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https://hao-ai-lab.github.io/dsc291-s24/

Basics

Single-device Optimization

LLMs

Parallelization



Logistics

• Please start preparing your final project talk

• We will use week 10 (may need additional time) to go through 

each team’s talk

• TAs will distribute some sample slides / guidelines
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Automatic Parallelization Methods

Learning-based methods

Easy to extend the search space

High training cost

Low inference cost

Not explainable

No optimality guarantee

Optimization-based methods

Non-trivial to extend the search 

space

No training cost

Medium inference cost

Explainable

Some optimality guarantee

Search-based methods

Easy to extend the search space

No training cost

High inference cost

Not explainable

No optimality guarantee
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Inter-op Parallelism
(w/ pipeline)

Intra-op Parallelism
(w/ operator-level)

Automatic

Summary Megatron-LM

Mesh-Tensorflow

GShard

Megatron-LM 

V2

GPipe
PipeDream

Dapple

Alpa
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ZeRO

Tofu

FlexFlow

ColocRL



Where We Are: LLMs

• Transformers and Attentions

• LLM Training Optimizations

• Flash attention

• 3D parallelism and sequence parallelism

• LLM Inference and Serving

• Paged attention

• Continuous batching

• Speculative decoding

• Scaling Laws

• Long context
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Transformer and Attentions

Sequence Prediction

Transformers and Self-Attention

Recursive Attention



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Take a set of input sequence, predict the output sequence 

Predict each output based on history

There are many ways to build up the predictive model

Sequence Prediction
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𝑥1 𝑥2 𝑥3 𝑥4

model

𝑦1 𝑦2 𝑦3 𝑦4

….

𝑦𝑡 = 𝑓𝜃 (𝑥1:𝑡)
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“Direct Prediction”

One approach is we can do “direct prediction”
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𝑥1 𝑥2 𝑥3 𝑥4

Direct model

𝑦4

….

Challenge: the function needs to make prediction based on 

different size inputs.
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RNN Approach

Try to maintain a “latent state” that is derived from history
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𝑥1 𝑥2 𝑥3 𝑥4

𝑦1 𝑦2 𝑦3 𝑦4

ℎ1 ℎ2ℎ0 ℎ3 ℎ4 ….

The information is carried only through ℎ𝑡
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Outline

Sequence Prediction

Transformers and Self-Attention

Recursive Attention
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“Attention” Mechanism

Generally refers to the approach that weighted combine individual states
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ℎ1 ℎ2 ℎ3 ℎ4

𝑥1 𝑥2 𝑥3 𝑥4Hidden states from 

previous layer

Attention output

ℎ𝑡 = σ𝑖=1
𝑡 𝑠𝑖𝑥𝑡

Intuitively 𝑠𝑖 is “attention score” that computes how relevant the position 𝑖’s input is 
to this current hidden output

There are different methods to decide how attention score is being computed
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Self-Attention Operation

Self attention refers to a particular form of attention mechanism.

Given three inputs 𝑄,𝐾, 𝑉 ∈ ℝ𝑇×𝑑 (“queries”, “keys”, “values”)

Define the self-attention as:
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SelfAttention 𝑄, 𝐾, 𝑉 = softmax
𝑄𝐾𝑇

𝑑1/2
𝑉
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A Closer Look at Self-Attention

Use 𝑞𝑡 , 𝑘𝑡 , 𝑣𝑡 to refers to row 𝑡 of the 𝐾 matrix
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ℎ1 ℎ2 ℎ3 ℎ4

𝑘1 𝑘2 𝑘3 𝑘4

𝑣1 𝑣2 𝑣3 𝑣4

𝑞𝑡
Ask the following question:

How to compute the output ℎ𝑡, based on 𝑞𝑡 , 𝐾, 𝑉
one timestep 𝑡

To keep presentation simple, we will drop suffix 𝑡
and just use 𝑞 to refer to 𝑞𝑡 in next few slide
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A Closer Look at Self-Attention
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ℎ1 ℎ2 ℎ3 ℎ4

𝑘1 𝑘2 𝑘3 𝑘4

𝑣1 𝑣2 𝑣3 𝑣4

𝑞

Pre-softmax “attention score”

Weighed average via softmax 

Use 𝑞𝑡 , 𝑘𝑡 , 𝑣𝑡 to refers to row 𝑡 of the 𝐾 matrix

Conceptually, we compute the output in the following two steps: 

𝑠𝑖 =
1

𝑑
𝑞𝑘𝑖

𝑇

ℎ = σ𝑖 softmax 𝑠 𝑖𝑣𝑖 =
σ𝑖 exp 𝑠𝑖 𝑣𝑖

σ𝑗 exp 𝑠𝑗

Intuition: 𝑠𝑖 computes the relevance of 𝑘𝑖 to the query 𝑞, 
then we do weighted sum of values proportional to their relevance
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Comparing the Matrix Form and the Decomposed Form
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SelfAttention 𝑄, 𝐾, 𝑉 = softmax
𝑄𝐾𝑇

𝑑1/2
𝑉

ℎ1 ℎ2 ℎ3 ℎ4

𝑘1 𝑘2 𝑘3 𝑘4

𝑣1 𝑣2 𝑣3 𝑣4

𝑞

Pre-softmax “attention score”

Weighed average via softmax 

ℎ𝑡 =෍

𝑖

softmax 𝑆𝑡,: 𝑖
𝑣𝑖 = softmax 𝑆𝑡,: 𝑉

𝑆𝑡𝑖 =
1

𝑑
𝑞𝑡𝑘𝑖

𝑇

Intuition: 𝑠𝑖 computes the relevance of 𝑘𝑖 to the query 𝑞, 
then we do weighted sum of values proportional to their relevance

Use 𝑞𝑡 , 𝑘𝑡 , 𝑣𝑡 to refers to row 𝑡 of the 𝐾 matrix
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Multi-Head Attention

Have multiple “attention heads”                       denotes 𝑗-th attention head                  
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ℎ1
(𝑗) ℎ2

(𝑗)
ℎ3
(𝑗)

ℎ4
(𝑗)

𝑘1
(𝑗) 𝑘2

(𝑗)
𝑘3
(𝑗)

𝑘4
(𝑗)

𝑣1
(𝑗) 𝑣2

(𝑗)
𝑣3
(𝑗)

𝑣4
(𝑗)

𝑞(𝑗)

SelfAttention 𝑄, 𝐾, 𝑉 = softmax
𝑄𝐾𝑇

𝑑1/2
𝑉

𝑄 𝑗 , 𝐾(𝑗), 𝑉(𝑗)

Apply self-attention in each attention head

Concatenate all output heads together as output

Each head can correspond to different kind of information.

Sometimes we can share the heads: GQA(group query attention) all heads 

share K, V but have different Q 
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How to get Q K V?

Obtain 𝑄,𝐾, 𝑉 from previous layer’s hidden state 𝑋 by linear projection
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ℎ1
(𝑗) ℎ2

(𝑗)
ℎ3
(𝑗)

ℎ4
(𝑗)

𝑘1
(𝑗) 𝑘2

(𝑗)
𝑘3
(𝑗)

𝑘4
(𝑗)

𝑣1
(𝑗) 𝑣2

(𝑗)
𝑣3
(𝑗)

𝑣4
(𝑗)

𝑞(𝑗)

𝑄 = 𝑋𝑊𝑞

𝐾 = 𝑋𝑊𝐾

𝑉 = 𝑋𝑊𝑉

Can compute all heads and 𝑄,𝐾, 𝑉 together then 

split/reshape out into individual 𝑄,𝐾, 𝑉 with multiple heads

𝑋

Linear projection
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Transformer Block
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𝑉𝐾𝑄

normalize

normalize

Feed forward

matmul

softmax

matmul

output

input

Self-attention

𝑍 = SelfAttention 𝑋𝑊𝐾 , 𝑋𝑊𝑄 , 𝑋𝑊𝑉

𝑍 = LayerNorm 𝑋 + 𝑍
𝐻 = LayerNorm(ReLU 𝑍𝑊1 𝑊2 + 𝑍)

A typical transformer block

(multi-head) self-attention, followed by a linear layer and

ReLU and some additional residual connections and 

normalization 
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Masked Self-Attention
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MaskedSelfAttention 𝑄, 𝐾, 𝑉 = softmax
𝑄𝐾𝑇

𝑑1/2
−𝑀 𝑉

ℎ1 ℎ2 ℎ3 ℎ4

𝑘1 𝑘2 𝑘3 𝑘4

𝑣1 𝑣2 𝑣3 𝑣4

𝑞3

In the matrix form, we are computing weighted average over all inputs  

In auto regressive models, usually it is good to maintain casual
relation, and only attend to some of the inputs (e.g. skip the red 
dashed edge on the left). We can add “attention mask”

𝑀𝑖𝑗 = ቊ
∞, 𝑗 > 𝑖
0, 𝑗 ≤ 𝑖

Only attend to previous inputs. Depending on input structure and model, attention mask can change.

We can also simply skip the computation that are masked out if there is a special implementation to do so

∞

0
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Discussions

What are the advantages of transformers versus RNNs

What are the disadvantages

What are other possible ways to apply attention mask

20
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What Components are in LLMs?

• Transformer decoders 

• Many of them

• Really just: attentions  + layernorm + MLPs + nonlinear + residual

• Word embeddings

• Position embeddings

• Absolute embedding vs. relative embedding

• Loss function: cross entropy loss over a sequence of words



Position Embedding

• Absolute position embedding

• Relative position embedding

• Rotary position embedding



Absolute position embedding



Absolute position embedding



Problem?



Relative Position Embedding



Relative Position Embedding

• Extra step in self  attention

• Changes in every new token generated -> no kv cache for inference



Rotary Embedding

𝜃

• We can cache: whatever # words can come after “dog”



Rotary Position Embedding



Rotary Position Embedding

• Position Interpolation is important for long sequence

𝜃



Training LLMs

• Sequences are known a priori

• For each poistion, look at [1, 2, …, t-1] words to predict word t, 

and calculate the loss at t

• Parallelize the computation on all t using masking

ℎ1 ℎ2 ℎ3 ℎ4

𝑥1 𝑥2 𝑥3 𝑥4



A few Important Problems (will be HW3)

• How to estimate the number of parameters of an LLM?

• Embedding: position + word

• Transformers layers: 

• attention Wq,Wk,Wv

• MLP: up project, down project

• Layernorm parameters

• How to estimate the flops needed to train an LLM?

• How to estimate the memory needed to train a transformer?



Where We Are: LLMs

• Transformers and Attentions

• LLM Training Optimizations

• Flash attention

• 3D parallelism

• LLM Inference and Serving

• Paged attention

• Continuous batching

• Speculative decoding

• Scaling Laws

• Long context
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Attention: O = Softmax(QKT) V

34

Q: N x d K: N x d A = QKT : N x N A = softmax(A) : N x N V: N x d O = AV: N x dA = mask(A)



Attention Computation

Challenges:

• Large intermediate results

• Repeated reads/writes from GPU device memory

• Cannot scale to long sequences due to O(N^2) intermediate results



Revisit: GPU Memory Hierarchy
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Revisit: GPU Memory Hierarchy
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Per-block shared memory

(readable/writable by all 

threads in a block)

Device global memory

(readable/writable by all 

threads)

19 TB/s (20 MB)

1.5 TB/s (80 GB)
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FlashAttention

Key idea: compute attention by blocks to reduce global memory 
access

Two main Techniques:
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1. Tiling: restructure algorithm to load query/key/value block by 

block from global to shared memory

2. Recomputation: don’t store attention matrix from forward, recompute 

it in backward

* FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness

A = softmax(QKT)
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Problem: How to tile softmax?
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Q: N x d K: N x d A = QKT : N x N A = softmax(A) : N x N V: N x d O = AV: N x dA = mask(A)

Challenges

• We must avoid materializing NxN while still get the precise softmax results

• Compute softmax reduction w/o access to NxN

• Backward without the NxN softmax input
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How to Implement Softmax

40

Problem

• Can easily go overflow because of sum (e^x)
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Safe Softmax

41
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Online, Safe Softmax



Online blockwise softmax

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝐴1, 𝐴2 = 𝛼 × 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝐴1 , 𝛽 × 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐴2)

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝐴1, 𝐴2
𝑉1
𝑉2

= 𝛼 × 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝐴1 𝑉1 +𝛽 × 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐴2)𝑉2
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Tiling: Decompose Large Softmax into smaller ones by 
Scaling

1. Load inputs by blocks from global to 
shared memory

2. On chip, compute attention output wrt
the block

3. Update output in device memory by 
scaling
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𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝐴1,𝐴2 = 𝛼×𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝐴1 ,𝛽 × 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐴2)

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝐴1,𝐴2
𝑉1
𝑉2

= 𝛼×𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝐴1 𝑉1 +𝛽×𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐴2)𝑉2



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Tiling

45Animation credit: Francisco Massa
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Recomputation: Backward Pass

By storing softmax normalization factors from 
forward (size N), recompute attention in the 
backward from inputs in shared memory

46

Attention Standard FlashAttenti

on

GFLOPs 66.6 75.2

Global mem 

access

40.3 GB 4.4 GB

Runtime 41.7 ms 7.3 ms

Speed up backward pass with increased FLOPs
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FlashAttention: Threadblock-level Parallelism

How to partition FlasshAttention across 
thread blocks?

(An A100 has 108 SMMs -> 108 thread 
blocks)

• Step 1: assign different heads to different 
thread blocks (16-64 heads)

47
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FlashAttention: Threadblock-level 
Parallelism

How to partition FlasshAttention across 
thread blocks?

(An A100 has 108 SMMs -> 108 thread 
blocks)

• Step 1: assign different heads to different 
thread blocks (16-64 heads)

• Step 2: assign different queries to different 
thread blocks (Why?)

48

Thread blocks cannot communicate; cannot perform 

softmax when partitioning keys/values
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FlashAttention: 2-4x speedup, 10-20x memory reduction

49

Memory linear in sequence length
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How LLMs are trained today

50



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Side effects of Flash Attention

• Because we do not materialize the N x N intermiate matrix, we decrease 
peak memory

• Because of decreased peak memory, we can use a larger micro batch size 
(significantly larger, e.g., 1 -> 32)

• Because of large per-device batch size, much higher AI

51
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