
Where We Are

● Motivation

● History

● Parallelism Overview

● Data parallelism

● Model parallelism
○ Inter-op parallelism

○ Intra-op parallelism

● Auto-parallelization

Computational Graph (Neural Networks) → Stages

Computational Graph

Devices (e.g., GPUs)

Device 1 Device 2 Device 3 Device 4

2

Computational Graph (Neural Networks) → Stages

Computational Graph

Device 1 Device 2 Device 3 Device 4

Stage

Devices (e.g., GPUs)

3

Execution & Data Movement

S
t
a
g
e

1

I
n
p
u
t

O
u
t
p
u
t

1

S
t
a
g
e

2

O
u
t
p
u
t

2

S
t
a
g
e

3

S
t
a
g
e

4

O
u
t
p
u
t

I
n
p
u
t

2Data

Transfer I
n
p
u
t

3Data

Transfer O
u
t
p
u
t

3

I
n
p
u
t

4Data

Transfer

Device 1 Device 2 Device 3 Device 4

Note: The time spent on data transfer is typically small, since we only

communicates stage outputs at stage boundaries between two stages.

4

Timeline: Visualization of Inter-Operator Parallelism

Device 4

Device 3

Device 2

Device 1

Time

Pipeline Bubbles

● Gray area () indicates devices being idle (a.k.a. Pipeline bubbles).

● Only 1 device activated at a time.

● Pipeline bubble percentage = bubble_area / total_area

= (D - 1) / D, assuming D devices.

5

Reduce Pipeline Bubbles via Pipelining Inputs

S
t
a
g
e

1

S
t
a
g
e

2

S
t
a
g
e

3

S
t
a
g
e

4

I
n
p
u
t

a

I
n
p
u
t

a

I
n
p
u
t

b

a

Device 4

a

Device 3

Device 2

Device 1

Time

b

a

b

c

a

b

c

d

b

c

c

d

d

d

Pipeline bubbles percentage
= (D - 1) / (D - 1 + N)
with D devices and N inputs.

I
n
p
u
t

b

I
n
p
u
t

c

I
n
p
u
t

a

I
n
p
u
t

c

I
n
p
u
t

d

I
n
p
u
t

a

I
n
p
u
t

b

Used in inference.

6

Training: Forward & Backward Dependency

S
t
a
g
e

1

S
t
a
g
e

2

S
t
a
g
e

3

S
t
a
g
e

4

I
n
p
u
t

Loss

Device 4

Device 3

Device 2

Device 1

Time

a

a

a

a

…

a

a

a

a

b

b

b

b

U
p
d
a
te

Forward Backward Forward

7

How to Reduce Pipeline Bubbles for Training?

● Device Placement

● Synchronous Pipeline Parallel Algorithms

○ GPipe

○ 1F1B

○ Interleaved 1F1B

○ TeraPipe

○ Chimera

● Asynchronous Pipeline Parallel Algorithms

○ AMPNet

○ Pipedream/Pipedream-2BW

8

Device Placement
S
t
a
g
e

1

S
t
a
g
e

2

S
t
a
g
e

3

S
t
a
g
e

4

Device 4

Device 3

Device 2

Device 1

Time

a

a

a

a

…

a

a

a

a

b

b

b

b

U
p

d
a

te

Forward Backward Forward

Idea: Slice the branches of a neural network into multiple stages so they can be

calculated concurrently.

Mirhoseini, Azalia, et al. "Device placement optimization with reinforcement learning." ICML 2017.

9

Device Placement: Limitations

Only works for specific NNs with

branches:

Device 4

Device 3

Device 2

Device 1

Time

a

a

a

a

…

a

a

a

a

U
p

d
a

te

Forward Backward

Device Utilization is still low:

Inception Module Contrastive Model

Other ConvNets Transformers

Note: device placement needs to be combined

with the other pipeline schedules discussed

later to further improve device utilization.

10

Synchronous Pipeline Parallel Schedule

Idea: Modify pipeline schedule to improve efficiency, but

keep the computation and convergence semantics exactly

the same as if training with a single device.

11

GPipe

Device 4

Device 3

Device 2

Device 1

Time

0

0

1

1

2

2

3

3 4 5

4 5

0

0

1

1

2

2

3

3 4 5

4 5

Forward (for input batch a)

3 2 1 05 4

3 2 1 05 4

3 2 1 05 4

3 2 1 05 4

Backward (a)

U
p

d
a

te

0

0

1

…

Forward (b)

Huang, Yanping, et al. "Gpipe: Efficient training of giant neural networks using pipeline parallelism." NeurIPS 2019.

Idea: Partition the input batch into multiple “micro-batches”. Pipeline the micro-

batches. Accumulate the gradients of the micro-batches:

Pipeline bubbles percentage = (D - 1) / (D - 1 + N)
with D devices and N micro-batches.

Example: Slice each input batch into 6 micro-batches:

12

GPipe: Experimental Results

#TPUs = 2 #TPUs = 4 #TPUs = 8

#Micro-batches = 1 1 1.07 1.3

#Micro-batches = 4 1.7 3.2 4.8

#Micro-batches = 32 1.8 3.4 6.3

Table: Normalized training throughput using GPipe with different number of

devices (stages) and different number of micro-batches M on TPUs.

Huang, Yanping, et al. "Gpipe: Efficient training of giant neural networks using pipeline parallelism." NeurIPS 2019.

13

GPipe: Memory Usage

Device 4

Device 3

Device 2

Device 1

Time

0

0

1

1

2

2

3

3

3 2 1 0

U
p

d
a

te

0

0

1

4 5

4 5

5 4

…

0

0

1

1

2

2

3

3 4 5

4 5 3 2 1 05 4

3 2 1 05 4

3 2 1 05 4

Forward (a) Backward (a) Forward (b)

Per-Device

Memory

Usage

Model

parameters

Intermediate

activation

= Parameters + Activation ×#Micro-Batches

14

Device 4

Device 3

Device 2

Device 1

Time

0

0

1

1

2

2

3

3

3210

U
p

d
a

te

0

0

1

4 5

4 5

54

…
0

0

1

1

2

2

3

3 4 5

4 53210 54

3210 54

3210 54

Device 4

Device 3

Device 2

Device 1 0

0

1

1

2

2

3

3

3 2 1 0

U
p

d
a

te

0

0

1

4 5

4 5

5 4

…
0

0

1

1

2

2

3

3 4 5

4 5 3 2 1 05 4

3 2 1 05 4

3 2 1 05 4

Forward (for input batch a) Backward (a) Forward (b)

GPipe Schedule:

Fan, Shiqing, et al. "DAPPLE: A pipelined data parallel approach for training large models." PPoPP 2021.

Perform backward as early as possible

Same Latency
1F1B (1 Forward 1 Backward) Schedule:

15

1F1B Memory Usage

Device 4

Device 3

Device 2

Device 1

Time

0

0

1

1

2

2

3

3

3210

U
p

d
a

te

0

0

1

4 5

4 5

54

…
0

0

1

1

2

2

3

3 4 5

4 53210 54

3210 54

3210 54

Maximum

per-device

memory

usage

Fan, Shiqing, et al. "DAPPLE: A pipelined data parallel approach for training large models." PPoPP 2021.

= Parameters + Activation ×#Micro-Batches #Devices

16

Device 1

Device 2

Device 3

Device 4

Interleaved 1F1B

Stage 1

Stage 2

Stage 3

Stage 4

Idea: Slice the neural network into more fine-grained stages and assign multiple

stages to reduce pipeline bubble.

Narayanan, Deepak, et al. "Efficient large-scale language model training on gpu clusters using megatron-lm." SC 2021.

L1 L2 L3 L4 L5 L6 L7 L8

Stage 1

Stage 2

Stage 3

Stage 4

Device 1

Device 2

Device 3

Device 4

Stage 5

Stage 6

Stage 7

Stage 8

L1 L2 L3 L4 L5 L6 L7 L8

17

Interleaved 1F1B

Pro:
Higher pipeline efficiency with fewer
pipeline bubbles.

Con:

More communication overhead

between stages.

Pipeline bubbles percentage

= (D - 1) / (D - 1 + KN)

with D devices, K stages on each

device, and N micro-batches.

18

TeraPipe

…

Cats

<sos>

are

Cats

the

are

best

the

<eos>

best

Transformer layer 1

Transformer layer 2

Transformer layer N-1

Transformer layer N

Li, Zhuohan, et al. "TeraPipe: Token-Level Pipeline Parallelism for Training Large-Scale Language Models." ICML 2021.

Idea: The computation of an input token

only depends on previous tokens but

not future tokens for autoregressive

models.

Further reduce the bubble size by

pipelining within a sequence.

19

TeraPipe

Transformer layer 1

Transformer layer 2

Transformer layer 3

Transformer layer 4

Transformer layer 5

Device 1

Device 2

Device 3

Device 4

Device 5

Li, Zhuohan, et al. "TeraPipe: Token-Level Pipeline Parallelism for Training Large-Scale Language Models." ICML 2021.

20

Idea: The computation of an input token

only depends on previous tokens but

not future tokens for autoregressive

models.

Further reduce the bubble size by

pipelining within a sequence.

TeraPipe

Transformer layer 1

Transformer layer 2

Transformer layer 3

Transformer layer 4

Transformer layer 5

Device 1

Device 2

Device 3

Device 4

Device 5

Li, Zhuohan, et al. "TeraPipe: Token-Level Pipeline Parallelism for Training Large-Scale Language Models." ICML 2021.

21

Idea: The computation of an input token

only depends on previous tokens but

not future tokens for autoregressive

models.

Further reduce the bubble size by

pipelining within a sequence.

Chimera

Idea: Store bi-directional stages and combine bidirectional pipeline to further reduce
pipeline bubbles.

Device 4

Device 3

Device 2

Device 1 0

0

1

1

10

U
p
d
a
te

0

0

1

1

10

10

10Stage 1

Stage 2

Stage 3

Stage 4

Device 4

Device 3

Device 2

Device 1 2

2

3

3

32
U

p
d
a
te

2

2

3

3

32

32

32Stage 4

Stage 3

Stage 2

Stage 1

D4

D3

D2

D1 0

0

1

1

10

U
p

d
a

te

0

0

1

1

10

10

10S1

S2

S3

S4

2

2

3

3

32

2

2

3

3

32

32

32S4

S3

S2

S1

Pipeline bubbles percentage

= (D - 2) / (D - 2 + 2N)

with D devices and N micro-batches.

Li, Shigang, and Torsten Hoefler. "Chimera: efficiently training large-scale neural networks with bidirectional pipelines." SC 21. 22

Extra copy of parameters &

extra synchronization.

Synchronous Pipeline Schedule Summary

Pros:

● Keep the convergence semantics. The training process is exactly the same

as training the neural network on a single device.

Cons:

● Pipeline bubbles.

● Reducing pipeline bubbles typically requires splitting inputs into smaller

components, but too small input to the neural network will reduce the

hardware efficiency.

23

Asynchronous Pipeline Schedules

Idea: Start next round of forward pass before backward pass finishes.

Pros:

● No Pipeline bubbles.

Cons:

● Break the synchronous training semantics. Now the training will involve

stalled gradient.

● Algorithms may store multiple versions of model weights for consistency.

24

AMPNet

Idea: Fully asynchronous. Each device performs forward pass whenever free and

updates the weights after every backward pass.

Gaunt, Alexander L., et al. "AMPNet: Asynchronous model-parallel training for dynamic neural networks." arXiv 2017.
Yang, Bowen, et al. "Pipemare: Asynchronous pipeline parallel dnn training." MLSys 2021.

Convergence: Achieve similar accuracy on small datasets (MNIST 97%), hard to

generalize to larger datasets.

Device 3

Device 2

Device 1 0 2 3

320

4 5

4

0

0

2

2

3

4

4 5 320

320

3

6 7

6

Time

1

1

1

1

1

1

Initial weights

Updated weights

PipeMare: modify the

optimizer to improve

AMPNet convergence

25

Pipedream

Idea: Enforce the same version of weight for a single input batch by storing

multiple weight versions.

Convergence: Similar accuracy on ImageNet with a 5x speedup compared to

data parallel.

Narayanan, Deepak, et al. "PipeDream: generalized pipeline parallelism for DNN training." SOSP 2019.

Device 4

Device 3

Device 2

Device 1

0 1 2 3

3210

4 5

4

…
0

0

1

1

2

2

3

3 4

4 53210

3210 6

4

4

5

0 1 2 3 4 5 210 6 3 7

Weights

updated by 0

Weights

updated by 0,1

Weights updated

by 0,1,2 Initial weights

Initial weights

for backward

Con: No memory saving compared to single device case.

Time

26

Narayanan, Deepak, et al. "Memory-efficient pipeline-parallel dnn training." ICML 2021.

Pipedream-2BW

Idea: Reduce Pipedream’s memory usage (only store 2 copies) by updating

weights less frequently. Weights always stalled by 1 update.

Convergence: Similar training accuracy on language models (BERT/GPT)

Device 4

Device 3

Device 2

Device 1

0 1 2 3

3210

4 5

4

…
0

0

1

1

2

2

3

3 4

4 53210

3210 6

4

4

5

0 1 2 3 4 5 210 6 3 7

7

4

6

5

5

6

Time

Use weights updated

by input 0,1,2,3

starting input 7.

Use initial weights

for input 4,5,6.

27

Imbalanced Pipeline Stages

a

Device 4

a

a

a

Device 3

Device 2

Device 1 b

b

b

b

c

c

c

c

d

d

d

d

Pipeline schedules works best with balanced stages:

Balanced

Stages

a

Device 4

a

a

a

Device 3

Device 2

Device 1

Time

b

b

b

b

c

c

c

c

d

d

d

d

Imbalanced

Stages

28

Same single input latency

Frontier: Automatic Stage Partitioning

Reinforcement Learning Based (mainly for
device placement):

1. Mirhoseini, Azalia, et al. "Device placement optimization
with reinforcement learning." ICML 2017.

2. Gao, Yuanxiang, et al. "Spotlight: Optimizing device
placement for training deep neural networks." ICML 2018.

3. Mirhoseini, Azalia, et al. "A hierarchical model for device
placement." ICLR 2018.

4. Addanki, Ravichandra, et al. "Placeto: Learning
generalizable device placement algorithms for distributed
machine learning." NeurIPS 2019.

5. Zhou, Yanqi, et al. "Gdp: Generalized device placement
for dataflow graphs." Arxiv 2019.

6. Paliwal, Aditya, et al. "Reinforced genetic algorithm
learning for optimizing computation graphs." ICLR 2020.

7. …

29

Goal: Minimize maximum stage latency & maximize parallelization

Optimization (Dynamic Programming/Linear
Programming) Based:

1. Narayanan, Deepak, et al. "PipeDream: generalized
pipeline parallelism for DNN training." SOSP 2019.

2. Tarnawski, Jakub M., et al. "Efficient algorithms for device
placement of dnn graph operators." NeurIPS 2020.

3. Fan, Shiqing, et al. "DAPPLE: A pipelined data parallel
approach for training large models." PPoPP 2021.

4. Tarnawski, Jakub M., Deepak Narayanan, and Amar
Phanishayee. "Piper: Multidimensional planner for dnn
parallelization." NeurIPS 2021.

5. Zheng, Lianmin, et al. "Alpa: Automating Inter-and Intra-
Operator Parallelism for Distributed Deep Learning." OSDI
2022.

6. …

RL-Based Partitioning Algorithm

30Addanki, Ravichandra, et al. "Placeto: Learning generalizable device placement algorithms for distributed machine learning." NeurIPS 2019.

State: Device assignment plan for a computational graph.

Action: Modify the device assignment of a node.

Reward: Latency difference between the new and old placements.

Trained with policy gradient algorithm.

Optimization-Based Partitioning Algorithm

31
Tarnawski, Jakub M., et al. "Efficient algorithms for device placement of dnn graph operators." NeurIPS 2020.

Integer Linear Programming:

Variable: Decision variable vector for

each operator, representing device

assignment.

Minimize: Maximum finishing time of all

operators.

Constraint: Execution dependency &

memory capacity of each device.

Inter-operator Parallelism Summary

Idea: Assign different operators of the computational graph to different devices

and executed in a pipelined fashion.

Method General

computational graph

No pipeline

bubbles

Same convergence

as single device

Device Placement

Synchronous Schedule

Asynchronous Schedule

Stage Partitioning: Imbalance stage → More pipeline bubble

RL-Based / Optimization-Based Automatic Stage Partitioning
32

Where We Are

● Motivation

● History

● Parallelism Overview

● Data parallelism

● Model parallelism
○ Inter-op parallelism

○ Intra-op parallelism

● Auto-parallelization

Recap: Intra-op and Inter-op

x subrelu matmul

w2

matmul

w1

Strategy 1: Inter-operator Parallelism

x subrelu matmul

w2

matmul

w1

Strategy 2: Intra-operator Parallelism

This section:

1. How to parallelize an operator ?

2. How to parallelize a graph ?

34

Parallelize One Operator

for n in range(0, N):
for d in range(0, D):

C[n,d] = A[n,d] + B[n,d]

No dependency on the two for-loops.

Can arbitrarily split the for-loops on different devices.

Element-wise operators

= +C A Bn

d

Parallelize loop n

= +C A Bn

d

Parallelize both loop n and loop d a lot of

other variants

…

device 1 device 2 device 3 device 4

35

for i in range(0, N):
for j in range(0, M):

for k in range(0, K):
C[i,j] = C[i,j] + A[i,k] x B[k,j]

Parallelize One Operator

No dependency on the two spatial for-loops.

Can arbitrarily split the for-loops on different devices.

Accumulation on this reduction loop.

Have to accumulate partial results if we split

this for-loop

Matrix multiplication

= xC A Bi

j

Parallelize loop i

device 1 device 2 device 3 device 4 replicated

36

for i in range(0, N):
for j in range(0, M):

for k in range(0, K):
C[i,j] = C[i,j] + A[i,k] x B[k,j]

Parallelize One Operator

No dependency on the two spatial for-loops.

Can arbitrarily split the for-loops on different devices.

Accumulation on this reduction loop.

Have to accumulate partial results if we split

this for-loop

Matrix multiplication

device 1 device 2 device 3 device 4 replicated

k

k

Parallelize loop k

(got by all-reduce)

= xC A B

37

for i in range(0, N):
for j in range(0, M):

for k in range(0, K):
C[i,j] = C[i,j] + A[i,k] x B[k,j]

Parallelize One Operator

No dependency on the two spatial for-loops.

Can arbitrarily split the for-loops on different devices.

Accumulation on this reduction loop.

Have to accumulate partial results if we split

this for-loop

a lot of

other variants

…

Matrix multiplication

device 1 device 2 device 3 device 4

= xC Ai

j

Parallelize loop i and j

A: partially tiled

Device 1 and 2 hold a replicated tile

Device 3 and 4 hold a replicated tile

B = xAi

j

Parallelize loop i and k

C B

C: got by all-reduce
38

for n in range(0, N):
for co in range(0, CO):

for h in range(0, H):
for w in range(0, W):

for ci in range(0, CI):
for kh in range(0, KH):

for kw in range(0, KW):
C[n,co,h,w] += A[n,co,h+kh,w+kw] x B[kh,kw,co,ci]

Parallelize One Operator

2D Convolution

Simple case: Parallelize loop n, co, ci, then the parallelization strategies are almost the same as matmul’s.

Complicated case: Parallelize loop h and w

Simple spatial loops. Can be arbitrarily split.

Reduction loop. Need to accumulate partial results.

Stencil computation loops. Splitting these requires careful

boundary handling.

Reduction loops. But usually too small (<= 5) for parallelization.

39

	幻灯片 1: Where We Are
	幻灯片 2: Computational Graph (Neural Networks) → Stages
	幻灯片 3: Computational Graph (Neural Networks) → Stages
	幻灯片 4: Execution & Data Movement
	幻灯片 5: Timeline: Visualization of Inter-Operator Parallelism
	幻灯片 6: Reduce Pipeline Bubbles via Pipelining Inputs
	幻灯片 7: Training: Forward & Backward Dependency
	幻灯片 8: How to Reduce Pipeline Bubbles for Training?
	幻灯片 9: Device Placement
	幻灯片 10: Device Placement: Limitations
	幻灯片 11: Synchronous Pipeline Parallel Schedule
	幻灯片 12: GPipe
	幻灯片 13: GPipe: Experimental Results
	幻灯片 14: GPipe: Memory Usage
	幻灯片 15: GPipe Schedule:
	幻灯片 16: 1F1B Memory Usage
	幻灯片 17: Interleaved 1F1B
	幻灯片 18: Interleaved 1F1B
	幻灯片 19: TeraPipe
	幻灯片 20: TeraPipe
	幻灯片 21: TeraPipe
	幻灯片 22: Chimera
	幻灯片 23: Synchronous Pipeline Schedule Summary
	幻灯片 24: Asynchronous Pipeline Schedules
	幻灯片 25: AMPNet
	幻灯片 26: Pipedream
	幻灯片 27: Pipedream-2BW
	幻灯片 28: Imbalanced Pipeline Stages
	幻灯片 29: Frontier: Automatic Stage Partitioning
	幻灯片 30: RL-Based Partitioning Algorithm
	幻灯片 31: Optimization-Based Partitioning Algorithm
	幻灯片 32: Inter-operator Parallelism Summary
	幻灯片 33: Where We Are
	幻灯片 34: Recap: Intra-op and Inter-op
	幻灯片 35: Parallelize One Operator
	幻灯片 36: Parallelize One Operator
	幻灯片 37: Parallelize One Operator
	幻灯片 38: Parallelize One Operator
	幻灯片 39: Parallelize One Operator

