
for n in range(0, N):
for co in range(0, CO):

for h in range(0, H):
for w in range(0, W):

for ci in range(0, CI):
for kh in range(0, KH):

for kw in range(0, KW):
C[n,co,h,w] += A[n,co,h+kh,w+kw] x B[kh,kw,co,ci]

Parallelize One Operator

2D Convolution

Simple case: Parallelize loop n, co, ci, then the parallelization strategies are almost the same as matmul’s.

Complicated case: Parallelize loop h and w

Simple spatial loops. Can be arbitrarily split.

Reduction loop. Need to accumulate partial results.

Stencil computation loops. Splitting these requires careful

boundary handling.

Reduction loops. But usually too small (<= 5) for parallelization.

1

Data Parallelism as A Case of Intra-op Parallelism

matmul (c)

b

a

Matmul Parallelization Type 1

communication cost = 0

matmul (c)

b

a

Matmul Parallelization Type 2

communication cost = all-reduce(c)

Replicated Column-partitionedRow-partitioned

x MSE

y

relu matmul

w2

matmul

w1

Forward Pass

Two “Type 1” matmuls: no communication

new_w2new_w1

matmul

matmul

MSE’

matmul

relu’

Backward Pass

One “Type 1” matmul: no communication

Two “Type 2” matmuls: require all-reduce
2

Re-partition Communication Cost

x

w1 w2

matmul matmulrelu

matmul relu matmul

w2

relu

Do not need re-

partition

matmul

w2

relu

…

Need re-partition

by all-gather

Replicated Column-partitionedRow-partitioned

Different operators’ parallelization strategies require different partition format of the same tensor

3

Re-partition Communication Cost

all-to-all

all-to-all

Different operators’ parallelization strategies require different partition format of the same tensor

Row-partitioned

Replicated

Column-partitioned

4

Parallelize All Operators in a Graph

Minimize Node costs (computation + communication) + Edge costs (re-partition communication)

Pick a parallel strategy

of each operator

x relu matmul

w2

matmul

w1

Problem

Manual design

Randomized search

Dynamic programming

Integer linear programming

Solution

5

Important Projects

Model-specific Intra-op Parallel Strategies
- AlexNet

- Megatron-LM

- GShard MoE

Systems for Intra-op Parallelism
- ZeRO

- Mesh-Tensorflow

- GSPMD

- Tofu

- FlexFlow

6

AlexNet

Assign a group convolution layer to 2 GPUs

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks.” NeurIPS 2012

Result: increase top-1 accuracy by 1.7%

7

Megaton-LM

Result: a large language model with 8.3B parameters that outperforms SOTA results

Shoeybi, Mohammad, et al. "Megatron-LM: Training multi-billion parameter language models using model parallelism."

Figure 3 from the paper：
How to partition the MLP in the transformer.

x gelu matmul

w2

matmul

w1

Replicated Column-partitionedRow-partitioned

dropout

Illustrated with the notations in this tutorial

all-reduce during forward

all-reduce during backward

8

GShard MoE

Result: a multi-language translation model with 600B parameters that outperforms SOTA

x x
batch
matmul

MoE
Layers

matmul

Normal
layers

Replicated Expert-partitionedRow-partitioned

X

Illustrated with the notations in this tutorial

all-to-all re-partition communication

Lepikhin, Dmitry, et al. "GShard: Scaling giant models with conditional computation and automatic sharding." ICLR 2021
9

ZeRO Optimizer

Problem

Data parallelism replicates gradients, optimizer states and model weights on all devices.

Idea

Partition gradients, optimizer states and model weights.

Optimizer

States (12M)

Gradients

(2M)

Model

Weights (2M)

Memory

Cost

Communication

Cost

Data Parallelism Replicated Replicated Replicated all-reduce(2M)

ZeRO Stage 1 Partitioned Replicated Replicated all-reduce(2M)

ZeRO Stage 2 Partitioned Partitioned Replicated all-reduce(2M)

ZeRO Stage 3 Partitioned Partitioned Partitioned 1.5 all-reduce(2M)

Rajbhandari, Samyam, et al. "Zero: Memory optimizations toward training trillion parameter models." SC 2020

M is the number of parameters, N is the number of devices.

10

ZeRO Stage 2

Key Idea: all-reduce = reduce-scatter + all-gather

partial
gradients

gradients multiply-add multiply-add

momentum weights

all-reduce new
weights

Data Parallelism

partial
gradients

gradients multiply-add multiply-add

momentum weights

reduce-scatter new
weights

all-gather

ZeRO Stage 2

Same communication cost but save memory by partitioning more tensors

Replicated Partitioned

11

ZeRO Stage 3

ZeRO Stage 2

communication cost

= all-reduce

forward backward
optimizer

state update
weights
update

weights

reduce-scatter

all-gather all-gather

ZeRO Stage 3

communication cost

= 1.5 all-reduce

forward backward
optimizer

state update
weights
update

weights

reduce-scatter

all-gather

Replicated Partitioned

12

Mesh-Tensorflow

Shazeer, Noam, et al. "Mesh-tensorflow: Deep learning for supercomputers." NeurIPS 2018.

Map tensor dimension to mesh dimension for parallelism

Tensor dimension

Mesh dimension

Mapping

13

GSPMD

- Use annotations to specify partition strategy

- Propagate the annotations to whole graph

- Use compiler to generate SPMD (Single Program Multiple Data) parallel executables

Xu, Yuanzhong, et al. "GSPMD: general and scalable parallelization for ML computation graphs." arXiv 2021
14

Tofu

Wang, Minjie, Chien-chin Huang, and Jinyang Li. "Supporting very large models using automatic dataflow graph partitioning." EuroSys 2019

Tensor description language for automatic parallelization analysis

Dynamic programming for graph-level optimization

- Use graph coarsening to merge operators (e.g., elementwise-ops)

- Use dynamic programming with recursive partitioning

15

FlexFlow

Jia, Zhihao, Matei Zaharia, and Alex Aiken. "Beyond Data and Model Parallelism for Deep Neural Networks." MLSys 2019

SOAP parallelism space

- Sample, Operator, Attribute, Parameter

Simulator + MCMC for finding parallel strategies

- Details will be discussed later

Intra-op Parallelism Inter-op Parallelism

(w/o pipeline)

16

Combine Intra-op Parallelism and Inter-op Parallelism

Computational Graph

Stage

Intra-op Parallelism

Inter-op Parallelism

Narayanan, Deepak, et al. "Efficient large-scale language model training on gpu clusters using megatron-lm." SC 2021

Zheng, Lianmin, et al. "Alpa: Automating Inter-and Intra-Operator Parallelism for Distributed Deep Learning." OSDI 2022

Device

Mesh

17

Combine Intra-op Parallelism and Inter-op Parallelism

Zheng, Lianmin, et al. "Alpa: Automating Inter-and Intra-Operator Parallelism for Distributed Deep Learning." OSDI 2022
18

GPT GShard MoE Wide-ResNet

Combining inter- and intra-operator parallelism scales to more devices.

Intra-operator Parallelism Summary

- We can parallelize a single operator by exploiting its internal parallelism

- To do this for a whole computational graph, we need to choose strategies for

all nodes in the graph to minimize the communication cost

- Intra-op and inter-op can be combined

19

Other Techniques for Training Large Models

System-level Memory Optimizations

- Rematerialization/Gradient Checkpointing

- Swapping

ML-level Optimizations

- Quantization

- Sparsification

- Low-rank approximation

Chen, Tianqi, et al. "Training deep nets with sublinear memory cost." arXiv 2016

Rajbhandari, Samyam, et al. "Zero-infinity: Breaking the gpu memory wall for extreme scale deep learning." SC 2021.

Tang, Hanlin, et al. "1-bit adam: Communication efficient large-scale training with adam’s convergence speed." ICML 2021.

Shazeer, Noam, and Mitchell Stern. "Adafactor: Adaptive learning rates with sublinear memory cost." ICML 2018.
20

Where We Are

● Motivation

● History

● Parallelism Overview

● Data parallelism

● Model parallelism
○ Inter-op parallelism

○ Intra-op parallelism

● Auto-parallelization

Auto-parallelization: Motivation

Parallelisms

Data

parallelism

Operator

partitioning

Pipeline

parallelism

ZeRO

CNNs Bert GPT-3 MoE
Models

ML developer: which one is for
my model and my cluster?Megatron-LM

GPipe

Mesh-TF

1F1B

fairscale.FSDP

GSPMD

22

Auto-parallelization: Problem

23

Auto-parallelization: Problem

node node

node Node

A B DC

…

A B DC

A B DC

A B DC

x MSE

y

relu matmul

w2

matmul

w1

matmul

matmul

MSE’

matmul

relu’

sub sub

Model Cluster

Strategy

24

The Search Space is Huge

100 - 10K

#ops in a real model

(nodes to color)

#devices on a cluster

(available colors)

80 - 200+

#op types

(type of nodes)

10s - 1000s

25

Automatic Parallelization Methods

Learning-based methods

● Reinforcement Learning:

➔ [Mirhoseini et al., 2017]

➔ [Mirhoseini et al., 2018]

➔ [Addanki, et al., 2019]

● ML-based cost model:

➔ [Chen et al., 2018],

➔ [Zhou et al., 2020],

➔ [Zhang, 2020]

● Bayesian optimization:

➔ [Sergeev et al., 2018],

➔ [Peng et al., 2019]

Optimization-based methods

● Dynamic programming

➔ [Wang, et al., 2018]

➔ [Narayanan, et al., 2019]

➔ [Li, et al., 2021]

➔ [Narayanan, et al., 2012]

➔ [Tarnawski, et al., 2020]

➔ [Tarnawski, et al., 2021]

● Integer linear programming

➔ [Tarnawski, et al., 2020]

● Hierarchical Optimization

➔ [Zheng, et al., 2022]

Search-based methods

● MCMC:

➔ [Jia et al., 2018]

➔ [Jia et al., 2019]

● Heuristics

➔ [Fan et al., 2021]

26

The complete list of

references is available

on the tutorial website

Automatic Parallelization Methods

Learning-based methods

● Reinforcement Learning:

➔ [Mirhoseini et al., 2017]

➔ [Mirhoseini et al., 2018]

➔ [Addanki, et al., 2019]

● ML-based cost model:

➔ [Chen et al., 2018],

➔ [Zhou et al., 2020],

➔ [Zhang, 2020]

● Bayesian optimization:

➔ [Sergeev et al., 2018],

➔ [Peng et al., 2019]

Optimization-based methods

● Dynamic programming

➔ [Wang, et al., 2018]

➔ [Narayanan, et al., 2019]

➔ [Li, et al., 2021]

➔ [Narayanan, et al., 2012]

➔ [Tarnawski, et al., 2020]

➔ [Tarnawski, et al., 2021]

● Integer linear programming

➔ [Tarnawski, et al., 2020]

● Hierarchical optimization

➔ [Zheng, et al., 2022]

Search-based methods

● MCMC:

➔ [Jia et al., 2018]

➔ [Jia et al., 2019]

● Heuristics

➔ [Fan et al., 2021]

27

The complete list of

references is available

on the tutorial website

General Recipe

reduce space Smaller
Space

*
Evaluator

A B DC
A B DC
A B DC
A B DC

Search Space
Search
method

candidates

28

Automatic Parallelization Methods

Learning-based methods

● Reinforcement Learning:

➔ [Mirhoseini et al., 2017]

➔ [Mirhoseini et al., 2018]

➔ [Addanki, et al., 2019]

● ML-based cost model:

➔ [Chen et al., 2018],

➔ [Zhou et al., 2020],

➔ [Zhang, 2020]

● Bayesian optimization:

➔ [Sergeev et al., 2018],

➔ [Peng et al., 2019]

Optimization-based methods

● Dynamic programming

➔ [Wang, et al., 2018]

➔ [Narayanan, et al., 2019]

➔ [Li, et al., 2021]

➔ [Narayanan, et al., 2012]

➔ [Tarnawski, et al., 2020]

➔ [Tarnawski, et al., 2021]

● Integer linear programming

➔ [Tarnawski, et al., 2020]

● Hierarchical optimization

➔ [Zheng, et al., 2022]

Search-based methods

● MCMC:

➔ [Jia et al., 2018]

➔ [Jia et al., 2019]

● Heuristics

➔ [Fan et al., 2021]

29

The complete list of

references is available

on the tutorial website

FlexFlow: Search Space

SOAP Space

● S (Sample) - sample dimension

● O (Operation) – operator placement

● P (Parameter) – split the parameter

● A (Attribute) – the rest

30
Jia, et al. "Beyond Data and Model Parallelism for Deep Neural Networks". MLSys 2019.

FlexFlow: Workflow

MCMC

Simulator
*

A B DC
A B DC
A B DC
A B DC

SOAP Space

candidates

31
Jia, et al. "Beyond Data and Model Parallelism for Deep Neural Networks". MLSys 2019.

Results Discussion

32

Figure from [Jia et al., MLsys 2019]

Jia, et al. "Beyond Data and Model Parallelism for Deep Neural Networks". MLSys 2019.

Automatic Parallelization Methods

Learning-based methods

● Reinforcement Learning:

➔ [Mirhoseini et al., 2017]

➔ [Mirhoseini et al., 2018]

➔ [Addanki, et al., 2019]

● ML-based cost model:

➔ [Chen et al., 2018],

➔ [Zhou et al., 2020],

➔ [Zhang, 2020]

● Bayesian optimization:

➔ [Sergeev et al., 2018],

➔ [Peng et al., 2019]

Optimization-based methods

● Dynamic programming

➔ [Wang, et al., 2018]

➔ [Narayanan, et al., 2019]

➔ [Li, et al., 2021]

➔ [Narayanan, et al., 2012]

➔ [Tarnawski, et al., 2020]

➔ [Tarnawski, et al., 2021]

● Integer linear programming

➔ [Tarnawski, et al., 2020]

● Hierarchical optimization

➔ [Zheng, et al., 2022]

Search-based methods

● MCMC:

➔ [Jia et al., 2018]

➔ [Jia et al., 2019]

● Heuristics

➔ [Fan et al., 2021]

33

The complete list of

references is available

on the tutorial website

ColocRL (a.k.a. Device Placement Optimization)

Real
Runtime

*

A B DC
A B DC
A B DC
A B DC

Space of Inter-op

strategies

ML
Model

candidates

policy
gradients

34
Mirhoseini, et al. "Device Placement Optimization with Reinforcement Learning." ICML 2017.

https://arxiv.org/search/cs?searchtype=author&query=Mirhoseini%2C+A

ColocRL: Model

35

Figure from [Mirhoseini et al., ICML 2017]

Mirhoseini, et al. "Device Placement Optimization with Reinforcement Learning." ICML 2017.

https://arxiv.org/search/cs?searchtype=author&query=Mirhoseini%2C+A

: computational graph

: Real runtime of a placement

: output distributed of the RNN

ColocRL: Training

36
Mirhoseini, et al. "Device Placement Optimization with Reinforcement Learning." ICML 2017.

https://arxiv.org/search/cs?searchtype=author&query=Mirhoseini%2C+A

ColocRL: Other Improvement

37
Mirhoseini, et al. "A Hierarchical Model for Device Placement." ICLR 2018.

Figure from [Mirhoseini et al., ICLR 2018]

https://arxiv.org/search/cs?searchtype=author&query=Mirhoseini%2C+A

Results Discussion

38
Figure and table from [Mirhoseini et al., ICML 2017]

Automatic Parallelization Methods

Learning-based methods

● Reinforcement Learning:

➔ [Mirhoseini et al., 2017]

➔ [Mirhoseini et al., 2018]

➔ [Addanki, et al., 2019]

● ML-based cost model:

➔ [Chen et al., 2018],

➔ [Zhou et al., 2020],

➔ [Zhang, 2020]

● Bayesian optimization:

➔ [Sergeev et al., 2018],

➔ [Peng et al., 2019]

Optimization-based methods

● Dynamic programming

➔ [Wang, et al., 2018]

➔ [Narayanan, et al., 2019]

➔ [Li, et al., 2021]

➔ [Narayanan, et al., 2012]

➔ [Tarnawski, et al., 2020]

➔ [Tarnawski, et al., 2021]

● Integer linear programming

➔ [Tarnawski, et al., 2020]

● Hierarchical optimization

➔ Alpa [Zheng, et al., 2022]

Search-based methods

● MCMC:

➔ [Jia et al., 2018]

➔ [Jia et al., 2019]

● Heuristics

➔ [Fan et al., 2021]

39

The complete list of

references is available

on the tutorial website

x MSErelu matmul

w2

matmul

w1

Optimization-based Method: Alpa

Device 1

Device 2

x MSErelu matmul

w2

matmul

w1

Inter-op parallelism

x MSErelu matmul

w2

matmul

w1

Intra-op parallelism

Inter-operator

Parallelism

Intra-operator

Parallelism

Communication Less More

Device Idle Time More Less

Trade-off

40

x MSErelu matmul

w2

matmul

w1

Alpa Rationale

Device 1

Device 2

x MSErelu matmul

w2

matmul

w1

Inter-op parallelism

x MSErelu matmul

w2

matmul

w1

Intra-op parallelism

node node

node node

Fast connections

Slow connections

41

A B DC

Computational Graph

A B DC

…

A B DC

A B DC

A B DC

Whole Search Space Alpa Hierarchical Space

A B DC

A B DC

…

Inter-op Parallelism

A

A B DC

B DC

… …

Intra-op Parallelism

Search Space

42

Alpa Compiler: Hierarchical Optimization

Computational

Graph

Device

Cluster

Inter-op Pass

Intra-op Pass

Cost Estimation

Dynamic Programming

Integer Linear Programming

43

Inter-op Pass

matmul matmulx

w1 w2

Computational Graph

relu softmaxavgpoolconv convrelu add

k1 k2

44

Inter-op Pass

matmul matmulx

w1 w2

relu softmaxavgpoolconv convrelu add

k1 k2Stage 1
Stage 2

Stage 3
Stage 4

matmul matmulx

w1 w2

relu softmaxavgpoolconv convrelu add

k1 k2Stage 1 Stage 2 Stage 3 Stage 4

or

or

…

G
ra

p
h
 P

a
rt

it
io

n
in

g

45

Inter-op Pass

Partitioned Computational Graph

matmul matmulx

w1 w2

relu softmaxavgpoolconv convrelu add

k1 k2Stage 1
Stage 2

Stage 3
Stage 4

Device Assignment

46

Inter-op Pass

Cluster (2D Device Mesh)

GPUs within a Node

Nodes

Partitioned Computational Graph

matmul matmulx

w1 w2

relu softmaxavgpoolconv convrelu add

k1 k2Stage 1
Stage 2

Stage 3
Stage 4

47

Inter-op Pass

matmul matmulx

w1 w2

relu softmaxavgpoolconv convrelu add

k1 k2Stage 1
Stage 2

Stage 3
Stage 4

or or …

Submesh Choice 1 Submesh Choice 2 48

Inter-op Pass

matmul matmulx

w1 w2

relu softmaxavgpoolconv convrelu add

k1 k2

M

Solved together by

Dynamic Programming

Stage 1
Stage 2

Stage 3
Stage 4

N

49

Intra-op Pass

matmul matmul

w1 w2

relu

Stage
Submesh

stage
input

w2Solved by

Integer Linear

Programming

Stage with intra-operator

parallelization

matmul matmul

w1

relu
stage
input

50

Minimize Computation cost + Communication cost

w2

matmul matmul

w1

relu
stage
input

Decision vector

Parallel strategies of each

operator

Intra-op Pass

Integer Linear Programming Formulation

51

Evaluation: Comparing with Previous Works

Weak scaling results where the model size grow with #GPUs.

Evaluated on 8 AWS EC2 p3.16xlarge nodes with 8 16GB V100s each (64 GPUs in total).

Match specialized

manual systems.

GPT (up to 39B) GShard MoE (up to 70B) Wide-ResNet (up to 13B)

Outperform the manual

baseline by up to 8x.

Generalize to models

without manual plans.

52

Automatic Parallelization Methods

Learning-based methods

Easy to extend the search space

High training cost

Low inference cost

Not explainable

No optimality guarantee

Optimization-based methods

Non-trivial to extend the search space

No training cost

Medium inference cost

Explainable

Some optimality guarantee

Search-based methods

Easy to extend the search space

No training cost

High inference cost

Not explainable

No optimality guarantee

53

Inter-op Parallelism
(w/ pipeline)

Intra-op Parallelism
(w/ operator-level)

Automatic

Summary Megatron-LM

Mesh-Tensorflow

GShard

Megatron-LM

V2

GPipe
PipeDream

Dapple

Alpa

54

ZeRO

Tofu

FlexFlow

ColocRL

Future ML Systems and Challenges

Maximize Performance(

Model Configs,

Cluster Configs)

strategy

Any Model

Any Goal

Any Scale

Better objectives?

Easily scale up to
1000s of GPUs/TPUs?

More heterogeneous models?

What’s the right amount of
cluster resources?

Systems to support more
parallelisms and optimizations

55

Better Objectives

Maximize Performance(

Model

Configs,

Cluster

Configs)

strategy

Maximize System Performance Maximize User Performance

Maximize Throughput

Maximize utilization

Maximize Goodput

Maximize utilization

56

	幻灯片 1: Parallelize One Operator
	幻灯片 2: Data Parallelism as A Case of Intra-op Parallelism
	幻灯片 3: Re-partition Communication Cost
	幻灯片 4: Re-partition Communication Cost
	幻灯片 5: Parallelize All Operators in a Graph
	幻灯片 6: Important Projects
	幻灯片 7: AlexNet
	幻灯片 8: Megaton-LM
	幻灯片 9: GShard MoE
	幻灯片 10: ZeRO Optimizer
	幻灯片 11: ZeRO Stage 2
	幻灯片 12: ZeRO Stage 3
	幻灯片 13: Mesh-Tensorflow
	幻灯片 14: GSPMD
	幻灯片 15: Tofu
	幻灯片 16: FlexFlow
	幻灯片 17: Combine Intra-op Parallelism and Inter-op Parallelism
	幻灯片 18: Combine Intra-op Parallelism and Inter-op Parallelism
	幻灯片 19: Intra-operator Parallelism Summary
	幻灯片 20: Other Techniques for Training Large Models
	幻灯片 21: Where We Are
	幻灯片 22: Auto-parallelization: Motivation
	幻灯片 23: Auto-parallelization: Problem
	幻灯片 24: Auto-parallelization: Problem
	幻灯片 25: The Search Space is Huge
	幻灯片 26: Automatic Parallelization Methods
	幻灯片 27: Automatic Parallelization Methods
	幻灯片 28: General Recipe
	幻灯片 29: Automatic Parallelization Methods
	幻灯片 30: FlexFlow: Search Space
	幻灯片 31: FlexFlow: Workflow
	幻灯片 32: Results Discussion
	幻灯片 33: Automatic Parallelization Methods
	幻灯片 34: ColocRL (a.k.a. Device Placement Optimization)
	幻灯片 35: ColocRL: Model
	幻灯片 36: ColocRL: Training
	幻灯片 37: ColocRL: Other Improvement
	幻灯片 38: Results Discussion
	幻灯片 39: Automatic Parallelization Methods
	幻灯片 40: Optimization-based Method: Alpa
	幻灯片 41: Alpa Rationale
	幻灯片 42: Search Space
	幻灯片 43: Alpa Compiler: Hierarchical Optimization
	幻灯片 44
	幻灯片 45
	幻灯片 46
	幻灯片 47
	幻灯片 48
	幻灯片 49
	幻灯片 50
	幻灯片 51
	幻灯片 52: Evaluation: Comparing with Previous Works
	幻灯片 53: Automatic Parallelization Methods
	幻灯片 54: Summary
	幻灯片 55: Future ML Systems and Challenges
	幻灯片 56: Better Objectives

