Parallelize One Operator

2D Convolution

Simple case: Parallelize loop n, co, ci, then the parallelization strategies are almost the same as matmul's. **Complicated case**: Parallelize loop h and w

Data Parallelism as A Case of Intra-op Parallelism

Row-partitioned Column-partitioned

Matmul Parallelization Type 1 communication cost = 0

Replicated

Matmul Parallelization Type 2

communication cost = all-reduce(c)

Re-partition Communication Cost

Different operators' parallelization strategies require different partition format of the same tensor

Re-partition Communication Cost

Different operators' parallelization strategies require different partition format of the same tensor

Parallelize All Operators in a Graph

Problem

Minimize Node costs (computation + communication) + Edge costs (re-partition communication)

Solution

Manual design Randomized search Dynamic programming Integer linear programming

Important Projects

Model-specific Intra-op Parallel Strategies

- AlexNet
- Megatron-LM
- GShard MoE

Systems for Intra-op Parallelism

- ZeRO
- Mesh-Tensorflow
- GSPMD
- Tofu
- FlexFlow

AlexNet

Result: increase top-1 accuracy by 1.7%

Megaton-LM

Result: a large language model with 8.3B parameters that outperforms SOTA results

Figure 3 from the paper: How to partition the MLP in the transformer.

Illustrated with the notations in this tutorial

GShard MoE

Result: a multi-language translation model with 600B parameters that outperforms SOTA

ZeRO Optimizer

Problem

Data parallelism replicates gradients, optimizer states and model weights on all devices.

Idea

Partition gradients, optimizer states and model weights.

M is the number of parameters, N is the number of devices.

	Optimizer States (12M)	Gradients (2M)	Model Weights (2M)	Memory Cost	Communication Cost
Data Parallelism	Replicated	Replicated	Replicated	16 <i>M</i>	all-reduce(2M)
ZeRO Stage 1	Partitioned	Replicated	Replicated	$4M + \frac{12M}{N}$	all-reduce(2M)
ZeRO Stage 2	Partitioned	Partitioned	Replicated	$2M + \frac{14M}{N}$	all-reduce(2M)
ZeRO Stage 3	Partitioned	Partitioned	Partitioned	$\frac{16M}{N}$	1.5 all-reduce(2M)

ZeRO Stage 2

Same communication cost but save memory by partitioning more tensors

= 1.5 all-reduce

Mesh-Tensorflow

Map tensor dimension to mesh dimension for parallelism

GSPMD

- Use annotations to specify partition strategy
- Propagate the annotations to whole graph
- Use compiler to generate SPMD (Single Program Multiple Data) parallel executables

```
1
     # Partition inputs along group (G) dim.
   + inputs = split(inputs, 0, D)
2
     # Replicate the gating weights
3
     wg = replicate(wg)
4
     gates = softmax(einsum("GSM,ME->GSE", inputs, wg))
5
6
     combine_weights, dispatch_mask = Top2Gating(gating_logits)
7
     dispatched_expert_inputs = einsum(
8
       "GSEC,GSM->EGCM", dispatch_mask, reshaped_inputs)
     # Partition dispatched inputs along expert (E) dim.
9
   + dispatched_expert_inputs = split(dispatched_expert_inputs, 0, D)
10
     h = einsum("EGCM, EMH->EGCH", dispatched_expert_inputs, wi)
11
12
      . . .
```

Tofu

Tensor description language for automatic parallelization analysis

```
@tofu.op
def convld(data, filters):
    return lambda b, co, x:
        Sum(lambda ci, dx: data[b, ci, x+dx]*filters[ci, co, dx]
```

Dynamic programming for graph-level optimization

- Use graph coarsening to merge operators (e.g., elementwise-ops)
- Use dynamic programming with recursive partitioning

FlexFlow

SOAP parallelism space

- Sample, Operator, Attribute, Parameter

Intra-op Parallelism

Inter-op Parallelism (w/o pipeline)

Operator	Parallelizable Dimensions				
Operator	(S)ample	(A)ttribute	(P)arameter		
1D pooling	sample	length, channel			
1D convolution	sample	length	channel		
2D convolution	sample	height, width	channel		
Matrix multiplication	sample		channel		

Simulator + MCMC for finding parallel strategies

- Details will be discussed later

Combine Intra-op Parallelism and Inter-op Parallelism

Narayanan, Deepak, et al. "Efficient large-scale language model training on gpu clusters using megatron-Im." *SC 2021* Zheng, Lianmin, et al. "Alpa: Automating Inter-and Intra-Operator Parallelism for Distributed Deep Learning." *OSDI 2022*

Combine Intra-op Parallelism and Inter-op Parallelism

Combining inter- and intra-operator parallelism scales to more devices.

Intra-operator Parallelism Summary

- We can parallelize a single operator by exploiting its internal parallelism
- To do this for a whole computational graph, we need to choose strategies for all nodes in the graph to minimize the communication cost
- Intra-op and inter-op can be combined

Other Techniques for Training Large Models

System-level Memory Optimizations

- Rematerialization/Gradient Checkpointing
- Swapping

ML-level Optimizations

- Quantization
- Sparsification
- Low-rank approximation

Chen, Tianqi, et al. "Training deep nets with sublinear memory cost." *arXiv 2016* Rajbhandari, Samyam, et al. "Zero-infinity: Breaking the gpu memory wall for extreme scale deep learning." *SC* 2021. Tang, Hanlin, et al. "1-bit adam: Communication efficient large-scale training with adam's convergence speed." *ICML* 2021. Shazeer, Noam, and Mitchell Stern. "Adafactor: Adaptive learning rates with sublinear memory cost." *ICML* 2018.

Where We Are

- Motivation
- History
- Parallelism Overview
- Data parallelism
- Model parallelism
 - Inter-op parallelism
 - Intra-op parallelism
- Auto-parallelization

Auto-parallelization: Motivation

Auto-parallelization: Problem

$egin{array}{l} \max_{ ext{strategy}} ext{ Performance(Model, Cluster)} \ s.\,t. ext{ strategy} \in ext{Inter-op} \ \cup ext{ Intra-op} \end{array}$

Auto-parallelization: Problem

The Search Space is Huge

#ops in a real model
 (nodes to color)

#op types (type of nodes) #devices on a cluster (available colors)

100 - 10K 80 - 200+ 10s - 1000s

Automatic Parallelization Methods

Search-based methods

- MCMC:
 - → [Jia et al., 2018]
 - → [Jia et al., 2019]
- Heuristics
 - → [Fan et al., 2021]

The complete list of references is available on the tutorial website Learning-based methods

- Reinforcement Learning:
 - → [Mirhoseini et al., 2017]
 - → [Mirhoseini et al., 2018]
 - → [Addanki, et al., 2019]
- ML-based cost model:
 - → [Chen et al., 2018],
 - → [Zhou et al., 2020],
- → [Zhang, 2020]
- Bayesian optimization:
 - → [Sergeev et al., 2018],
 - → [Peng et al., 2019]

Optimization-based methods

- Dynamic programming
 - → [Wang, et al., 2018]
 - → [Narayanan, et al., 2019]
 - → [Li, et al., 2021]
 - → [Narayanan, et al., 2012]
 - → [Tarnawski, et al., 2020]
 - → [Tarnawski, et al., 2021]
- Integer linear programming
 - → [Tarnawski, et al., 2020]
- Hierarchical Optimization
 - → [Zheng, et al., 2022]

Automatic Parallelization Methods

Search-based methods

- MCMC:
 - → [Jia et al., 2018]
 - → [Jia et al., 2019]
- Heuristics
 - → [Fan et al., 2021]

The complete list of references is available on the tutorial website Learning-based methods

- Reinforcement Learning:
 - → [Mirhoseini et al., 2017]
 - → [Mirhoseini et al., 2018]
 - → [Addanki, et al., 2019]
- ML-based cost model:
 - → [Chen et al., 2018],
 - → [Zhou et al., 2020],
- → [Zhang, 2020]
- Bayesian optimization:
 - → [Sergeev et al., 2018],
 - → [Peng et al., 2019]

Optimization-based methods

- Dynamic programming
 - → [Wang, et al., 2018]
 - → [Narayanan, et al., 2019]
 - → [Li, et al., 2021]
 - → [Narayanan, et al., 2012]
 - → [Tarnawski, et al., 2020]
 - → [Tarnawski, et al., 2021]
- Integer linear programming
 - → [Tarnawski, et al., 2020]
- Hierarchical optimization
 - → [Zheng, et al., 2022]

General Recipe

Automatic Parallelization Methods

Search-based methods

- MCMC:
 - → [Jia et al., 2018]
 - → [Jia et al., 2019]
- Heuristics
 - → [Fan et al., 2021]

The complete list of references is available on the tutorial website

Learning-based methods

- Reinforcement Learning:
 - → [Mirhoseini et al., 2017]
 - → [Mirhoseini et al., 2018]
 - → [Addanki, et al., 2019]
- ML-based cost model:
 - → [Chen et al., 2018]
 - → [Zhou et al., 2020],
 - → [Zhang, 2020]
- Bayesian optimization:
 - → [Sergeev et al., 2018],
 - → [Peng et al., 2019]

Optimization-based methods

- Dynamic programming
- → [Wang, et al., 2018]
- → [Narayanan, et al., 2019]
- → [Li, et al., 2021]
- → [Narayanan, et al., 2012]
- → [Tarnawski, et al., 2020]
- → [Tarnawski, et al., 2021]
- Integer linear programming
 - → [Tarnawski, et al., 2020]
- Hierarchical optimization
 - → [Zheng, et al., 2022]

FlexFlow: Search Space

SOAP Space

- S (Sample) sample dimension
- O (Operation) operator placement
- P (Parameter) split the parameter
- A (Attribute) the rest

Onorator	Parallelizable Dimensions				
Operator	(S)ample	(A)ttribute	(P)arameter		
1D pooling	sample	length, channel			
1D convolution	sample	length	channel		
2D convolution	sample	height, width	channel		
Matrix multiplication	sample		channel		

FlexFlow: Workflow

Results Discussion

Jia, et al. "Beyond Data and Model Parallelism for Deep Neural Networks". MLSys 2019.

Automatic Parallelization Methods

Search-based methods

- MCMC:
 - → [Jia et al., 2018]
 - → [Jia et al., 2019]
- Heuristics
 - → [Fan et al., 2021]

The complete list of references is available on the tutorial website

Learning-based methods

- Reinforcement Learning:
 - → [Mirhoseini et al., 2017]
 - → [Mirhoseini et al., 2018]
 - → [Addanki, et al., 2019]
- ML-based cost model:
 - → [Chen et al., 2018]
 - → [Zhou et al., 2020],
 - → [Zhang, 2020]
- Bayesian optimization:
 - → [Sergeev et al., 2018]
 - → [Peng et al., 2019]

Optimization-based methods

- Dynamic programming
- → [Wang, et al., 2018]
- → [Narayanan, et al., 2019]
- → [Li, et al., 2021]
- → [Narayanan, et al., 2012]
- → [Tarnawski, et al., 2020]
- → [Tarnawski, et al., 2021]
- Integer linear programming
 - → [Tarnawski, et al., 2020]
- Hierarchical optimization
 - → [Zheng, et al., 2022]

ColocRL (a.k.a. Device Placement Optimization)

ColocRL: Model

Figure from [Mirhoseini et al., ICML 2017]

ColocRL: Training

$$\mathbb{E}_{\mathcal{P} \sim \pi(\mathcal{P} \,|\, \mathcal{G};\, heta)}[R(\mathcal{P})||\, \mathcal{G}]$$

$${\cal G}$$
: computational graph ${\cal R}({\cal P})$: Real runtime of a placement $\pi(\cdot)$: output distributed of the RNN

ColocRL: Other Improvement

Mirhoseini, et al. "A Hierarchical Model for Device Placement." ICLR 2018.

Results Discussion

Tasks	Single-CPU	Single-GPU	#GPUs	Scotch	MinCut	Expert	RL-based	Speedup
RNNLM (batch 64)	6.89	1.57	2 4	13.43 11.52	11.94 10.44	3.81 4.46	1.57 1.57	0.0% 0.0%
NMT (batch 64)	10.72	OOM	2 4	14.19 11.23	11.54 11.78	4.99 4.73	4.04 3.92	23.5% 20.6%
Inception-V3 (batch 32)	26.21	4.60	24	25.24 23.41	22.88 24.52	11.22 10.65	4.60 3.85	0.0% 19.0%

Figure and table from [Mirhoseini et al., ICML 2017]

Automatic Parallelization Methods

Search-based methods

- MCMC:
 - → [Jia et al., 2018]
 - → [Jia et al., 2019]
- Heuristics
 - → [Fan et al., 2021]

The complete list of references is available on the tutorial website

Learning-based methods

- Reinforcement Learning:
 - → [Mirhoseini et al., 2017]
 - → [Mirhoseini et al., 2018]
 - → [Addanki, et al., 2019]
- ML-based cost model:
 - → [Chen et al., 2018]
 - → [Zhou et al., 2020],
 - → [Zhang, 2020]
- Bayesian optimization:
 - → [Sergeev et al., 2018]
 - → [Peng et al., 2019]

Optimization-based methods

- Dynamic programming
 - → [Wang, et al., 2018]
 - → [Narayanan, et al., 2019]
 - → [Li, et al., 2021]
 - → [Narayanan, et al., 2012]
 - → [Tarnawski, et al., 2020]
 - → [Tarnawski, et al., 2021]
- Integer linear programming
 - → [Tarnawski, et al., 2020]
- Hierarchical optimization
 - → Alpa [Zheng, et al., 2022]

Optimization-based Method: Alpa

Inter-op parallelism

Intra-op parallelism

Trade-off

	Inter-operator Parallelism	Intra-operator Parallelism
Communication	Less	More
Device Idle Time	More	Less

Alpa Rationale w1 ω2 Device 1 Device 2 ∣matmul relu ▶ matmul MSE Х Inter-op parallelism Fast connections Slow connections w2 w1 node ▶ matmul relu ▶ matmul ► MSE Х GPU GPU GPU GPU

Alpa

node

Alpa Compiler: Hierarchical Optimization

or

Cluster (2D Device Mesh)

Stage with intra-operator parallelization

Integer Linear Programming Formulation

Minimize Computation cost + Communication cost

Evaluation: Comparing with Previous Works

GPT (up to 39B)

Match specialized manual systems.

GShard MoE (up to 70B)

Outperform the manual baseline by up to 8x.

Wide-ResNet (up to 13B)

Generalize to models without manual plans.

Weak scaling results where the model size grow with #GPUs. Evaluated on 8 AWS EC2 p3.16xlarge nodes with 8 16GB V100s each (64 GPUs in total).

Automatic Parallelization Methods

Search-based methods

- Easy to extend the search space
- No training cost
- X High inference cost
- XNot explainable
- XNo optimality guarantee

Learning-based methods

- Easy to extend the search space
- X High training cost
- Low inference cost
- 🗙 Not explainable
- \times No optimality guarantee

Optimization-based methods

- \times Non-trivial to extend the search space
- No training cost
- Medium inference cost
- 🗹 Explainable
- Some optimality guarantee

Future ML Systems and Challenges

Better Objectives

Maximize Sys	Maximize Perfo strategy Configs, Configs) tem Performance	rmance(Model Cluster Maximize <i>User Performance</i>	9
Maximize	Throughput	Maximize Goodput	
Maximize		Maximize \$\$\$ utilization	

I.