@ https://hao-ai-lab.github.io/dsc291-524/

DSC 291: ML Systems
Spring 2024

LLMs

Parallelization
Single-device Optimization

Basics




L OgistiCS

®* Please start preparing your final project talk
* We will use week 10 (may need additional time) to go through
each team’s falk

* TAs will distribute some sample slides / guidelines



Automatic Parallelization Methods

Search-based mefthods Learning-based methods Optimization-based methods

_ Easy to extend the search space [ Easy to extend the search space X Non-trivial fo extend the search

.- No training cost X{ High training cost space
X{ High inference cost L4 Low inference cost L« No training cost
X{ Not explainable X{ Not explainable .- Medium inference cost
X{ No optimality guarantee X No optimality guarantee . Explainable
L. Some optimality guarantee




Summary

Megatron-LM Intra-op Parallelism
(w/ operator-level)

Mesh-Tensorflow

GShard
/ Megatron-LM Tofu
V2 FlexFlow
Alpa
GPipe ZeRO
PipeDream
Dapple

Automatic
ColocRL




Where We Are: LLMS

* Transformers and Attentions
* LLM Training Optimizations
* Flash attention
* 3D parallelism and sequence parallelism
* LLM Inference and Serving
* Paged attention
* Confinuous batching
®* Speculative decoding
®* Scaling Laws
®* Long context



Transformer and Attentions

Sequence Prediction

Transformers and Self-Attention

Recursive Attention



Sequence Prediction

Take a set of iInput sequence, predict the output sequence

Y1 Y2 Y3 Y4

model

Predict each output based on history ¥t = fo (*1:¢)

There are many ways to build up the predictive model



“Direct Prediction”

One approach is we can do “direct prediction”

Y4

Direct model

Challenge: the function needs to make prediction based on
different size inputs.



RNN Approach

Try to maintain a “latent state” that is derived from history

Y1 Y2 Y3 Y4

The information Is carried only through A



Outline

Transformers and Self-Attention

10



“‘Attention” Mechanism

Generally refers to the approach that weighted combine individual states

Attention output h h, h- h,
hy =Yt s:x
8 1=1 1"t

Hidden states from X1 X X3 X4

previous layer

Intuitively s; is “attention score” that computes how relevant the position i’s input is
to this current hidden output

There are different methods to decide how attention score Is being computed

11



Self-Attention Operation

Self attention refers to a particular form of attention mechanism.

b 1 b 1

Given three inputs Q, K,V € RT*¢ (“queries”, “keys”, “values”)

Define the self-attention as:

. QK"
SelfAttention(Q, K, V) = softmax FIVE: V

12



A Closer Look at Self-Attention

Use g, k¢, v, to refers to row t of the K matrix

n| [ he| Thel IR 4 Ask the following question:

/ﬁ How to compute the output h,, based on g;, K,V

one timestep t

Vi | V2| (V3| |1, To keep presentation simple, we will drop suffix t
and just use g to refer to g; In next few slide




A Closer Look at Self-Attention

Use g, k¢, v, to refers to row t of the K matrix

Conceptually, we compute the output in the following two steps:

Pre-softmax “attention score”

hl hZ h3 h4_ q
K4

k/k/%

1
3 Si = \/_quiT
Vq 1% V3 Vy Weighed average via softmax
2 eXp(s)v;
h = ),; softmax(s);v; = . exp(s))

Intuition: s; computes the relevance of k; to the query g,
then we do weighted sum of values proportional to their relevance



Comparing the Matrix Form and the Decomposed Form

Use g, k¢, v, to refers to row t of the K matrix

. QK"
SelfAttention(Q, K, V) = softmax V

hy h, hs hy| 4 dt/?
Pre-softmax “attention score”

k. ké k4 ky Sti = \/%th;'r

(2} (2 Vs Vs Weighed average via softmax

h, = Z softmax(St,:)ivi = softmaX(St’:)V

l

Intuition: s; computes the relevance of k; to the query g,
then we do weighted sum of values proportional to their relevance



Multl-Head Attention

Have multiple “attention heads” @Y,k0,vY) denotes j-th attention head

h(]) (1) h(]) h(]) g\ Apply self-attention in each attention head
/ : QKT
SelfAttention(Q, K, V) = softmax | — 7 V
(J) Je U) (J) (J) d
kl 2 k3 k4

) % ) D)

Concatenate all output heads together as output

Each head can correspond to different kind of information.
Sometimes we can share the heads: GQA(group query attention) all heads
share K, V but have different Q

16



How to get Q K V?

Obtain Q, K,V from previous layer’s hidden state X by linear projection

50

)

A

A

kD)

kD)

50

kD)

pO)

b

kD)

b0

b

g\

Linear projection

Q = XW,
K:XWK
V= XW,

Can compute all heads and Q, K, V together then
split/reshape out into individual Q, K,V with multiple heads

17



Transformer Block

A typical transformer block

Z = SelfAttention(XWy, XW,, XWy, )
Z = LayerNorm(X + Z)
H = LayerNorm(ReLU(ZW )W, + Z)

(multi-head) self-attention, followed by a linear layer and
RelLU and some additional residual connections and
normalization

output

normalize

Feed forward

normalize

Self-attention |

.......

matmul

softmax

matmul

.......................................................................................

.......................................................................................

18



Masked Self-Attention

In the matrix form, we are computing weighted average over all inputs

b In auto regressive models, usually it is good to maintain casual
qz| * relation, and only attend to some of the inputs (e.g. skip the red

/% dashed edge on the left). We can add “attention mask”

KT
MaskedSelfAttention(Q, K, V) = softmax (Q — M ) V

dl/2

Only attend to previous inputs. Depending on input structure and model, attention mask can change.

We can also simply skip the computation that are masked out If there is a special implementation to do so
19



DiIScussIons

What are the advantages of transformers versus RNNs

What are the disadvantages

What are other possible ways to apply attention mask

20



21

What Components are in LLMs?¢

* Transformer decoders

* Many of them

®* Redlly just: attentions + layernorm + MLPs + nonlinear + residuadl
* Word embeddings
®* Position embeddings

* Absolute embedding vs. relative embedding

® | 0ss function: cross entropy loss over a sequence of words



Position Embedding

* Absolute position embedding
®* Relative position embedding

® Rotary position embedding

N Add & Norm

Multi-Head
Attention

Positional
cncoding

"4}

INpuUts



Absolute position embedding

The dog chased the pig position = 2




Absolute position embedding

N Learned from data
position = 2 / e Position vectors for 1-512
00 * Max length is bounded




Problem?@e

position 1 position 2 position 500




Relative Position Embedding

The dog chased the pig

\ ./

Distance = 3




Relative Position Embedding

I
Hoos( 1) 2238888
géM| I’é% X [ K ] b—l bo b1 bz b3
director. (£ 7

b; b, by by, b,

=

* Extra step in self attention

* Changes in every new token generated -> no kv cache for inference



Rotary Embedding

* We can cache: whatever # words can come after *dog”




Rotary Position Embedding

pig dog

pig pig

dog




Rotary Position Embedding

® Position Interpolation is important for long sequence

Y
A




Training LLMs

® Sequences are known a priori
®* For each poistion, look at [1, 2, ..., t-1] words to predict word t,
and calculate the loss at t

* Pardllelize the computation on all T using masking




A few Important Problems (will be HW3)

* How to estimate the number of parameters of an LLM¢
* Embedding: position + word
®* Transformers layers:
* aftention Wg, Wk, Wv
* MLP: up project, down project
® Layernorm parameters
* How o estimate the flops needed to frain an LLM<

* How to estimate the memory needed to frain a fransformere



Where We Are: LLMS

* Transformers and Attentions
* LLM Training Optimizations
* Flash attention
* 3D parallelism
* LLM Inference and Serving
* Paged attention
* Confinuous batching
®* Speculative decoding
®* Scaling Laws
®* Long context



Attention: O = Softmax(QK'") V

Q:Nxd K:Nxd A=QKT:NxN A = mask(A)

B B EEEEEEEE B

B B EEEEEEEE HE

e PN F

B X B HEEEEEEEE HEEEE

B B HEEEEEEEE HEEEEN

B B HEEEEEEEE HEEEEEE
_ _ HEEEEEEEE HEEEEEENN

A =softmax(A) :NxN V:Nxd O=AV:Nxd
B
Bl
L]
EEEEE

B
B
-
X.
B
B
_

!

34



Attention Computation

Algorithm 0 Standard Attention Implementation

Require: Matrices Q.K,V € RV*4 in HBM.
1: Load Q. K by blocks from HBM, compute S = QK ', write S to HBM.
2: Read S from HBM, compute P = softmax(S), write P to HBM.

3: Load P and V by blocks from HBM, compute O =PV, write O to HBM.
4: Return O.

Challenges:
* Large intermediate results
* Repeated reads/writes from GPU device memory

® Cannoft scale to long sequences due to O(NA2) infermediate results



Revisit: GPU Memory Hierarchy

SN SRAM: 19 TB/s (20 MB)
SRAM

HBM: 1.5 TB/s (40 GB)

\"ET MYl (1o DRAM: 12.8 GB/s
(CPU DRAM) (>1TB)

Memory Hierarchy with
Bandwidth & Memory Size



Revisit: GPU Memory Hierarchy

Per-block shared memory

(readable/writable by all
threads in a block)

19 TB/s (20 MB)

Device global memory
(readable/writable by all

threads)

1.5 TB/s (80 GB)

37



_ A = softmax(QKT)
FlashAttention .

Key idea: compute attention by blocks to reduce global memory
access

Two main Techniques:
1. Tiling: restructure algorithm to load query/key/value block by
block from global to shared memory

7. Recomputation: don’t store attention matrix from forward, recompute
It In backward

* FlashAttention: Fast and Memory-Efficient Exact Attention with 10-Awareness

38



Q:

Problem: How to tile softmax?

Nxd K:Nxd A=0QK":NxN A = mask(A) A =softmax(A) :NxN V:Nxd O=AV:Nxd
B B EEEEEENE B i B B
B B HEEEEENE N i B B
§ x § NSSEEEEN NN 2= EEEW =@ x 8 o B
B X B HEEEENEN NN NN a B
B B HEEEENEE HEENN. HEENEE B B
B B HEEEENEE HEEEEEE ERENENN a B
_ _ ENEEEEEE EEEEEEEE EEEEEENE _ _

Challenges
* We must avoid materializing NxN while still get the precise softmax results
* Compute soffmax reduction w/o access 1o NxN

* Backward without the NxN soffmax input

39



How to Implement Softmax

Algorithm 1 Naive softmax

1: dog < 0O
for ) < 1,V do
dj — dj_l + et
end for
fori: <+ 1, mV do
Yi < ZV
end for

AR A

Problem

® Can easily go overtlow because of sum (e/x)

40



Safe Softmax

r; —INax Ik
e k=1

:cj—max::c

v V.
Ze kel

Algorithm 2 Safe softmax

l: mg < —o0

2: fork < 1,V do

3: M <— ma,x(mk_l, :Ek)
4: end for

5: dg + 0

6: for j < 1,V do

7 dj — dj_l + eti ™MV
8: end for

9: for:+ 1,V do

10: Yi < e%dvmv

11: end for




Online, Safe Softmax

Algorithm 3 Safe softmax with online normalizer calculation

l: mg < OO
2: do — 0
for ) < 1,V do
m; < max (m;_1, ;)
dj <= dj_q X eMI=t7 4 eTiT M

N S AR Al

end for
for: <+ 1,V do
emi—mv
yz’ < dv
- end for




Online blockwise softmax

Algorithm 3 Safe softmax with online normalizer calculation
l: mg < —o0
do — 0
for j + 1,V do
m; <— max (m;_i, ;)
dj — dj_l X e'Mi—17 1 eli— M
end for
for:+ 1,V do

.Y i~V
Yi S dv
end for

PR AN Ul ol b

softmax([A,45]) = [a X softmax(A4,), X softmax(A,)]

softmax(|A4,A,]) [2] = a X softmax(A,)V; + B X softmax(A,)V,



Tiling: Decompose Large Softmax into smaller ones by

Scaling

1. Load inputs by blocks from global to
shared memory

2. On chip, compute attention output wrt
the block

3. Update output in device memory by
scaling

softmax(|A, Az]) [Kj
= a X softmax(A,)V; + B X softmax(A,)V,
softmax(|A1,4,]) = |a X softmax(A4,), B X softmax(A,)]

Outer Loop

K':dxN

Copy Block to SRAM
Outer Loop

............ T
Q. Cop O
A g)
S Compute Block %
s ek
SRAN — -
= on SRAM = =
- - O
= - 5
it
O
O
2.
-
Output to HBEM

sm(QK"V: N xd

Inner Loop

FlashAttention

44



Tiling

Animation credit: Francisco Massa

Keys (NxK)

i),

Queries (NxK)

Output
(NxK)

Values
(NxK)

45



Outer Loop
e

I Copy Block to SRAM
Outer Loop V: N Xd

—

Recomputation: Backward Pass K% dxN

By storing softmax normalization factors from %<

forward (size N), recompute attention in the
backward from inputs in shared memory

QK": Nx N

TR | aeaae s T
g +_’l; 1 Compute Block Copy g
Attention Standard FlashAttenti [ Coby on HAN 5 =
GFLOPs 66.6 75.2 .. 4
Output to HBEM
Global mem 40.3 GB 4.4 GB sm(QK")V: N xd
access T
FlashAttention
Runtime 41.7 ms 7.3 ms

Speed up backward pass with increased FLOPS

46



FlashAttention: Threadblock-level Parallelism

How to partition FlasshAttention across
thread blocks?

(An A100 has 108 SMMs -> 108 thread
blocks)

» Step 1: assign different heads to different
thread blocks (16-64 heads)

Outer Loop
Ki:dxN
Copy Block to SEAM
Q:Nxd _ OMIerhooR . WMiNXd

Compute Block
on SR!’:’:’@ p‘ﬂ.

Inner Loop
doo 181n0

dooT Jauuyj

-

Output to HBEM

sm(QK")V:N xd

Inner Loop

FlashAttention

47



FlashAttention: Threadblock-level
Parallelism

How to partition FlasshAttention across
thread blocks?

(An A100 has 108 SMMs -> 108 thread
blocks)

» Step 1: assign different heads to different
thread blocks (16-64 heads)

» Step 2: assign different queries to different
thread blocks (Why?)

Outer Loop
—_————-8>

! Copy Block to SEAM
Outer Loop V: N Xd

—

K:dxN

M

O
©
N

Compute Block

o ®
: :
+ > : ®
= on SRAM = e
@ L -
= > 2
£ ~ -5
it
o)
o)
=
e -
Output to HBEM

sm(QK")V:N xd

Inner Loop

FlashAttention

Thread blocks cannot communicate; cannot perform

softmax when partitioning keys/values

48



FlashAttention: 2-4x speedup, 10-20x memory reduction

Attention forward + backward speed (A100 80GB SXM4)

mmm Pytorch FlashAttention Memory Reduction
W FlashAttention o .
i B Dro t + Maskin
200 B xformers 182 189 2 POt J

- . . 173 wn
0 Bl FlashAttention Triton aE)
a BEm FlashAttention-2 155 =
O 150 - <
~ 133 <
LL &
= 2
100 =
S 2
O Q
o o’
>

N 50 - (@)
-

Q

>

128 256 512 1024 2048 4096

512 1k 2k 4k 8k 16k Sequence Length

Sequence length _ _
Memory linear In sequence length



How LLMs are trained today

4 Pipeline Stage O A

MP-3 MP-2 MP-1 MP-0

/

J
[
\ Network Layers 0-7 J

Data Parallel Rank O

4 Pipeline Stage 1 A

 MP-3 MP-2 MP-1 MP-0

/

\_ Network Layers 8-15 J/

MP-3 MP-2 MP-1 MP-0

- Pipeline Stage 2 A

\. /

!HJ

\_ Network Layers 16-23 J

- Pipeline Stage 3 A

N J
\_ Network Layers 24-31 /

TEET TRER EOED GEGR

4 Pipeline Stage O h

MP-3 MP-2 MP-1 MP-0

N

\ | /
\_ Network Layers 0-7 )

111

MP-3 MP-2 MP-1 MP-0

Data Parallel Rank 1

4 Pipeline Stage 1 N

\ J
[
\_ Network Layers 8-15 J

4 Pipeline Stage 2 D

MP-3 MP-2 MP-1 MP-0

\ J
[
\Network Layers 16-23 -

4 Pipeline Stage 3 A

MP-3 MP-2 MP-1 MP-0

. J
[
\_ Network Layers 24-31 -

/

50



Side effects of Flash Attention

« Because we do not materialize the N x N intermiate matrix, we decrease
peak memory

» Because of decreased peak memory, we can use a larger micro batch size
(significantly larger, e.g., 1 -> 32)

» Because of large per-device batch size, much higher Al

51



	幻灯片 1: DSC 291: ML Systems Spring 2024
	幻灯片 2: Logistics
	幻灯片 3: Automatic Parallelization Methods
	幻灯片 4: Summary
	幻灯片 5: Where We Are: LLMs
	幻灯片 6: Transformer and Attentions
	幻灯片 7: Sequence Prediction
	幻灯片 8: “Direct Prediction”
	幻灯片 9: RNN Approach
	幻灯片 10: Outline
	幻灯片 11: “Attention” Mechanism
	幻灯片 12: Self-Attention Operation
	幻灯片 13: A Closer Look at Self-Attention
	幻灯片 14: A Closer Look at Self-Attention
	幻灯片 15: Comparing the Matrix Form and the Decomposed Form
	幻灯片 16: Multi-Head Attention
	幻灯片 17: How to get Q K V?
	幻灯片 18: Transformer Block
	幻灯片 19: Masked Self-Attention
	幻灯片 20: Discussions
	幻灯片 21: What Components are in LLMs?
	幻灯片 22: Position Embedding
	幻灯片 23: Absolute position embedding
	幻灯片 24: Absolute position embedding
	幻灯片 25: Problem?
	幻灯片 26: Relative Position Embedding
	幻灯片 27: Relative Position Embedding
	幻灯片 28: Rotary Embedding
	幻灯片 29: Rotary Position Embedding
	幻灯片 30: Rotary Position Embedding
	幻灯片 31: Training LLMs
	幻灯片 32: A few Important Problems (will be HW3)
	幻灯片 33: Where We Are: LLMs
	幻灯片 34: Attention: O = Softmax(QKT) V
	幻灯片 35: Attention Computation
	幻灯片 36: Revisit: GPU Memory Hierarchy
	幻灯片 37: Revisit: GPU Memory Hierarchy
	幻灯片 38: FlashAttention
	幻灯片 39: Problem: How to tile softmax?
	幻灯片 40: How to Implement Softmax
	幻灯片 41: Safe Softmax
	幻灯片 42: Online, Safe Softmax
	幻灯片 43: Online blockwise softmax
	幻灯片 44: Tiling: Decompose Large Softmax into smaller ones by Scaling
	幻灯片 45: Tiling
	幻灯片 46: Recomputation: Backward Pass
	幻灯片 47: FlashAttention: Threadblock-level Parallelism
	幻灯片 48: FlashAttention: Threadblock-level Parallelism
	幻灯片 49: FlashAttention: 2-4x speedup, 10-20x memory reduction
	幻灯片 50: How LLMs are trained today
	幻灯片 51: Side effects of Flash Attention

