
Device s (Rl 12 K AERFRIR 2 Soflu b PR with D devices, K stages on each
Device 4 A ' ° 272 ° Rl device, and N micro-batches.

Time ——

Forward Pass [ | Backward Pass s



TeraPipe

Idea: The computation of an input token
only depends on previous tokens but
not future tokens for autoregressive
models.

Further reduce the bubble size by
pipelining within a sequence.
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TeraPipe

Idea: The computation of an input token
only depends on previous tokens but
not future tokens for autoregressive
models.

Further reduce the bubble size by
pipelining within a sequence.
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Chimera

Idea: Store bi-directional stages and combine bidirectional pipeline to further reduce
pipeline bubbles.

Extra copy of parameters &

Device 1 _ ol [1] | extra synchronization.

Device 2 ) 1 ) 1 ©

Device 3 e Tile|\]1 K /

Device 4 (Stage 4] (0|11 Dl@ 1(21213]31]@ 1@
':H:' >D2 0/2/1 3(2|0/3|1| |

D3 (s3)(s2] 2/@|3/1/0/2(1|3] |S

Device 1 (Stage 4] 2(2(3]|3 o D4 (s4](s1]) |2, [3]@]0f2]1]2 3

Device 2 2 3|2 3 g /

Dev!ce3 2 = 2 = % Pipeline bubbles percentage

Device 4 2 3 2 3 Y,

= (D -2)/ (D -2+ 2N)
with D devices and N micro-batches.
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Synchronous Pipeline Schedule Summary

Pros:

e Keep the convergence semantics. The training process is exactly the same
as training the neural network on a single device.

X Cons:

e Pipeline bubbles.

e Reducing pipeline bubbles typically requires splitting inputs into smaller
components, but too small input to the neural network will reduce the
hardware efficiency.
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Asynchronous Pipeline Schedules

Idea: Start next round of forward pass before backward pass finishes.
&4 Pros:

e No Pipeline bubbles.

X Cons:

e Break the synchronous training semantics. Now the training will involve
stalled gradient.
e Algorithms may store multiple versions of model weights for consistency.
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AMPNet

Idea: Fully asynchronous. Each device performs forward pass whenever free and
updates the weights after every backward pass.

Convergence: Achieve similar accuracy on small datasets (MNIST 97%), hard to

generalize to larger datasets.
Updated weights \
Device 1 1 1 PipeMare: modify the
Device 2 1 1 optimizer to improve
Device 3 101 AMPNet convergence
Initial weights Time

Gaunt, Alexander L., et al. "AMPNet: Asynchronous model-parallel training for dynamic neural networks." arXiv 2017.
Yang, Bowen, et al. "Pipemare: Asynchronous pipeline parallel dnn training." MLSys 2021. 25



Pipedream

Idea: Enforce the same version of weight for a single input batch by storing

multiple weight versions.
Convergence: Similar accuracy on ImageNet with a 5x speedup compared to

data parallel.

Con: No memory saving compared to single device case.

Device 1
Device 2
Device 3
Device 4

Initial weights

Weights Weights
updated by 0 updated by 0,1

— <

Weights updated
by 0,1,2

011|2]|3

0(|4]|1]||5]|]2]]6]|3

RS

Initial weights
for backward

v

Time
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Pipedream-2BW

Idea: Reduce Pipedream’s memory usage (only store 2 copies) by updating
weights less frequently. Weights always stalled by 1 update.

Convergence: Similar training accuracy on language models (BERT/GPT)

Use initial weights Use weights updated
for input 4,5,6. by input 0,1,2,3
/R / starting input 7.
Devicel [@ | 1| 2| 3 0|14 |1|5|2|6]|3 7|4
Device 2 0|12 e(3|1(4|2|5]|3 6 (4|7
Device 3 0|1 01213243 514 |6]|5
Device 4 e(o(1(1(2(2|3]|3 4 (4 |5|5]|6

v

Time
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Imbalanced Pipeline Stages

Pipeline schedules works best with balanced stages:

Balanced
Stages

Same single input latency ——

Imbalanced
Stages
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Frontier: Automatic Stage Partitioning

Goal: Minimize maximum stage latency & maximize parallelization

Reinforcement Learning Based (mainly for
device placement):

1.

2.

Mirhoseini, Azalia, et al. "Device placement optimization
with reinforcement learning.” ICML 2017.
Gao, Yuanxiang, et al. "Spotlight: Optimizing device

placement for training deep neural networks." ICML 2018.

Mirhoseini, Azalia, et al. "A hierarchical model for device
placement." ICLR 2018.

Addanki, Ravichandra, et al. "Placeto: Learning
generalizable device placement algorithms for distributed
machine learning." NeurlPS 2019.

Zhou, Yanqi, et al. "Gdp: Generalized device placement
for dataflow graphs.” Arxiv 2019.

Paliwal, Aditya, et al. "Reinforced genetic algorithm
learning for optimizing computation graphs." ICLR 2020.

Optimization (Dynamic Programming/Linear
Programming) Based:

1.

2.

Narayanan, Deepak, et al. "PipeDream: generalized
pipeline parallelism for DNN training." SOSP 2019.
Tarnawski, Jakub M., et al. "Efficient algorithms for device
placement of dnn graph operators.” NeurlPS 2020.

Fan, Shiging, et al. "DAPPLE: A pipelined data parallel
approach for training large models." PPoPP 2021.
Tarnawski, Jakub M., Deepak Narayanan, and Amar
Phanishayee. "Piper: Multidimensional planner for dnn
parallelization." NeurlPS 2021.

Zheng, Lianmin, et al. "Alpa: Automating Inter-and Intra-
Operator Parallelism for Distributed Deep Learning." OSDI
2022.
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RL-Based Partitioning Algorithm

State: Device assignment plan for a computational graph.
Action: Modify the device assignment of a node.
Reward: Latency difference between the new and old placements.

Trained with policy gradient algorithm.

State s, RL agent Next state s,
Device 1 Policy
Graph . >
Policy
> neural network )
Current network Device 2 Sample
B — > P
node e | New
placement
! Reward r, = Runtime(s,,;) - Runtime(s,)
Runtime(s,) Runtime(sy,4)

Addanki, Ravichandra, et al. "Placeto: Learning generalizable device placement algorithms for distributed machine learning." NeurlPS 2019.



Optimization-Based Partitioning Algorithm

Integer Linear Programming:

Variable: Decision variable vector for
each operator, representing device
assignment.

Minimize: Maximum finishing time of all
operators.

Constraint: Execution dependency &
memory capacity of each device.

min

s.t.

TotalLatency
k

Zi:ﬁ Ty = 1
subgraph {v € V : z,; = 1} is contiguous
M > My * Ty
—_— ZU v v
Commlng; > Ty — Tus
CommOut,; > Tyi — Lo

TotalLatency > Latency,,
SubgraphStart, > Latency, - CommlIn,;

SubgraphFinish, = SubgraphStart,; + Z Commln,; - ¢,
+ Z Tyi - PO+ Z CommOut,; - ¢,

Latency, > x0 - piP"
Latency,, > x40 - piP" + Latency,,

Latency,, > x,; - SubgraphFinish;
Tyi € {0, 1}
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Inter-operator Parallelism Summary

Idea: Assign different operators of the computational graph to different devices
and executed in a pipelined fashion.

Method General No pipeline | Same convergence
computational graph | bubbles as single device
Device Placement X X v
Synchronous Schedule v X 4
Asynchronous Schedule v v X

Stage Partitioning: Imbalance stage — More pipeline bubble

RL-Based / Optimization-Based Automatic Stage Partitioning

32



Where We Are

Motivation

History

Parallelism Overview
Data parallelism

Model parallelism
o Inter-op parallelism
o Intra-op parallelism

Auto-parallelization



Recap: Intra-op and Inter-op

Strategy 1: Inter-operator Parallelism
|
[x]—»[matmul]—:—b[ relu ]—»[matmul]—»[sub]
I

' This section:
1. How to parallelize an operator ?
2. How to parallelize a graph ?

Strategy 2: Intra-operator Parallelism
-
[meatmul]—»[ relu Hmatmuleub]
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Parallelize One Operator

Element-wise operators

. No dependency on the two for-loops.
for n in range(@, N): «---------===- Can arbitrarily split the for-loops on different devices
for d in range(@, D):<«-—"" '

C[n,d] = A[n,d] + B[n,d]

device 1 device 2 device 3 device 4
Parallelize loop n Parallelize both loop n and loop d a lot of
other variants
C = A + B n C = A + B
> >
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Parallelize One Operator

Matrix multiplication No dependency on the two spatial for-loops.
- ;c" Can arbitrarily split the for-loops on different devices.
for i in range(@, N):*~ ,”
for j in range(@, M): ¥~ Accumulation on this reduction loop.
for k in range(@, K)i¢-=-----u-oo-- Have to accumulate partial results if we split
C[i,j] = C[1,J] + A[i,k] x B[k,]] this for-loop

device 1 device 2 device 3 device 4 replicated

Parallelize loop i Cy A,
_ C2| _ A2

C =" A x B c.| = |4, XB
5 1Cyl LAl
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Parallelize One Operator

Matrix multiplication No dependency on the two spatial for-loops.
- ;c" Can arbitrarily split the for-loops on different devices.
for i in range(@, N):*~ ,”
for j in range(@, M): ¥~ Accumulation on this reduction loop.
for k in range(@, K)ie¢-=----oueooo—-— Have to accumulate partial results if we split
C[i,j] = C[1,J] + A[i,k] x B[k,]] this for-loop

device 1 device 2 device 3 device 4 replicated

Parallelize loop k

B,
B
C = A X B k C — [Al Az A3 A4] Bz == A]_Bl +A2B2 + A3B3 + A4B4
B4-
>
k

(got by all-reduce)
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Parallelize One Operator

Matrix multiplication _ No dependency on the two spatial for-loops.
=% Can arbitrarily split the for-loops on different devices.

-
-
- P
- P

- -

for i in range(@, N):*~ _-~

-

for j in range(@, M):* Accumulation on this reduction loop.
for k in range(0, K)ie------mooeo-—— Have to accumulate partial results if we split
C[i,3] = C[1i,3] + A[1,k] x B[k,]] this for-loop

device 1 device 2 device 3 device 4

Parallelize loop i and | Parallelize loop i and k a lot of
other variants
C = A X B i C = A X B
J A: partially tiled ]
Device 1 and 2 hold a replicated tile C: got by all-reduce

Device 3 and 4 hold a replicated tile %



Parallelize One Operator

2D Convolution

_>” Simple spatial loops. Can be arbitrarily split.

- - .7 _ Stencil computation loops. Splitting these requires careful
for n in range(@, N):«~ .- - - ;;;’ boundary handling.
for co in range(@, C0):“ __--T-"
for h in range(@, H):« e - _ - - Reduction loop. Need to accumulate partial results.
for w in range(@, W): -
for ci in range(@, CI):4~
for kh in range(®, KH):<«----===- Reductionloops. But usually too small (<= 5) for parallelization.

-

for kw in range(@, KW):4-
C[n,co,h,w] += A[n,co,h+kh,w+kw] x B[kh,kw,co,ci]

Simple case: Parallelize loop n, co, ci, then the parallelization strategies are almost the same as matmul’s.

Complicated case: Parallelize loop h and w 39
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