
DSC 291: ML Systems

Spring 2024

1

https://hao-ai-lab.github.io/dsc291-s24/

Basics

Single-device Optimization

LLMs

Parallelization

Logistics

• Please start preparing your final project talk

• We will use week 10 (may need additional time) to go through

each team’s talk

• TAs will distribute some sample slides / guidelines

2

Automatic Parallelization Methods

Learning-based methods

Easy to extend the search space

High training cost

Low inference cost

Not explainable

No optimality guarantee

Optimization-based methods

Non-trivial to extend the search

space

No training cost

Medium inference cost

Explainable

Some optimality guarantee

Search-based methods

Easy to extend the search space

No training cost

High inference cost

Not explainable

No optimality guarantee

3

Inter-op Parallelism
(w/ pipeline)

Intra-op Parallelism
(w/ operator-level)

Automatic

Summary Megatron-LM

Mesh-Tensorflow

GShard

Megatron-LM

V2

GPipe
PipeDream

Dapple

Alpa

4

ZeRO

Tofu

FlexFlow

ColocRL

Where We Are: LLMs

• Transformers and Attentions

• LLM Training Optimizations

• Flash attention

• 3D parallelism and sequence parallelism

• LLM Inference and Serving

• Paged attention

• Continuous batching

• Speculative decoding

• Scaling Laws

• Long context

6

Transformer and Attentions

Sequence Prediction

Transformers and Self-Attention

Recursive Attention

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Take a set of input sequence, predict the output sequence

Predict each output based on history

There are many ways to build up the predictive model

Sequence Prediction

7

𝑥1 𝑥2 𝑥3 𝑥4

model

𝑦1 𝑦2 𝑦3 𝑦4

….

𝑦𝑡 = 𝑓𝜃 (𝑥1:𝑡)

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

“Direct Prediction”

One approach is we can do “direct prediction”

8

𝑥1 𝑥2 𝑥3 𝑥4

Direct model

𝑦4

….

Challenge: the function needs to make prediction based on

different size inputs.

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

RNN Approach

Try to maintain a “latent state” that is derived from history

9

𝑥1 𝑥2 𝑥3 𝑥4

𝑦1 𝑦2 𝑦3 𝑦4

ℎ1 ℎ2ℎ0 ℎ3 ℎ4 ….

The information is carried only through ℎ𝑡

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Outline

Sequence Prediction

Transformers and Self-Attention

Recursive Attention

10

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

“Attention” Mechanism

Generally refers to the approach that weighted combine individual states

11

ℎ1 ℎ2 ℎ3 ℎ4

𝑥1 𝑥2 𝑥3 𝑥4Hidden states from

previous layer

Attention output

ℎ𝑡 = σ𝑖=1
𝑡 𝑠𝑖𝑥𝑡

Intuitively 𝑠𝑖 is “attention score” that computes how relevant the position 𝑖’s input is
to this current hidden output

There are different methods to decide how attention score is being computed

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Self-Attention Operation

Self attention refers to a particular form of attention mechanism.

Given three inputs 𝑄,𝐾, 𝑉 ∈ ℝ𝑇×𝑑 (“queries”, “keys”, “values”)

Define the self-attention as:

12

SelfAttention 𝑄, 𝐾, 𝑉 = softmax
𝑄𝐾𝑇

𝑑1/2
𝑉

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

A Closer Look at Self-Attention

Use 𝑞𝑡 , 𝑘𝑡 , 𝑣𝑡 to refers to row 𝑡 of the 𝐾 matrix

13

ℎ1 ℎ2 ℎ3 ℎ4

𝑘1 𝑘2 𝑘3 𝑘4

𝑣1 𝑣2 𝑣3 𝑣4

𝑞𝑡
Ask the following question:

How to compute the output ℎ𝑡, based on 𝑞𝑡 , 𝐾, 𝑉
one timestep 𝑡

To keep presentation simple, we will drop suffix 𝑡
and just use 𝑞 to refer to 𝑞𝑡 in next few slide

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

A Closer Look at Self-Attention

14

ℎ1 ℎ2 ℎ3 ℎ4

𝑘1 𝑘2 𝑘3 𝑘4

𝑣1 𝑣2 𝑣3 𝑣4

𝑞

Pre-softmax “attention score”

Weighed average via softmax

Use 𝑞𝑡 , 𝑘𝑡 , 𝑣𝑡 to refers to row 𝑡 of the 𝐾 matrix

Conceptually, we compute the output in the following two steps:

𝑠𝑖 =
1

𝑑
𝑞𝑘𝑖

𝑇

ℎ = σ𝑖 softmax 𝑠 𝑖𝑣𝑖 =
σ𝑖 exp 𝑠𝑖 𝑣𝑖

σ𝑗 exp 𝑠𝑗

Intuition: 𝑠𝑖 computes the relevance of 𝑘𝑖 to the query 𝑞,
then we do weighted sum of values proportional to their relevance

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Comparing the Matrix Form and the Decomposed Form

15

SelfAttention 𝑄, 𝐾, 𝑉 = softmax
𝑄𝐾𝑇

𝑑1/2
𝑉

ℎ1 ℎ2 ℎ3 ℎ4

𝑘1 𝑘2 𝑘3 𝑘4

𝑣1 𝑣2 𝑣3 𝑣4

𝑞

Pre-softmax “attention score”

Weighed average via softmax

ℎ𝑡 =෍

𝑖

softmax 𝑆𝑡,: 𝑖
𝑣𝑖 = softmax 𝑆𝑡,: 𝑉

𝑆𝑡𝑖 =
1

𝑑
𝑞𝑡𝑘𝑖

𝑇

Intuition: 𝑠𝑖 computes the relevance of 𝑘𝑖 to the query 𝑞,
then we do weighted sum of values proportional to their relevance

Use 𝑞𝑡 , 𝑘𝑡 , 𝑣𝑡 to refers to row 𝑡 of the 𝐾 matrix

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Multi-Head Attention

Have multiple “attention heads” denotes 𝑗-th attention head

16

ℎ1
(𝑗) ℎ2

(𝑗)
ℎ3
(𝑗)

ℎ4
(𝑗)

𝑘1
(𝑗) 𝑘2

(𝑗)
𝑘3
(𝑗)

𝑘4
(𝑗)

𝑣1
(𝑗) 𝑣2

(𝑗)
𝑣3
(𝑗)

𝑣4
(𝑗)

𝑞(𝑗)

SelfAttention 𝑄, 𝐾, 𝑉 = softmax
𝑄𝐾𝑇

𝑑1/2
𝑉

𝑄 𝑗 , 𝐾(𝑗), 𝑉(𝑗)

Apply self-attention in each attention head

Concatenate all output heads together as output

Each head can correspond to different kind of information.

Sometimes we can share the heads: GQA(group query attention) all heads

share K, V but have different Q

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

How to get Q K V?

Obtain 𝑄,𝐾, 𝑉 from previous layer’s hidden state 𝑋 by linear projection

17

ℎ1
(𝑗) ℎ2

(𝑗)
ℎ3
(𝑗)

ℎ4
(𝑗)

𝑘1
(𝑗) 𝑘2

(𝑗)
𝑘3
(𝑗)

𝑘4
(𝑗)

𝑣1
(𝑗) 𝑣2

(𝑗)
𝑣3
(𝑗)

𝑣4
(𝑗)

𝑞(𝑗)

𝑄 = 𝑋𝑊𝑞

𝐾 = 𝑋𝑊𝐾

𝑉 = 𝑋𝑊𝑉

Can compute all heads and 𝑄,𝐾, 𝑉 together then

split/reshape out into individual 𝑄,𝐾, 𝑉 with multiple heads

𝑋

Linear projection

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Transformer Block

18

𝑉𝐾𝑄

normalize

normalize

Feed forward

matmul

softmax

matmul

output

input

Self-attention

𝑍 = SelfAttention 𝑋𝑊𝐾 , 𝑋𝑊𝑄 , 𝑋𝑊𝑉

𝑍 = LayerNorm 𝑋 + 𝑍
𝐻 = LayerNorm(ReLU 𝑍𝑊1 𝑊2 + 𝑍)

A typical transformer block

(multi-head) self-attention, followed by a linear layer and

ReLU and some additional residual connections and

normalization

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Masked Self-Attention

19

MaskedSelfAttention 𝑄, 𝐾, 𝑉 = softmax
𝑄𝐾𝑇

𝑑1/2
−𝑀 𝑉

ℎ1 ℎ2 ℎ3 ℎ4

𝑘1 𝑘2 𝑘3 𝑘4

𝑣1 𝑣2 𝑣3 𝑣4

𝑞3

In the matrix form, we are computing weighted average over all inputs

In auto regressive models, usually it is good to maintain casual
relation, and only attend to some of the inputs (e.g. skip the red
dashed edge on the left). We can add “attention mask”

𝑀𝑖𝑗 = ቊ
∞, 𝑗 > 𝑖
0, 𝑗 ≤ 𝑖

Only attend to previous inputs. Depending on input structure and model, attention mask can change.

We can also simply skip the computation that are masked out if there is a special implementation to do so

∞

0

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Discussions

What are the advantages of transformers versus RNNs

What are the disadvantages

What are other possible ways to apply attention mask

20

21

What Components are in LLMs?

• Transformer decoders

• Many of them

• Really just: attentions + layernorm + MLPs + nonlinear + residual

• Word embeddings

• Position embeddings

• Absolute embedding vs. relative embedding

• Loss function: cross entropy loss over a sequence of words

Position Embedding

• Absolute position embedding

• Relative position embedding

• Rotary position embedding

Absolute position embedding

Absolute position embedding

Problem?

Relative Position Embedding

Relative Position Embedding

• Extra step in self attention

• Changes in every new token generated -> no kv cache for inference

Rotary Embedding

𝜃

• We can cache: whatever # words can come after “dog”

Rotary Position Embedding

Rotary Position Embedding

• Position Interpolation is important for long sequence

𝜃

Training LLMs

• Sequences are known a priori

• For each poistion, look at [1, 2, …, t-1] words to predict word t,

and calculate the loss at t

• Parallelize the computation on all t using masking

ℎ1 ℎ2 ℎ3 ℎ4

𝑥1 𝑥2 𝑥3 𝑥4

A few Important Problems (will be HW3)

• How to estimate the number of parameters of an LLM?

• Embedding: position + word

• Transformers layers:

• attention Wq,Wk,Wv

• MLP: up project, down project

• Layernorm parameters

• How to estimate the flops needed to train an LLM?

• How to estimate the memory needed to train a transformer?

Where We Are: LLMs

• Transformers and Attentions

• LLM Training Optimizations

• Flash attention

• 3D parallelism

• LLM Inference and Serving

• Paged attention

• Continuous batching

• Speculative decoding

• Scaling Laws

• Long context

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Attention: O = Softmax(QKT) V

34

Q: N x d K: N x d A = QKT : N x N A = softmax(A) : N x N V: N x d O = AV: N x dA = mask(A)

Attention Computation

Challenges:

• Large intermediate results

• Repeated reads/writes from GPU device memory

• Cannot scale to long sequences due to O(N^2) intermediate results

Revisit: GPU Memory Hierarchy

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Revisit: GPU Memory Hierarchy

37

Per-block shared memory

(readable/writable by all

threads in a block)

Device global memory

(readable/writable by all

threads)

19 TB/s (20 MB)

1.5 TB/s (80 GB)

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

FlashAttention

Key idea: compute attention by blocks to reduce global memory
access

Two main Techniques:

38

1. Tiling: restructure algorithm to load query/key/value block by

block from global to shared memory

2. Recomputation: don’t store attention matrix from forward, recompute

it in backward

* FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness

A = softmax(QKT)

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Problem: How to tile softmax?

39

Q: N x d K: N x d A = QKT : N x N A = softmax(A) : N x N V: N x d O = AV: N x dA = mask(A)

Challenges

• We must avoid materializing NxN while still get the precise softmax results

• Compute softmax reduction w/o access to NxN

• Backward without the NxN softmax input

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

How to Implement Softmax

40

Problem

• Can easily go overflow because of sum (e^x)

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Safe Softmax

41

42

Online, Safe Softmax

Online blockwise softmax

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝐴1, 𝐴2 = 𝛼 × 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝐴1 , 𝛽 × 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐴2)

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝐴1, 𝐴2
𝑉1
𝑉2

= 𝛼 × 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝐴1 𝑉1 +𝛽 × 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐴2)𝑉2

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Tiling: Decompose Large Softmax into smaller ones by
Scaling

1. Load inputs by blocks from global to
shared memory

2. On chip, compute attention output wrt
the block

3. Update output in device memory by
scaling

44

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝐴1,𝐴2 = 𝛼×𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝐴1 ,𝛽 × 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐴2)

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝐴1,𝐴2
𝑉1
𝑉2

= 𝛼×𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝐴1 𝑉1 +𝛽×𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐴2)𝑉2

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Tiling

45Animation credit: Francisco Massa

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Recomputation: Backward Pass

By storing softmax normalization factors from
forward (size N), recompute attention in the
backward from inputs in shared memory

46

Attention Standard FlashAttenti

on

GFLOPs 66.6 75.2

Global mem

access

40.3 GB 4.4 GB

Runtime 41.7 ms 7.3 ms

Speed up backward pass with increased FLOPs

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

FlashAttention: Threadblock-level Parallelism

How to partition FlasshAttention across
thread blocks?

(An A100 has 108 SMMs -> 108 thread
blocks)

• Step 1: assign different heads to different
thread blocks (16-64 heads)

47

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

FlashAttention: Threadblock-level
Parallelism

How to partition FlasshAttention across
thread blocks?

(An A100 has 108 SMMs -> 108 thread
blocks)

• Step 1: assign different heads to different
thread blocks (16-64 heads)

• Step 2: assign different queries to different
thread blocks (Why?)

48

Thread blocks cannot communicate; cannot perform

softmax when partitioning keys/values

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

FlashAttention: 2-4x speedup, 10-20x memory reduction

49

Memory linear in sequence length

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

How LLMs are trained today

50

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Side effects of Flash Attention

• Because we do not materialize the N x N intermiate matrix, we decrease
peak memory

• Because of decreased peak memory, we can use a larger micro batch size
(significantly larger, e.g., 1 -> 32)

• Because of large per-device batch size, much higher AI

51

	幻灯片 1: DSC 291: ML Systems Spring 2024
	幻灯片 2: Logistics
	幻灯片 3: Automatic Parallelization Methods
	幻灯片 4: Summary
	幻灯片 5: Where We Are: LLMs
	幻灯片 6: Transformer and Attentions
	幻灯片 7: Sequence Prediction
	幻灯片 8: “Direct Prediction”
	幻灯片 9: RNN Approach
	幻灯片 10: Outline
	幻灯片 11: “Attention” Mechanism
	幻灯片 12: Self-Attention Operation
	幻灯片 13: A Closer Look at Self-Attention
	幻灯片 14: A Closer Look at Self-Attention
	幻灯片 15: Comparing the Matrix Form and the Decomposed Form
	幻灯片 16: Multi-Head Attention
	幻灯片 17: How to get Q K V?
	幻灯片 18: Transformer Block
	幻灯片 19: Masked Self-Attention
	幻灯片 20: Discussions
	幻灯片 21: What Components are in LLMs?
	幻灯片 22: Position Embedding
	幻灯片 23: Absolute position embedding
	幻灯片 24: Absolute position embedding
	幻灯片 25: Problem?
	幻灯片 26: Relative Position Embedding
	幻灯片 27: Relative Position Embedding
	幻灯片 28: Rotary Embedding
	幻灯片 29: Rotary Position Embedding
	幻灯片 30: Rotary Position Embedding
	幻灯片 31: Training LLMs
	幻灯片 32: A few Important Problems (will be HW3)
	幻灯片 33: Where We Are: LLMs
	幻灯片 34: Attention: O = Softmax(QKT) V
	幻灯片 35: Attention Computation
	幻灯片 36: Revisit: GPU Memory Hierarchy
	幻灯片 37: Revisit: GPU Memory Hierarchy
	幻灯片 38: FlashAttention
	幻灯片 39: Problem: How to tile softmax?
	幻灯片 40: How to Implement Softmax
	幻灯片 41: Safe Softmax
	幻灯片 42: Online, Safe Softmax
	幻灯片 43: Online blockwise softmax
	幻灯片 44: Tiling: Decompose Large Softmax into smaller ones by Scaling
	幻灯片 45: Tiling
	幻灯片 46: Recomputation: Backward Pass
	幻灯片 47: FlashAttention: Threadblock-level Parallelism
	幻灯片 48: FlashAttention: Threadblock-level Parallelism
	幻灯片 49: FlashAttention: 2-4x speedup, 10-20x memory reduction
	幻灯片 50: How LLMs are trained today
	幻灯片 51: Side effects of Flash Attention

