
DSC 291: ML Systems

Spring 2024

1

https://hao-ai-lab.github.io/dsc291-s24/

Basics

Single-device Optimization

LLMs

Parallelization



Logistics

• Please start preparing your final project talk

• We will use week 10 (may need additional time) to go through 

each team’s talk

• The talk orders have been out

• Please upload your slides to TAs by next Tuesday

• TAs has distributed some rubrics/guidelines



Course Evaluation

• Course evaluation is sent out

• May 27 at 12:00 AM and Saturday, June 8

• Please fill the course evaluation

• It is important for you:

• Get your 2% if 80% of you filled the survey

• It is important for TAs!

• It is important for me!
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Where We Are: LLMs

• Transformers and Attentions

• LLM Training Optimizations

• Flash attention

• 3D parallelism

• LLM Inference and Serving

• Paged attention

• Continuous batching

• Speculative decoding

• Scaling Laws

• Long context



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Attention: O = Softmax(QKT) V
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Q: N x d K: N x d A = QKT : N x N A = softmax(A) : N x N V: N x d O = AV: N x dA = mask(A)



Attention Computation

Challenges:

• Large intermediate results

• Repeated reads/writes from GPU device memory

• Cannot scale to long sequences due to O(N^2) intermediate results



Revisit: GPU Memory Hierarchy



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Revisit: GPU Memory Hierarchy
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Per-block shared memory

(readable/writable by all 

threads in a block)

Device global memory

(readable/writable by all 

threads)

19 TB/s (20 MB)

1.5 TB/s (80 GB)
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FlashAttention

Key idea: compute attention by blocks to reduce global memory 
access

Two main Techniques:
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1. Tiling: restructure algorithm to load query/key/value block by 

block from global to shared memory

2. Recomputation: don’t store attention matrix from forward, recompute 

it in backward

* FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness

A = softmax(QKT)
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Problem: How to tile softmax?
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Q: N x d K: N x d A = QKT : N x N A = softmax(A) : N x N V: N x d O = AV: N x dA = mask(A)

Challenges

• We must avoid materializing NxN while still get the precise softmax results

• Compute softmax reduction w/o access to NxN at forward

• Backward without the NxN softmax forward activations
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How to Implement Softmax
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Problem

• Can easily go overflow because of sum (e^x)
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Safe Softmax
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Can we fuse?

Create alternative
sequence

With:

𝑑𝑉
′ = 𝑑𝑉
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But:

Create alternative
sequence

With:

𝑑𝑉
′ = 𝑑𝑉

𝑑𝑉 does not
depend on𝑚𝑉
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Online, Safe Softmax
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Self attention
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Self attention

Create alternative sequence with 𝑜𝑁 = 𝑜′𝑁
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But
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Flash Attention
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Tiling: Decompose Large Softmax into smaller ones by 
Scaling

1. Load inputs by blocks from global to 
shared memory

2. On chip, compute attention output wrt
the block

3. Update output in device memory by 
scaling

21



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Tiling

22Animation credit: Francisco Massa
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Recomputation: Backward Pass

By storing softmax normalization factors from 
forward (size N), recompute attention in the 
backward from inputs in shared memory
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Attention Standard FlashAttenti

on

GFLOPs 66.6 75.2

Global mem 

access

40.3 GB 4.4 GB

Runtime 41.7 ms 7.3 ms

Speed up backward pass with increased FLOPs
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FlashAttention: 2-4x speedup, 10-20x memory reduction
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Memory linear in sequence length



Where We Are: LLMs

• Transformers and Attentions

• LLM Training Optimizations

• Flash attention

• 3D parallelism

• LLM Inference and Serving

• Paged attention

• Continuous batching

• Speculative decoding

• Scaling Laws

• Long context



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

How LLMs are trained today

28
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Summary: How LLMs are trained today

• Outer Loop 1:
• Inter-op parallelism + 1F1B

• Outer Loop 2: Intra-op parallelism based on model architecture
• Zero-2 / Zero-3 + data parallelism

• Megatron-LM tensor parallelism or Expert parallelism

• Outer Loop 3:
• Gradient checkpointing and recomputation at backward

• Inner Loop 4:
• Graph fusion

• Inner Loop 5:
• Operator-level optimization: tiling, flash attention, etc.
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Side effects of Flash Attention

• Because we do not materialize the N x N intermediate matrix, we decrease 
peak memory

• Because of decreased peak memory, we can use a larger micro batch size 
(significantly larger, e.g., 1 -> 32)

• Because of large per-device batch size, much higher AI
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Where We Are: LLMs

• Transformers and Attentions

• LLM Training Optimizations

• Flash attention

• 3D parallelism

• LLM Inference and Serving

• Continuous batching

• Paged attention

• Speculative decoding

• Scaling Laws

• Long context
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LLMs are Slow and Expensive to Serve

• At least ten A100-40GB GPUs to serve 175B GPT-3 in half precision

• Generating 256 tokens takes ~20 seconds

• Cannot process many requests in parallel

• Per-request key/value cache takes 3GB GPU memory
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Recall: Incremental Decoding

Main issues:

• Limited degree of parallelism → underutilized GPU resources

• Need all parameters to decode a token → bottlenecked by GPU memory access
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[Accelerating LLM requires machine] learning systems optimizations

learning systems optimizations [EOS]

Iterations: 0 1 2 3

Outputs:

Transformer Layer 1

Transformer Layer 96

LLM … …
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Outline: LLMs Serving Techniques

• Continuous Batching

• Paged Attention

• Speculative Decoding

34
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LLM Decoding Timeline
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Batching Requests to Improve GPU Performance

Issues with static batching:

• Requests may complete at different iterations

• Idle GPU cycles

• New requests cannot start immediately
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Continuous Batching

Benefits:

• Higher GPU utilization

• New requests can start immediately

37Orca: A Distributed Serving System for Transformer-Based Generative Models. OSDI’22
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Continuous Batching Step-by-Step

• Receives two new requests R1 and R2
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Request Pool

(CPU)

Execution Engine

(GPU)

R1: optimizing ML 

systems

R2: LLM serving is

Maximum serving batch 

size = 3
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Continuous Batching Step-by-Step

• Iteration 1: decode R1 and R2
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R1: optimizing ML 

systems

R2: LLM serving is

Iteration 1

Request Pool

(CPU)

Execution Engine

(GPU)

Maximum serving batch 

size = 3
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Continuous Batching Step-by-Step

• Receive a new request R3; finish decoding R1 and R2
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R1: optimizing ML 

systems requires

R2: LLM serving is 

critical.

Iteration 1

R3: A man

Request Pool

(CPU)

Execution Engine

(GPU)

Maximum serving batch 

size = 3
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Continuous Batching Step-by-Step

• Iteration 2: decode R1, R2, R3; receive R4, R5; R2 completes 
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R1: optimizing ML 

systems requires ML

R2: LLM serving is 

critical. <EOS>

Iteration 2

R3: A man is

Request Pool

(CPU)

Execution Engine

(GPU)

Maximum serving batch 

size = 3
R4: A dog is

R5: How are
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Continuous Batching Step-by-Step

• Iteration 3: decode R1, R3, R4
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Iteration 3

Request Pool

(CPU)

Execution Engine

(GPU)

Maximum serving batch 

size = 3

R1: optimizing ML 

systems requires ML

R3: A man is

R4: A dog is

R5: How are
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Continuous Batching

• Handle early-finished and late-arrived requests more efficiently

• Higher GPU utilization

43
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Generative LLM Inference: Autoregressive Decoding
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[Accelerating LLM requires machine] learning systems optimizations

learning systems optimizations [EOS]

Iter 0

Outputs:

Layer 1

Layer 3

Layer 2

Iter 1

Layer 1

Layer 3

Layer 2

Iter 2

Layer 1

Layer 3

Layer 2

Iter 3

Layer 1

Layer 3

Layer 2

Input Prompt:
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[Acc. LLM requires machine]

Generative LLM Inference: Autoregressive Decoding
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learning systems optimizations

learning systems optimizations [EOS]

Iter 0

Outputs:

Layer 1

Layer 3

Layer 2

Iter 1

Layer 1

Layer 3

Layer 2

Iter 2

Layer 1

Layer 3

Layer 2

Iter 3

Layer 1

Layer 3

Layer 2

Layer 3

1

2

5
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[Acc. LLM requires machine]

Generative LLM Inference: Autoregressive Decoding
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learning systems optimizations

learning systems optimizations [EOS]

Iter 0

Outputs:

Layer 1

Layer 3

Layer 2

Iter 1

Layer 1

Layer 3

Layer 2

Iter 2

Layer 1

Layer 3

Layer 2

Iter 3

Layer 1
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Generative LLM Inference: Autoregressive Decoding

• Pre-filling phase (0-th iteration):

• Process all input tokens at once

• Decoding phase (all other iterations):

• Process a single token generated from previous iteration

• Use attention keys & values of all previous tokens

• Key-value cache:

• Save attention keys and values for the following iterations to avoid 
recomputation

47
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Can We Apply FlashAttention to LLM Inference?

Pre-filling phase:

• Yes, compute different queries 
using different thread blocks/warps

Decoding phase:

• No, there is a single query in the 
decoding phase
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FlashAttention Processes K/V Sequentially

49

Inefficient for requests with long context (many keys/values)
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Flash-Decoding Parallelizes Across Keys/Values

1. Split keys/values into small chunks

2. Compute attention with these splits using FlashAttention

3. Reduce overall all splits

50

Key insight: attention is associative and commutative
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Flash-Decoding is up to 8x faster than prior work 

51
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Outline: Attention Optimizastions

Part 1: LLM Training

• FlashAttention

Part 2: LLM Inference (Auto-regressive Decoding)

• Flash-Decoding

• PagedAttention

52
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KV Cache Dynamically Grows and Shrinks
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[Accelerating LLM requires machine]
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KV Cache Dynamically Grows and Shrinks
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[Accelerating LLM requires machine] learning

learning systems
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KV Cache Dynamically Grows and Shrinks
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[Accelerating LLM requires machine] learning systems

learning systems optimizations
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KV Cache Dynamically Grows and Shrinks
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[Accelerating LLM requires machine] learning systems optimizations

learning systems optimizations [EOS]
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Static KV Cache Management Wastes Memory

• Pre-allocates contiguous space of memory to the request’s maximum 
length

• Memory fragmentation

• Internal fragmentation due to unknown output length

• External fragmentation due to non-uniform per-request max lengths

57

Artificial
Intellige

nce
is <resv> <resv> … <resv> <resv>

3 KV Cache slots for 

request A’s prompt

Pre-allocated slots for A’s output

0 3 A’s max length

… … Alan Turing …

Request BExternal frag.

(Internal frag.)

slides from vllm: Efficient Memory Management for Large Language Model Serving with PagedAttention
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Significant Memory Waste in KV Cache

• Only 20-40% of KV cache is utilized to store actual token states

58slides from vllm: Efficient Memory Management for Large Language Model Serving with PagedAttention

vllm
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PagedAttention

• Application-level memory paging and virtualization for KV cache

59

Pag

e 0

Pag

e 1

Pag

e 2

Pag

Process

A
Process

B

Physical Memory

KV 

Block 

0

KV 

Block 

1

KV 

Request

A
Request

B

KV Cache

Memory management in OS PagedAttention

slides from vllm: Efficient Memory Management for Large Language Model Serving with PagedAttention
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Paging KV Cache Space into KV Blocks*

• KV block is a fixed-size contiguous 
chunk of memory that stores KV 
states from left to right

60

Artificial Intelligence is the

KV blocks

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Block size = 4

KV Cache 

Space

* The term ``block’’ is overloaded in PagedAttention
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Virtualizing KV Cache
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Request

A

Alan Turing is a

computer scientist

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist

Alan Turing is a

Physical KV blocks

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical KV blocks

Physical

block number
# Filled

7 4

1 2

– –

– –

Block table

slides from vllm: Efficient Memory Management for Large Language Model Serving with PagedAttention
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Attention with Virtualized KV Cache

1. Fetch non-contiguous KV blocks using the block table

2. Apply attention on the fly

62

Key insight: attention is associative and commutative
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Memory Management with PagedAttention

63

Request

A

Alan Turing is a

computer scientist

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist

Alan Turing is a

Physical KV blocks

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical KV blocks

Physical

block number
# Filled

7 4

1 2

– –

– –

Block table

Completion: “and”

slides from vllm: Efficient Memory Management for Large Language Model Serving with PagedAttention
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Memory Management with PagedAttention

64

Request

A

Alan Turing is a

computer scientist and

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist

Alan Turing is a

Physical KV blocks

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical KV blocks

Physical

block number
# Filled

7 4

1 2

– –

– –

Block table

Completion: “and”

slides from vllm: Efficient Memory Management for Large Language Model Serving with PagedAttention
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Memory Management with PagedAttention

65

Request

A

Alan Turing is a

computer scientist and

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist and

Alan Turing is a

Physical KV blocks

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical KV blocks

Physical

block number
# Filled

7 4

1 3

– –

– –

Block table

Completion: “and”

slides from vllm: Efficient Memory Management for Large Language Model Serving with PagedAttention
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Memory Management with PagedAttention

66

Request

A

Alan Turing is a

computer scientist and
mathem

atician

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist and
mathem

atician

Alan Turing is a

Physical KV blocks

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical KV blocks

Physical

block number
# Filled

7 4

1 4

– –

– –

Block table

Completion: “and mathematician”

slides from vllm: Efficient Memory Management for Large Language Model Serving with PagedAttention
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Memory Management with PagedAttention

67

Request

A

Alan Turing is a

computer scientist and
mathema

tician

renowned

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist and
mathem

atician

renowned

Alan Turing is a

Physical KV blocks

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical KV blocks

Physical

block number
# Filled

7 4

1 4

5 1

– –

Block table

Completion: “and mathematician renowned”

slides from vllm: Efficient Memory Management for Large Language Model Serving with PagedAttention

Allocated on demand
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Memory Efficiency of PagedAttention

Minimal internal fragmentation

• Only happens at the last block of a sequence

• # wasted tokens / seq < block size

No external fragmentation

68
vllm

Alan Turing is a

computer scientist and
mathemati

cian

renowned

Internal 

fragmentation



A few Important Problems (will be HW3)

• How to estimate the number of parameters of an LLM?

• Embedding: position + word

• Transformers layers: 

• attention Wq,Wk,Wv

• MLP: up project, down project

• Layernorm parameters

• How to estimate the flops needed to train an LLM?

• How to estimate the memory needed to train a transformer?
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