

DSC 291: ML Systems Spring 2024

Parallelization

Single-device Optimization

Basics

https://hao-ai-lab.github.io/dsc291-s24/

LLMs

Logistics

- Please start preparing your final project talk
 - We will use week 10 (may need additional time) to go through each team's talk
 - The talk orders have been out
 - Please upload your slides to TAs by next Tuesday
 - TAs has distributed some rubrics/guidelines

Course Evaluation

- Course evaluation is sent out
 - May 27 at 12:00 ÅM and Saturday, June 8
- Please fill the course evaluation
 - It is important for you:
 - Get your 2% if 80% of you filled the survey
 - It is important for TAs!
 - It is important for me!

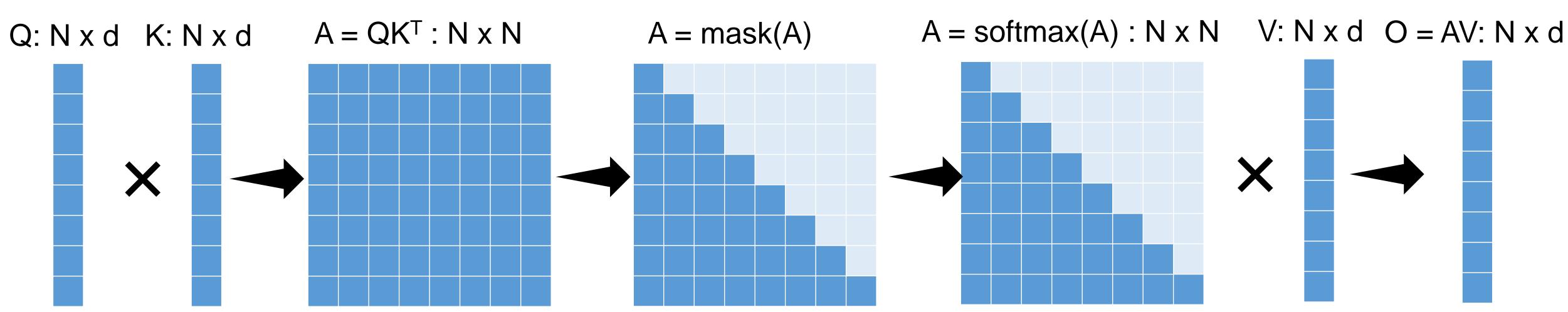
†

aturday, June 8 tion

Where We Are: LLMs

- Transformers and Attentions
- LLM Training Optimizations
 - Flash attention
 - 3D parallelism
- LLM Inference and Serving
 - Paged attention
 - Continuous batching
 - Speculative decoding
- Scaling Laws
- Long context

Attention: $O = Softmax(QK^T) V$



Attention Computation

Algorithm 0 Standard Attention Implementation

Require: Matrices $\mathbf{Q}, \mathbf{K}, \mathbf{V} \in \mathbb{R}^{N \times d}$ in HBM.

- 1: Load Q, K by blocks from HBM, compute $S = QK^{T}$, write S to HBM.
- 2: Read S from HBM, compute $\mathbf{P} = \operatorname{softmax}(\mathbf{S})$, write P to HBM.
- 3: Load **P** and **V** by blocks from HBM, compute $\mathbf{O} = \mathbf{PV}$, write **O** to HBM.
- 4: Return **O**.

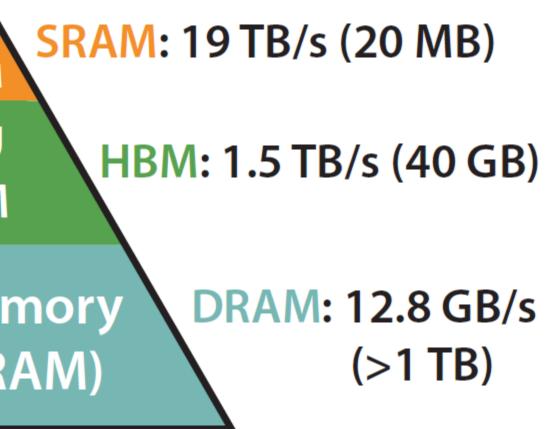
Challenges:

- Large intermediate results
- Repeated reads/writes from GPU device memory
- Cannot scale to long sequences due to O(N^2) intermediate results

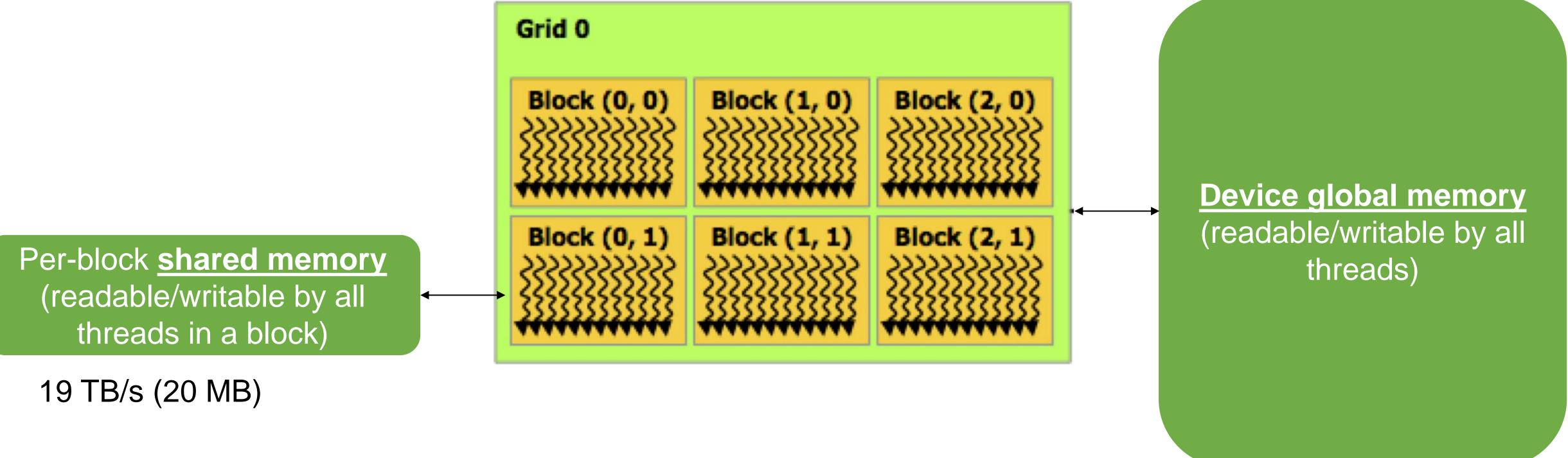
Revisit: GPU Memory Hierarchy

GPU SRAM GPU GPU HBM HBM

Memory Hierarchy with Bandwidth & Memory Size



Revisit: GPU Memory Hierarchy



1.5 TB/s (80 GB)

FlashAttention

Key idea: compute attention by blocks to reduce global memory access

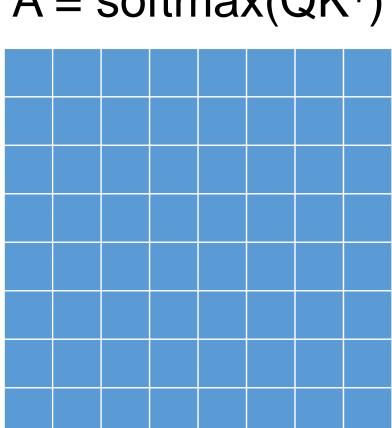
Two main Techniques:

1. Tiling: restructure algorithm to load query/key/value block by block from global to shared memory

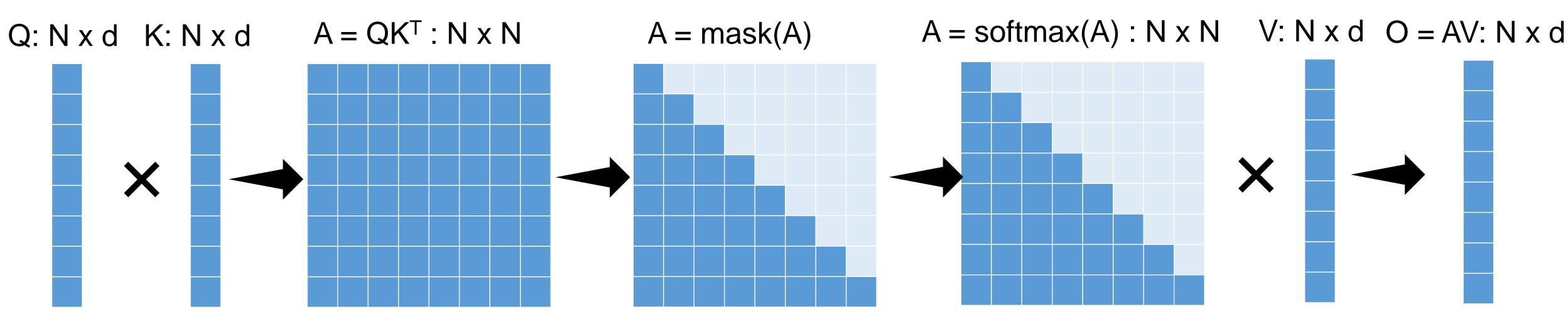
2. Recomputation: don't store attention matrix from forward, recompute it in backward

* FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness

 $A = softmax(QK^{T})$



Problem: How to tile softmax?

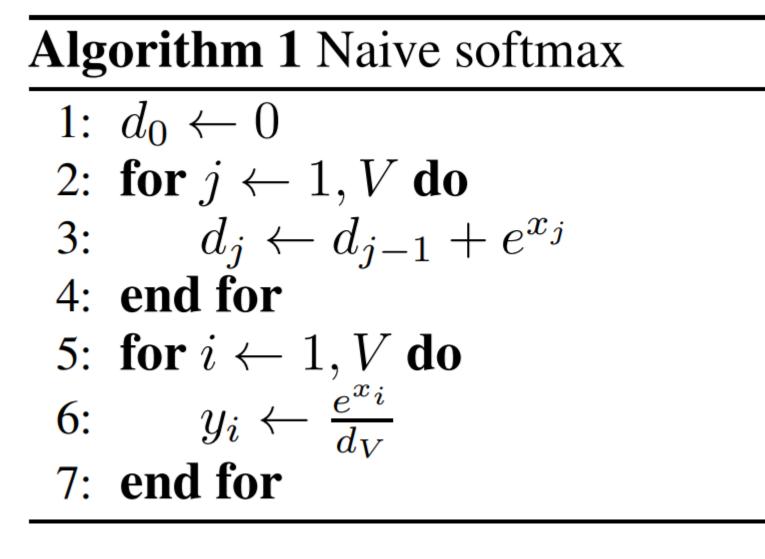


Challenges

- - Compute softmax reduction w/o access to NxN at forward
- Backward without the NxN softmax forward activations

• We must avoid materializing NxN while still get the precise softmax results

How to Implement Softmax



Problem

Can easily go overflow because of sum (e^x)

11

Safe Softmax

e $y_i =$ V $\sum_{j=1}$

Algorithm 2 Safe softmax

1:
$$m_0 \leftarrow -\infty$$

2: for $k \leftarrow 1, V$ do
3: $m_k \leftarrow \max(m_{k-1}, x_k)$
4: end for
5: $d_0 \leftarrow 0$
6: for $j \leftarrow 1, V$ do
7: $d_j \leftarrow d_{j-1} + e^{x_j - m_V}$
8: end for
9: for $i \leftarrow 1, V$ do
10: $y_i \leftarrow \frac{e^{x_i - m_V}}{d_V}$
11: end for

$$x_{i} - \max_{k=1}^{V} x_{k}$$
$$e^{x_{j}} - \max_{k=1}^{V} x_{k}$$

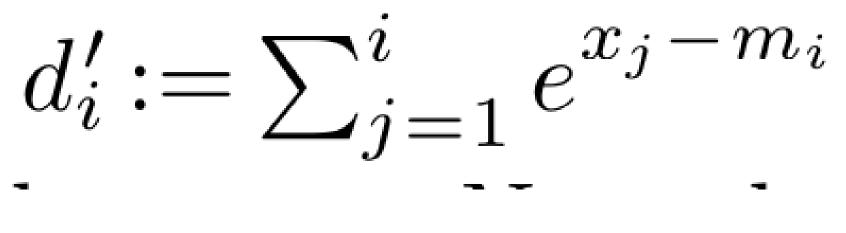
12

Can we fuse?

Create alternative sequence

Algorithm 2 Safe softmax

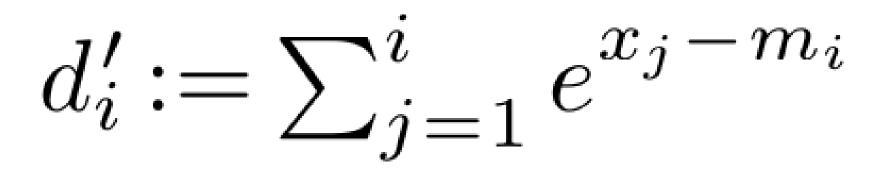
1: $m_0 \leftarrow -\infty$ 2: for $k \leftarrow 1, V$ do $m_k \leftarrow \max(m_{k-1}, x_k)$ 3: 4: end for 5: $d_0 \leftarrow 0$ 6: for $j \leftarrow 1, V$ do 7: $d_j \leftarrow d_{j-1} + e^{x_j - m_V}$ 8: **end for** 9: for $i \leftarrow 1, V$ do $y_i \leftarrow \frac{e^{x_i - m_V}}{d_V}$ 10: 11: **end for**



With: $d'_V = d_V$

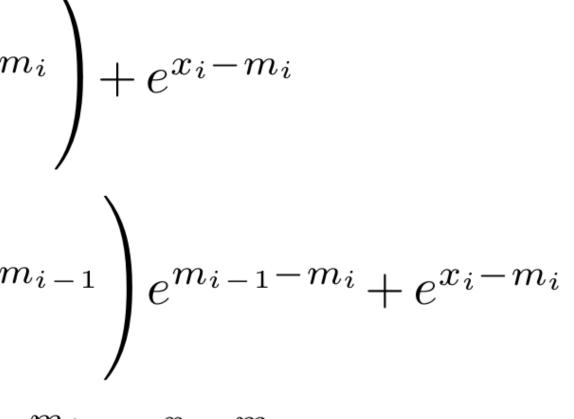
But:

Create alternative sequence



$$d'_{i} = \sum_{j=1}^{i} e^{x_{j} - m_{i}}$$
$$= \left(\sum_{j=1}^{i-1} e^{x_{j} - m_{i}}\right)$$
$$= \left(\sum_{j=1}^{i-1} e^{x_{j} - m_{i}}\right)$$
$$= d'_{i-1} e^{m_{i-1} - m_{i-1}}$$

With: $d'_V = d_V$



d_V does not depend on m_V

 $-m_i + e^{x_i - m_i}$

Online, Safe Softmax

Algorithm 3 Safe softmax with online normalizer calculation

1:
$$m_0 \leftarrow -\infty$$

2: $d_0 \leftarrow 0$
3: for $j \leftarrow 1, V$ do
4: $m_j \leftarrow \max(m_{j-1}, x_j)$
5: $d_j \leftarrow d_{j-1} \times e^{m_{j-1}-m_j} + e^{x_j-m_j}$
6: end for
7: for $i \leftarrow 1, V$ do
8: $y_i \leftarrow \frac{e^{x_i-m_V}}{d_V}$
9: end for

Self attention

NOTATIONS

Q[k,:]: the k-th row vector of Q matrix. $K^{T}[:, i]$: the *i*-th column vector of K^{T} matrix. O[k,:]: the k-th row of output O matrix. V[i,:]: the *i*-th row of V matrix. $\{o_i\}: \sum_{j=1}^{i} a_j V[j,:], \text{ a row vector storing partial aggregation result } A[k,:i] \times V[:i,:]$

Body for $i \leftarrow 1, N$ do

end for $i \leftarrow 1, N$ do

 \mathbf{end}

$$x_i \leftarrow Q[k,:] K^T[:,i]$$

$$m_i \leftarrow \max(m_{i-1}, x_i)$$

$$d'_i \leftarrow d'_{i-1} e^{m_{i-1}-m_i} + e^{x_i - m_i}$$

$$a_i \leftarrow \frac{e^{x_i - m_N}}{d'_N}$$

 $o_i \leftarrow o_{i-1} + a_i V[i,:]$

$$O[k,:] \leftarrow \boldsymbol{o}_N$$

Self attention

NOTATIONS Q[k,:]: the k-th row vector of Q matrix. $K^{T}[:, i]$: the *i*-th column vector of K^{T} matrix. O[k,:]: the k-th row of output O matrix. V[i,:]: the *i*-th row of V matrix. $\{o_i\}: \sum_{j=1}^{i} a_j V[j,:], a row vector storing partial aggregation result <math>A[k,:i] \times V[:i,:]$

Body for $i \leftarrow 1, N$ do

$$x_i \leftarrow Q[k,:] K^T[:,i]$$

$$m_i \leftarrow \max(m_{i-1}, x_i)$$

$$d'_i \leftarrow d'_{i-1} e^{m_{i-1}-m_i} + e^{x_i - m_i}$$

end for $i \leftarrow 1, N$ do

$$a_i \leftarrow \frac{e^{x_i - m_N}}{d'_N}$$
$$\boldsymbol{o}_i \leftarrow \boldsymbol{o}_{i-1} + a_i V[i,:]$$

end

$$O[k,:] \leftarrow \boldsymbol{o}_N$$

$$\boldsymbol{o}_i := \sum_{j=1}^i \left(\frac{e^{x_j - m_N}}{d'_N} V[j,:] \right)$$

Create alternative sequence with $o_N = o'_N$

$$\boldsymbol{o}_i' := \left(\sum_{j=1}^i \frac{e^{x_j - m_i}}{d_i'} V[j,:] \right)$$

But

$$\begin{split} \mathbf{o}_{i}' &= \sum_{j=1}^{i} \frac{e^{x_{j}-m_{i}}}{d_{i}'} V[j,:] & \text{end} \\ &= \left(\sum_{j=1}^{i-1} \frac{e^{x_{j}-m_{i}}}{d_{i}'} V[j,:]\right) + \frac{e^{x_{i}-m_{i}}}{d_{i}'} V[i,:] \\ &= \left(\sum_{j=1}^{i-1} \frac{e^{x_{j}-m_{i-1}}}{d_{i-1}'} \frac{e^{x_{j}-m_{i}}}{e^{x_{j}-m_{i-1}}} \frac{d_{i-1}'}{d_{i}'} V[j,:]\right) + \frac{e^{x_{i}-m_{i}}}{d_{i}'} V[i,:] \\ &= \left(\sum_{j=1}^{i-1} \frac{e^{x_{j}-m_{i-1}}}{d_{i-1}'} V[j,:]\right) \frac{d_{i-1}'}{d_{i}'} e^{m_{i-1}-m_{i}} + \frac{e^{x_{i}-m_{i}}}{d_{i}'} V[i,:] \\ &= o_{i-1}' \frac{d_{i-1}'e^{m_{i-1}-m_{i}}}{d_{i}'} + \frac{e^{x_{i}-m_{i}}}{d_{i}'} V[i,:] \end{split}$$

for $i \leftarrow 1, N$ do

$$x_{i} \leftarrow Q[k,:] K^{T}[:,i]$$

$$m_{i} \leftarrow \max(m_{i-1}, x_{i})$$

$$d'_{i} \leftarrow d'_{i-1} e^{m_{i-1}-m_{i}} + e^{x_{i}-m_{i}}$$

$$o'_{i} \leftarrow o'_{i-1} \frac{d'_{i-1} e^{m_{i-1}-m_{i}}}{d'_{i}} + \frac{e^{x_{i}-m_{i}}}{d'_{i}} V[i,:]$$

$$O[k,:] \leftarrow \boldsymbol{o}'_N$$

$$+\frac{e^{x_i-m_i}}{d'_i}V[i,:]$$

Flash Attention

for $i \leftarrow 1, N$ do

end

$$Q[k,:] K^{T}[:,i]$$

$$\max(m_{i-1}, x_{i})$$

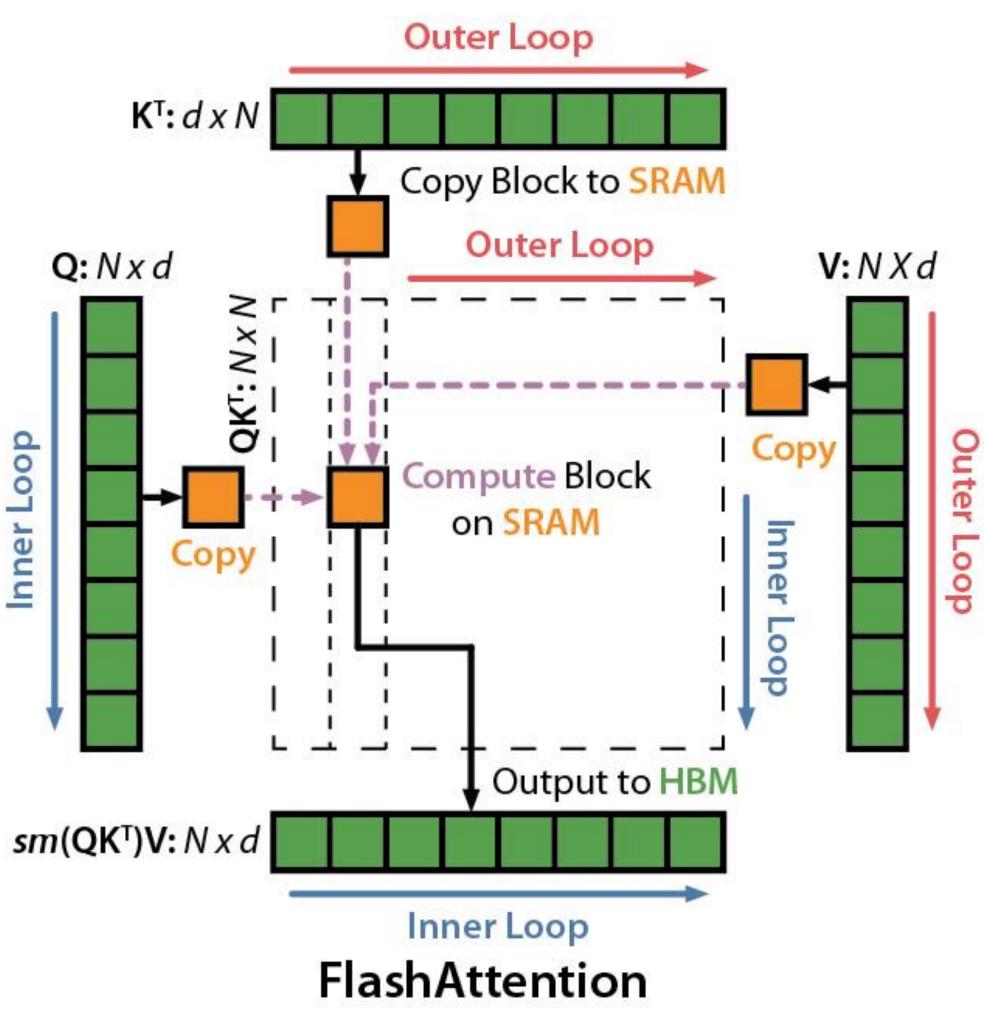
$$d'_{i-1} e^{m_{i-1}-m_{i}} + e^{x_{i}-m_{i}}$$

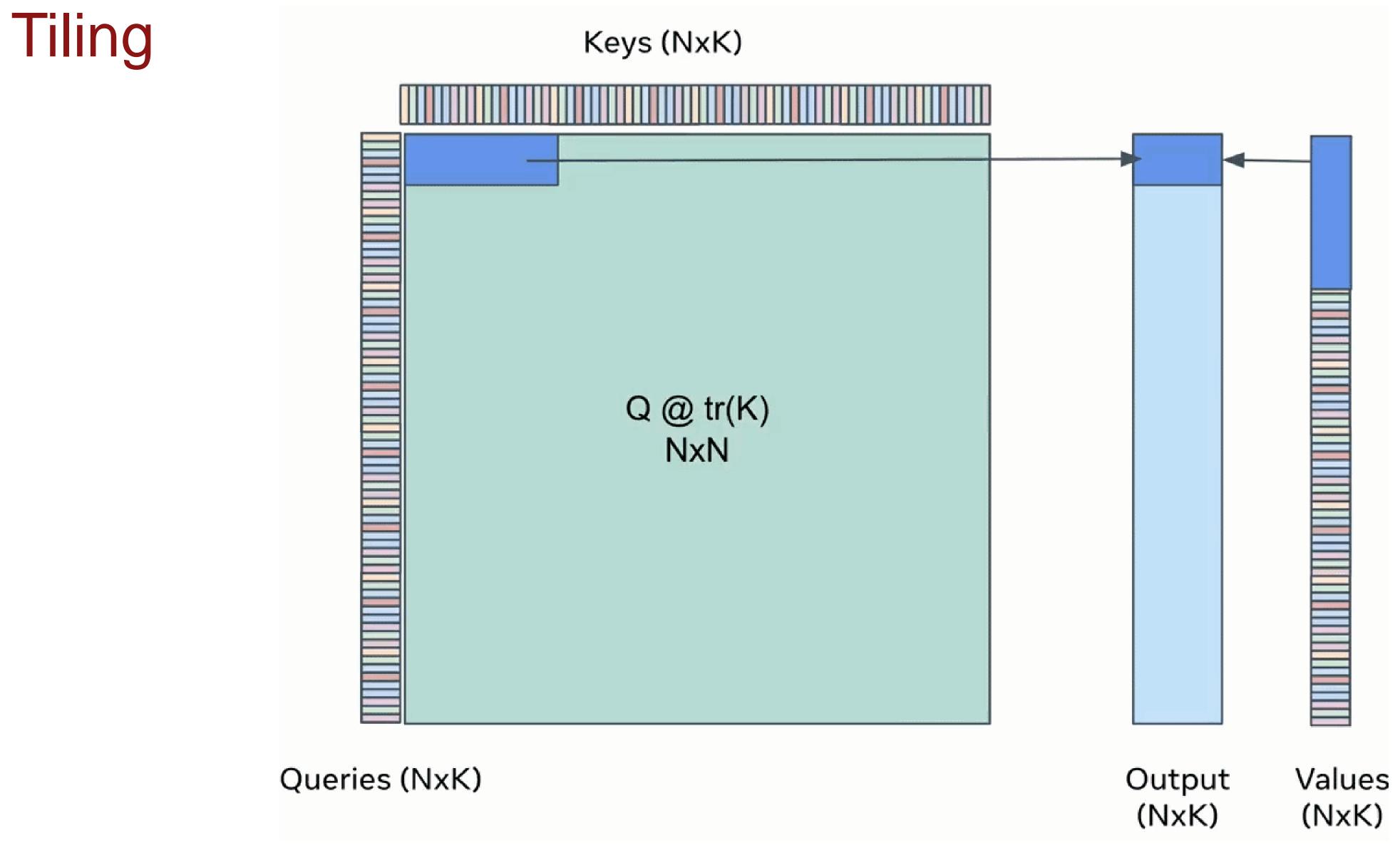
$$o'_{i-1} \frac{d'_{i-1} e^{m_{i-1}-m_{i}}}{d'_{i}} + \frac{e^{x_{i}-m_{i}}}{d'_{i}} V[i,:]$$

$$O[k,:] \leftarrow \mathbf{o}'_N$$

Tiling: Decompose Large Softmax into smaller ones by Scaling

- Load inputs by blocks from global to 1. shared memory
- 2. On chip, compute attention output wrt the block
- 3. Update output in device memory by scaling



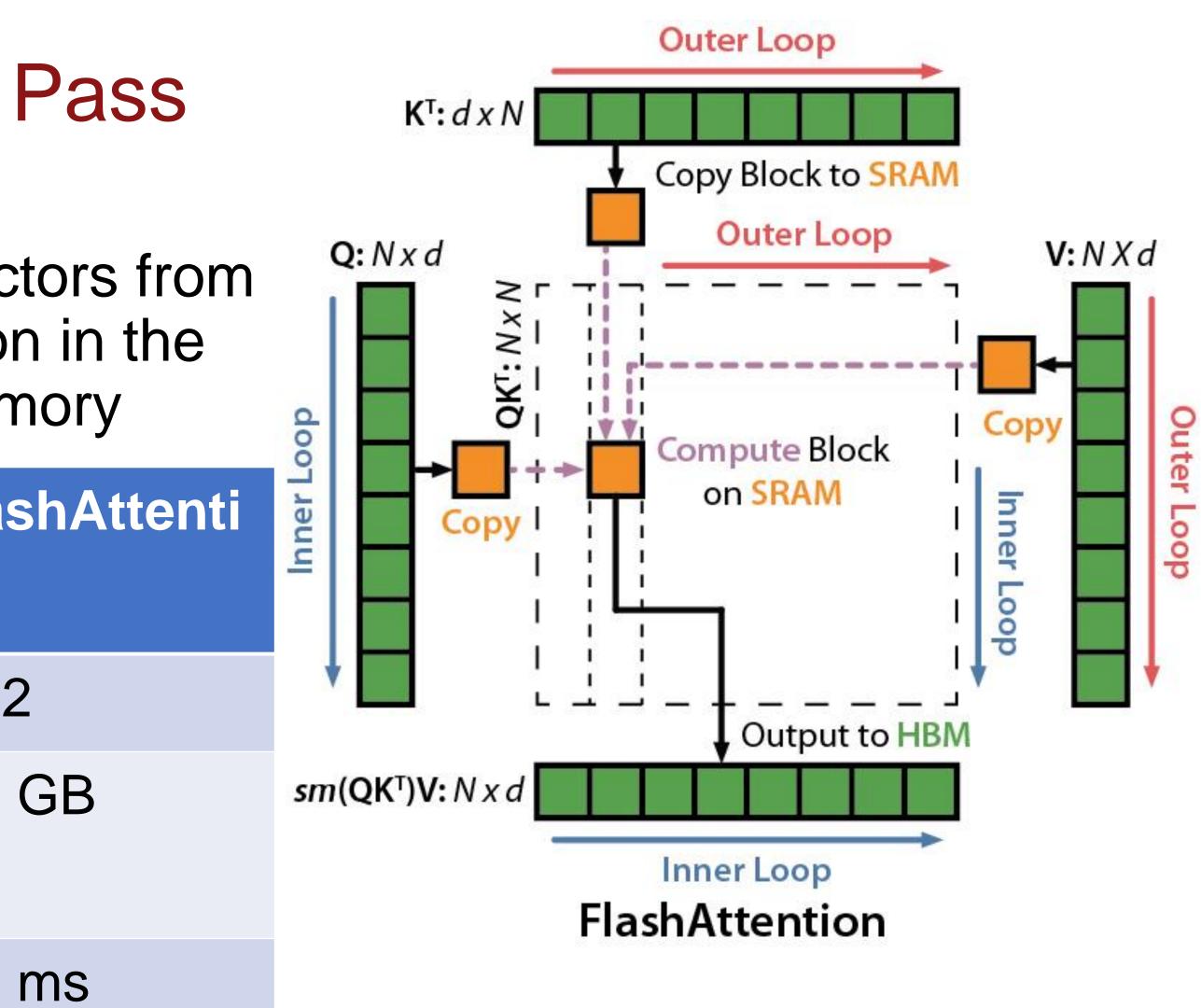


Recomputation: Backward Pass

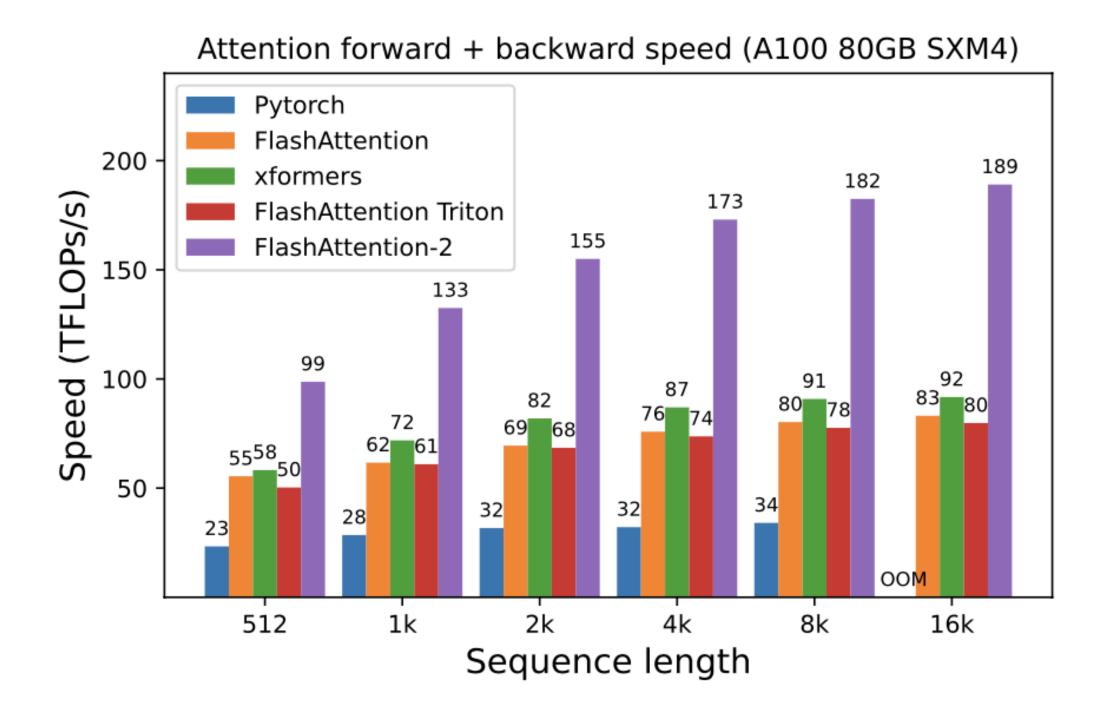
By storing softmax normalization factors from forward (size N), recompute attention in the backward from inputs in shared memory

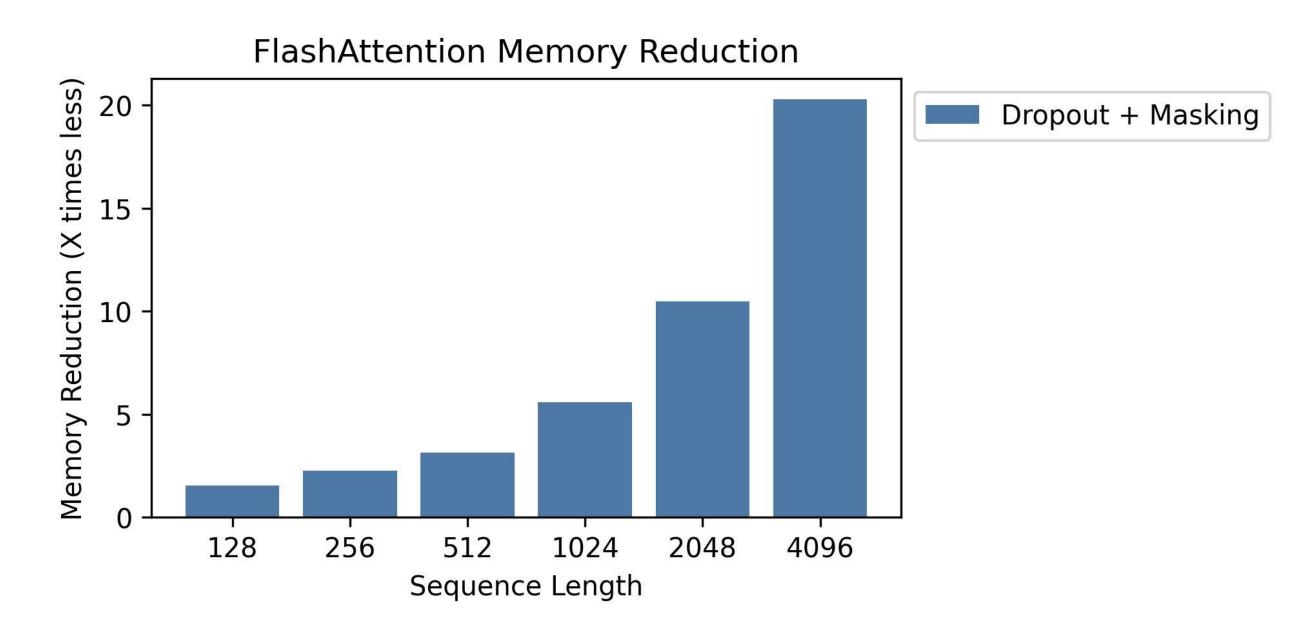
Attention	Standard	Flas on
GFLOPs	66.6	75.2
Global mem access	40.3 GB	4.4
Runtime	41.7 ms	7.3

Speed up backward pass with increased FLOPs



FlashAttention: 2-4x speedup, 10-20x memory reduction





Memory linear in sequence length

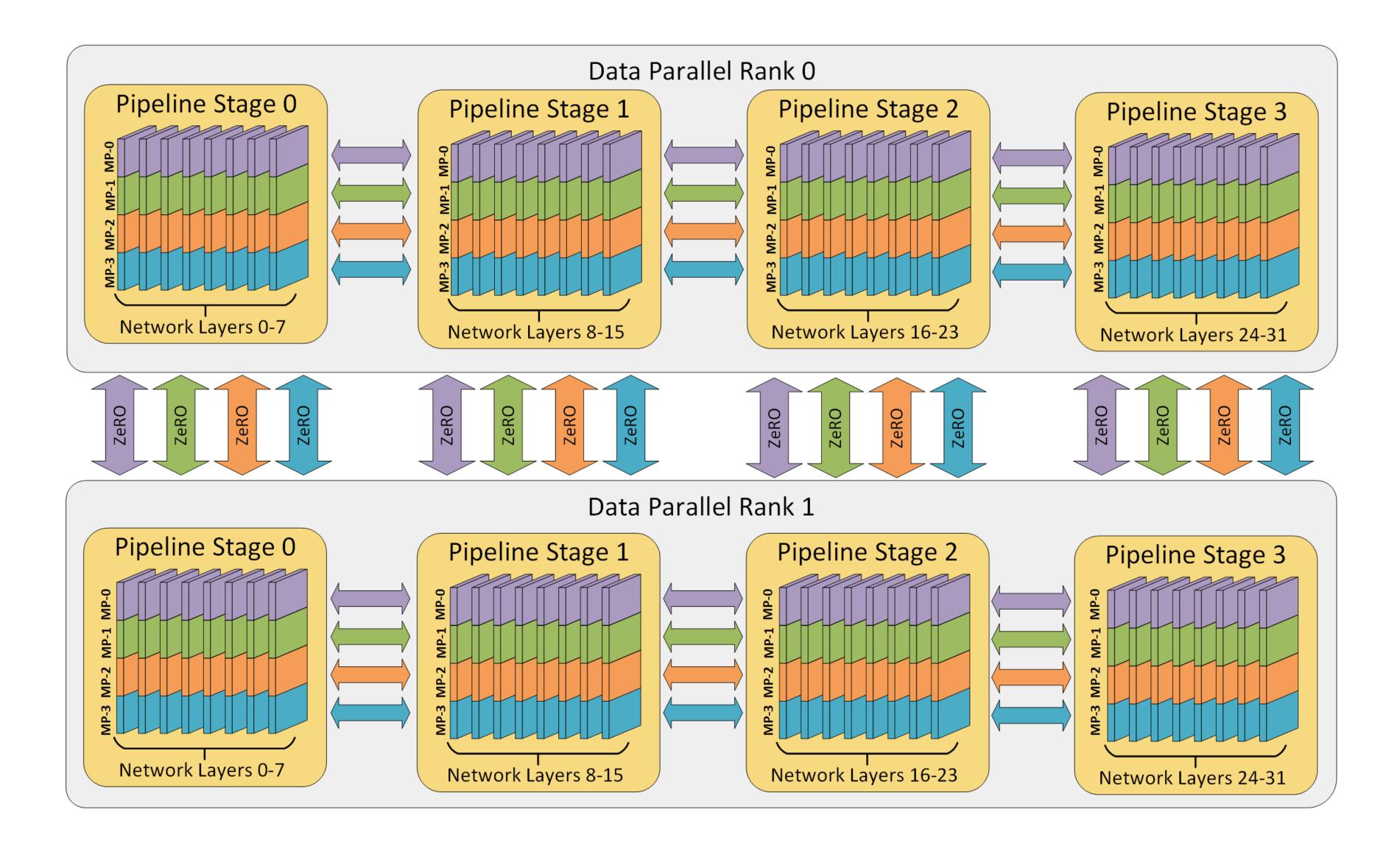
Where We Are: LLMs

- Transformers and Attentions
- LLM Training Optimizations
 - Flash attention

• 3D parallelism

- LLM Inference and Serving
 - Paged attention
 - Continuous batching
 - Speculative decoding
- Scaling Laws
- Long context

How LLMs are trained today



Summary: How LLMs are trained today

- Outer Loop 1:
 - Inter-op parallelism + 1F1B
- Outer Loop 2: Intra-op parallelism based on model architecture
 - Zero-2 / Zero-3 + data parallelism
 - Megatron-LM tensor parallelism or Expert parallelism
- Outer Loop 3:
 - Gradient checkpointing and recomputation at backward
- Inner Loop 4:
 - Graph fusion
- Inner Loop 5:
 - Operator-level optimization: tiling, flash attention, etc.

Side effects of Flash Attention

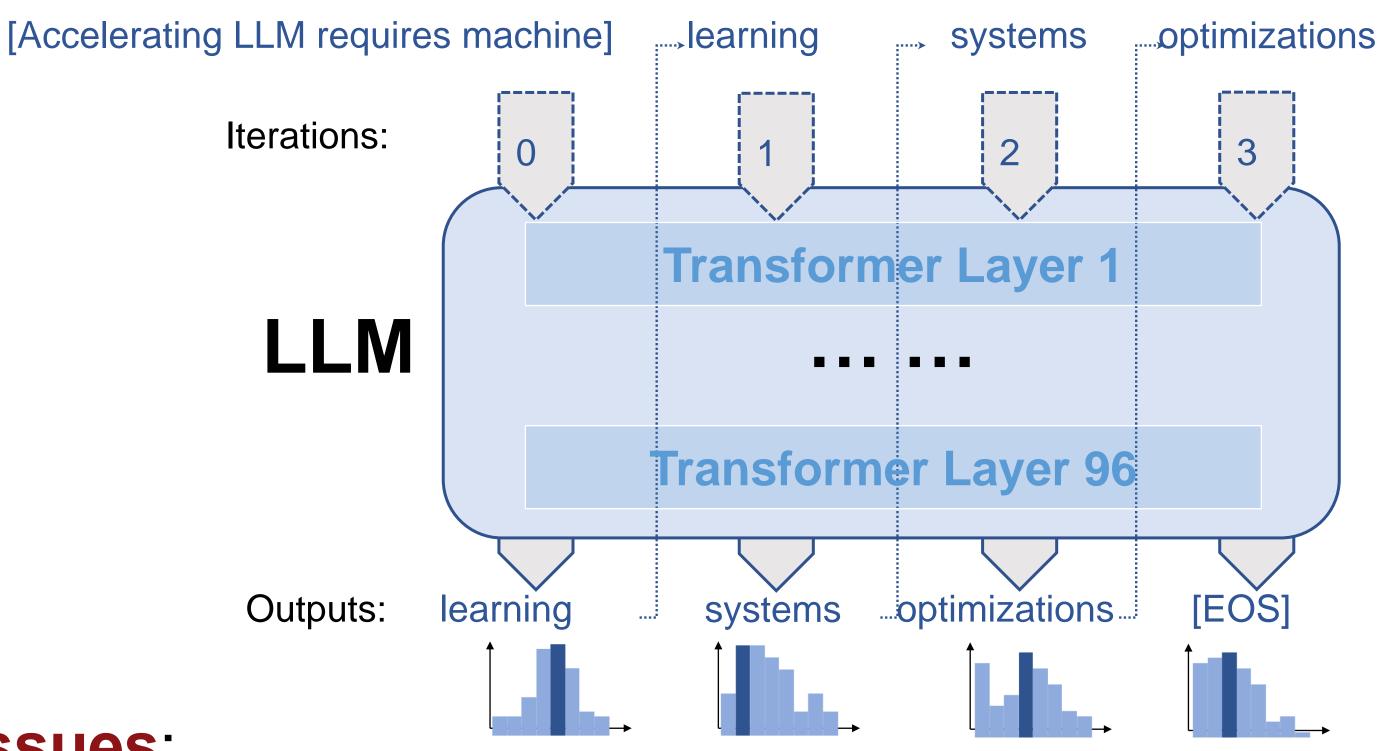
- Because we do not materialize the N x N intermediate matrix, we decrease peak memory
- Because of decreased peak memory, we can use a larger micro batch size (significantly larger, e.g., 1 -> 32)
- Because of large per-device batch size, much higher AI

Where We Are: LLMs

- Transformers and Attentions
- LLM Training Optimizations
 - Flash attention
 - 3D parallelism
- LLM Inference and Serving
 - Continuous batching
 - Paged attention
 - Speculative decoding
- Scaling Laws
- Long context

- At least ten A100-40GB GPUs to serve 175B GPT-3 in half precision
- Generating 256 tokens takes ~20 seconds
- Cannot process many requests in parallel
 - Per-request key/value cache takes 3GB GPU memory

Recall: Incremental Decoding



Main issues:

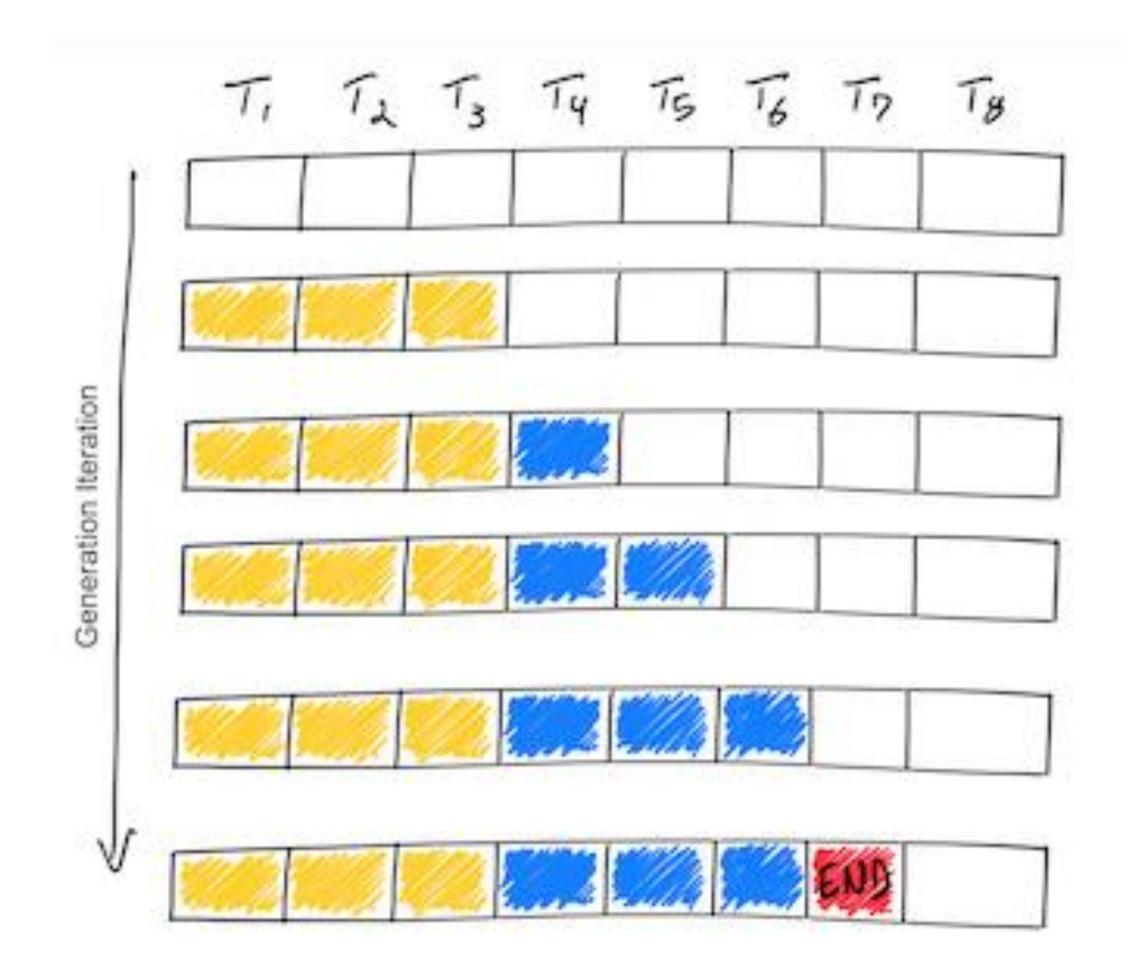
- Limited degree of parallelism \rightarrow underutilized GPU resources

• Need all parameters to decode a token \rightarrow bottlenecked by GPU memory access

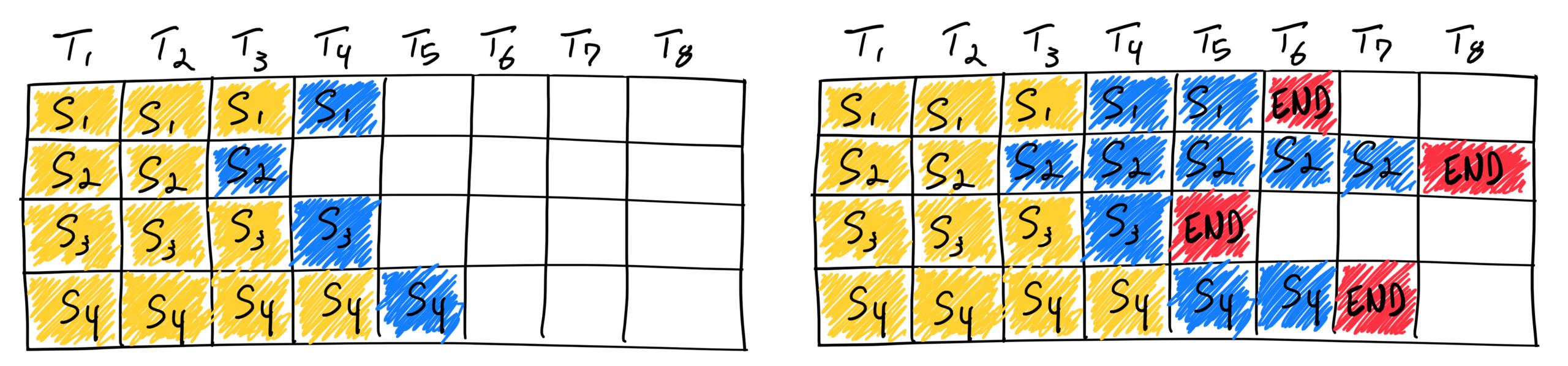
Outline: LLMs Serving Techniques

- Continuous Batching
- Paged Attention
- Speculative Decoding

LLM Decoding Timeline



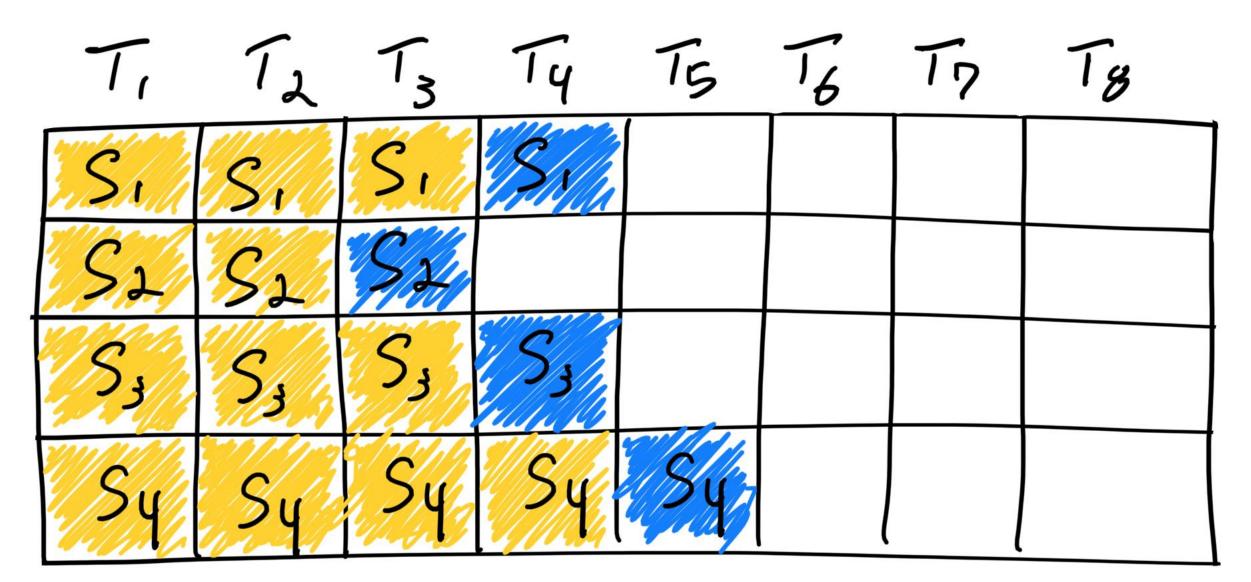
Batching Requests to Improve GPU Performance



Issues with static batching:

- Requests may complete at different iterations
- Idle GPU cycles
- New requests cannot start immediately

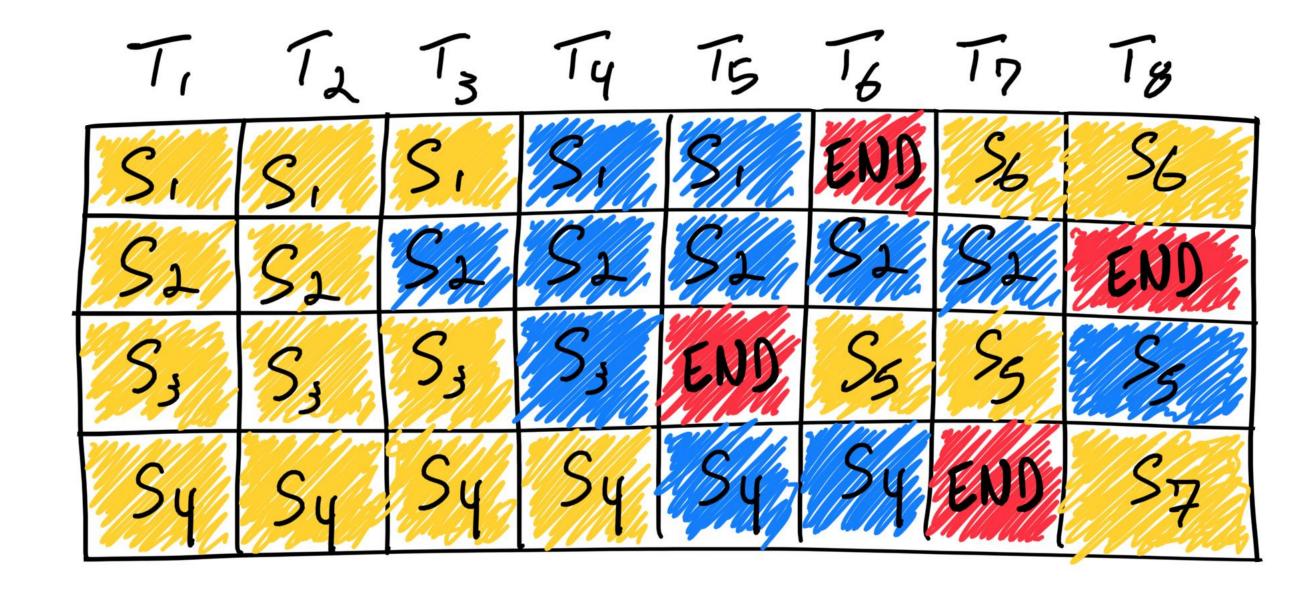
Continuous Batching



Benefits:

- Higher GPU utilization
- New requests can start immediately

Orca: A Distributed Serving System for Transformer-Based Generative Models. OSDI'22



Continuous Batching Step-by-Step

Receives two new requests R1 and R2

R1: optimizing ML systems

R2: LLM serving is

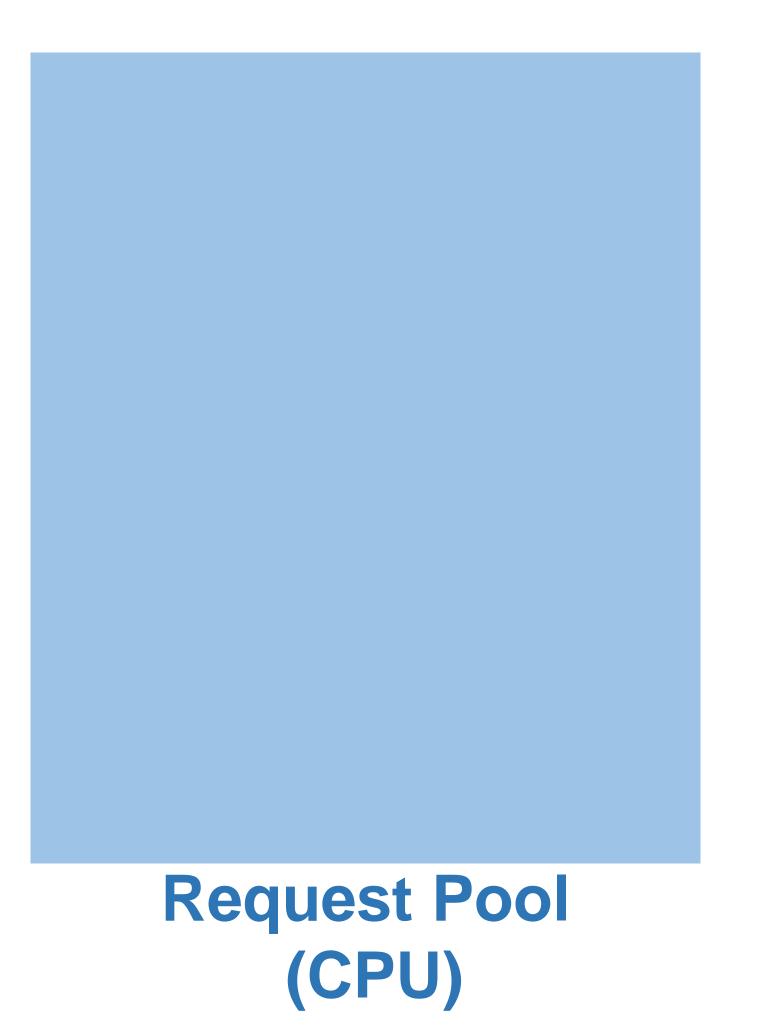
Request Pool (CPU)

Maximum serving batch size = 3

Execution Engine (GPU)

Continuous Batching Step-by-Step

Iteration 1: decode R1 and R2



Maximum serving batch size = 3

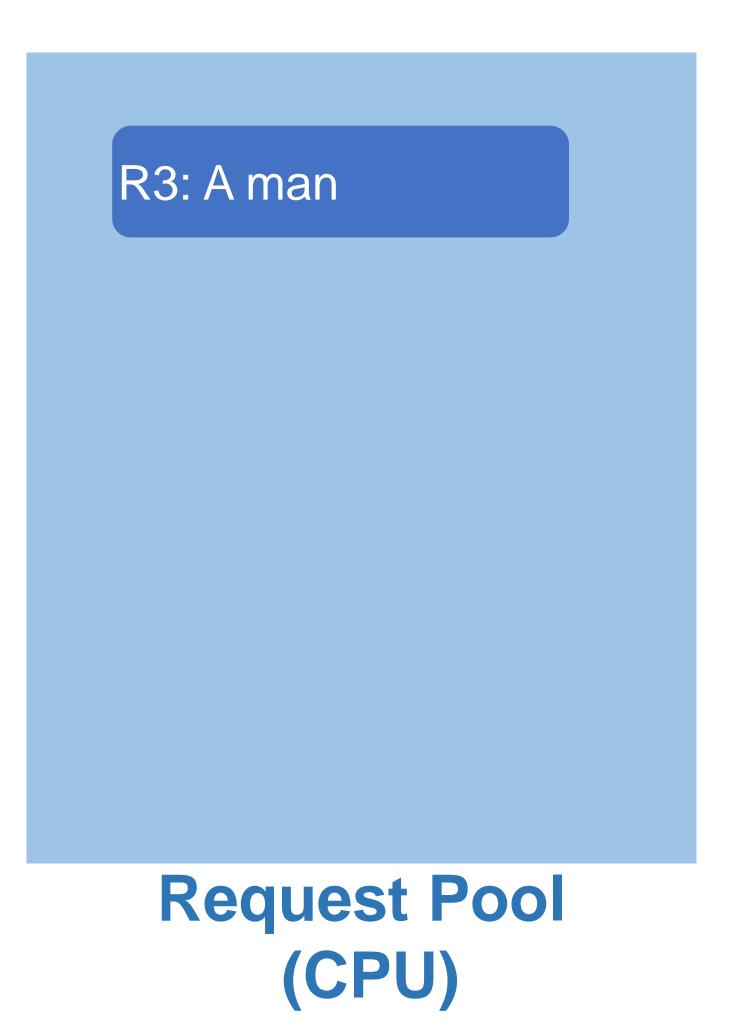
R1: optimizing ML systems

R2: LLM serving is

Execution Engine (GPU)

Continuous Batching Step-by-Step

Receive a new request R3; finish decoding R1 and R2



Maximum serving batch size = 3

> R1: optimizing ML systems requires

R2: LLM serving is critical.

Execution Engine (GPU)

40

Continuous Batching Step-by-Step

• Iteration 2: decode R1, R2, R3; receive R4, R5; R2 completes

R4: A dog is	
R5: How are	
Request Pool (CPU)	

Maximum serving batch size = 3

R3: A man is

R1: optimizing ML systems requires ML

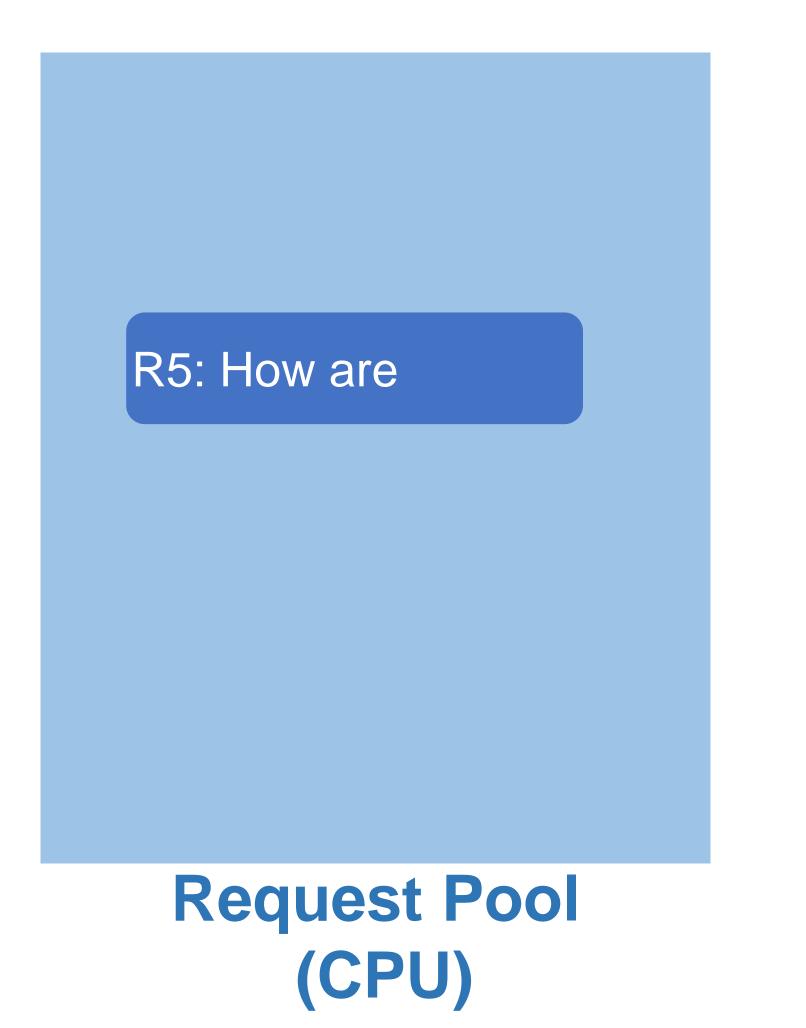
R2: LLM serving is critical. <EOS>

Execution Engine (GPU)

41

Continuous Batching Step-by-Step

Iteration 3: decode R1, R3, R4



Maximum serving batch size = 3

R3: A man is

R1: optimizing ML systems requires ML

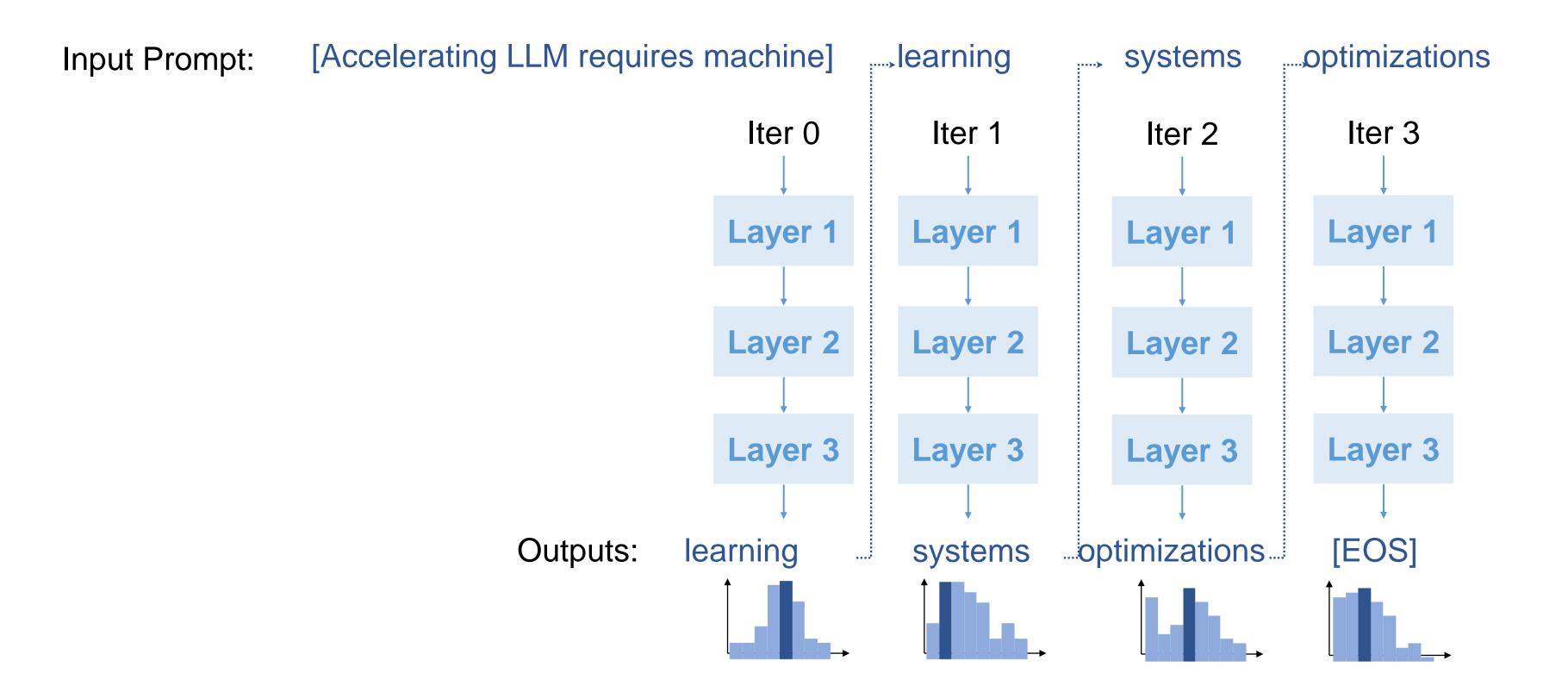
R4: A dog is

Execution Engine (GPU)

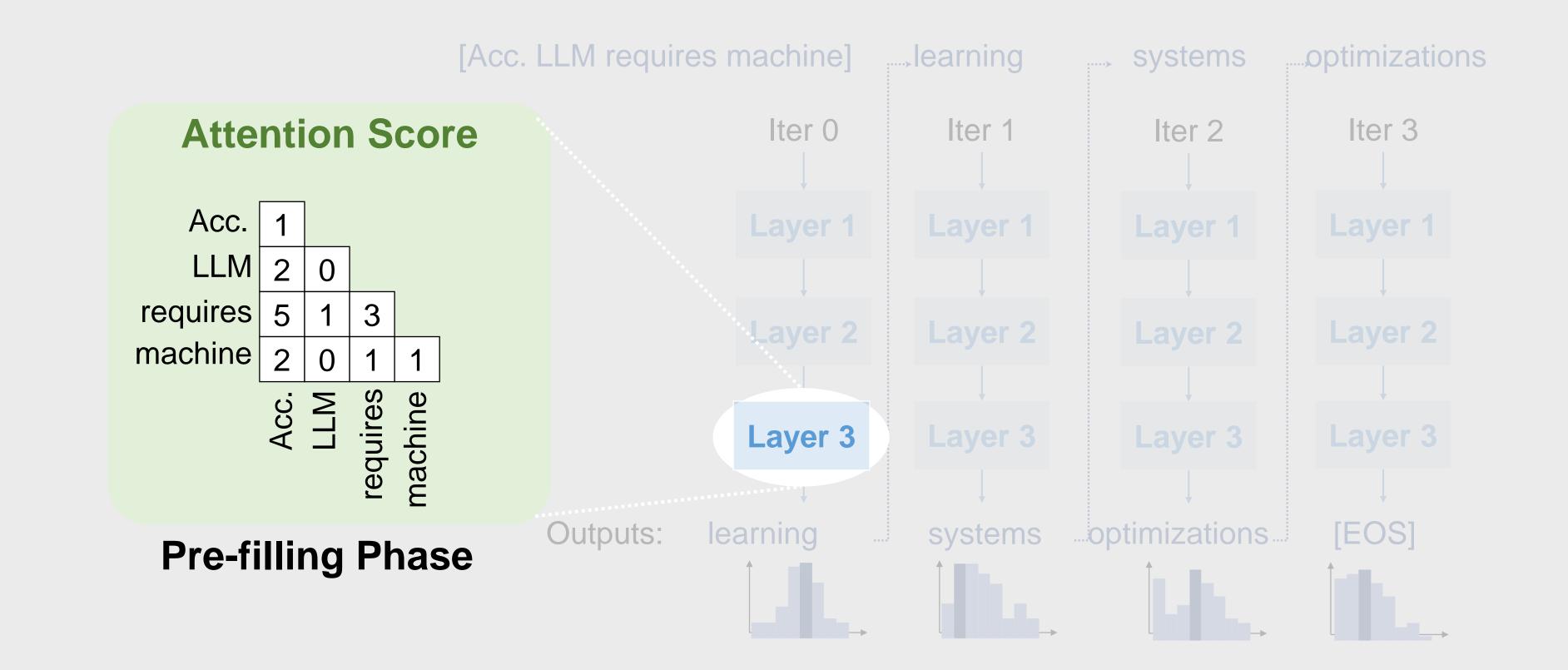
Iteration 3

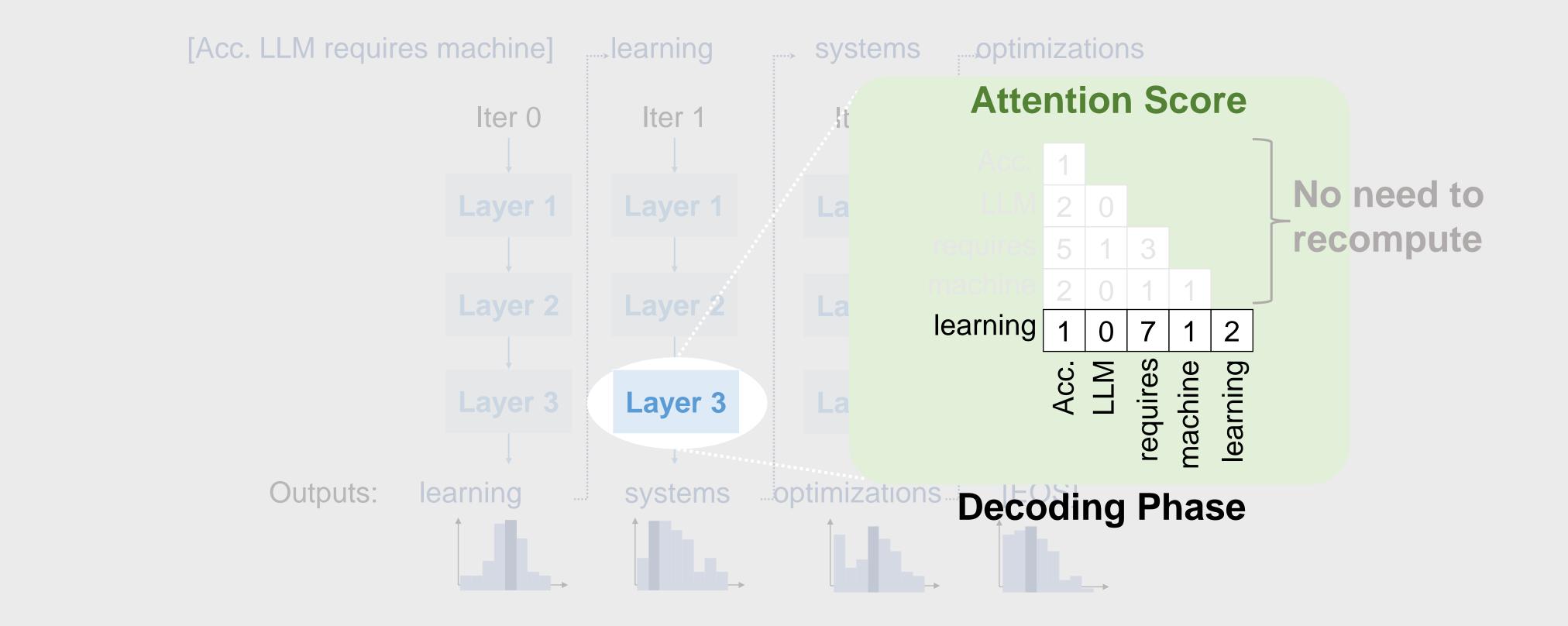
Continuous Batching

- Handle early-finished and late-arrived requests more efficiently
- Higher GPU utilization



44

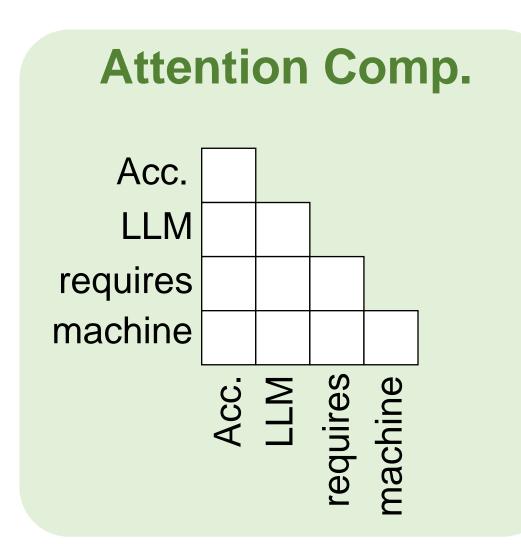




- Pre-filling phase (0-th iteration):
 - Process all input tokens at once
- **Decoding phase** (all other iterations): Process a single token generated from previous iteration Use attention keys & values of all previous tokens
- Key-value cache:
 - Save attention keys and values for the following iterations to avoid recomputation

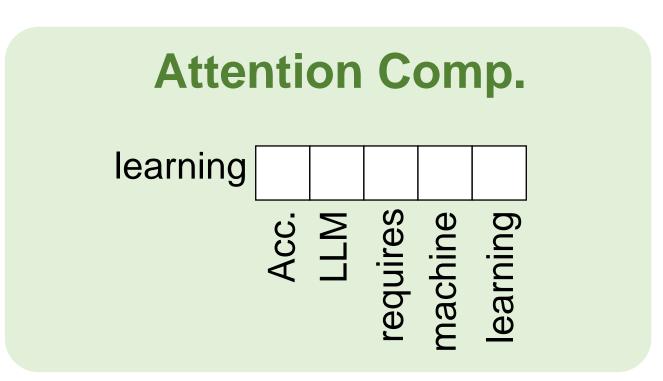
47

Can We Apply FlashAttention to LLM Inference?



Pre-filling phase:

 Yes, compute different queries using different thread blocks/warps



Decoding phase:

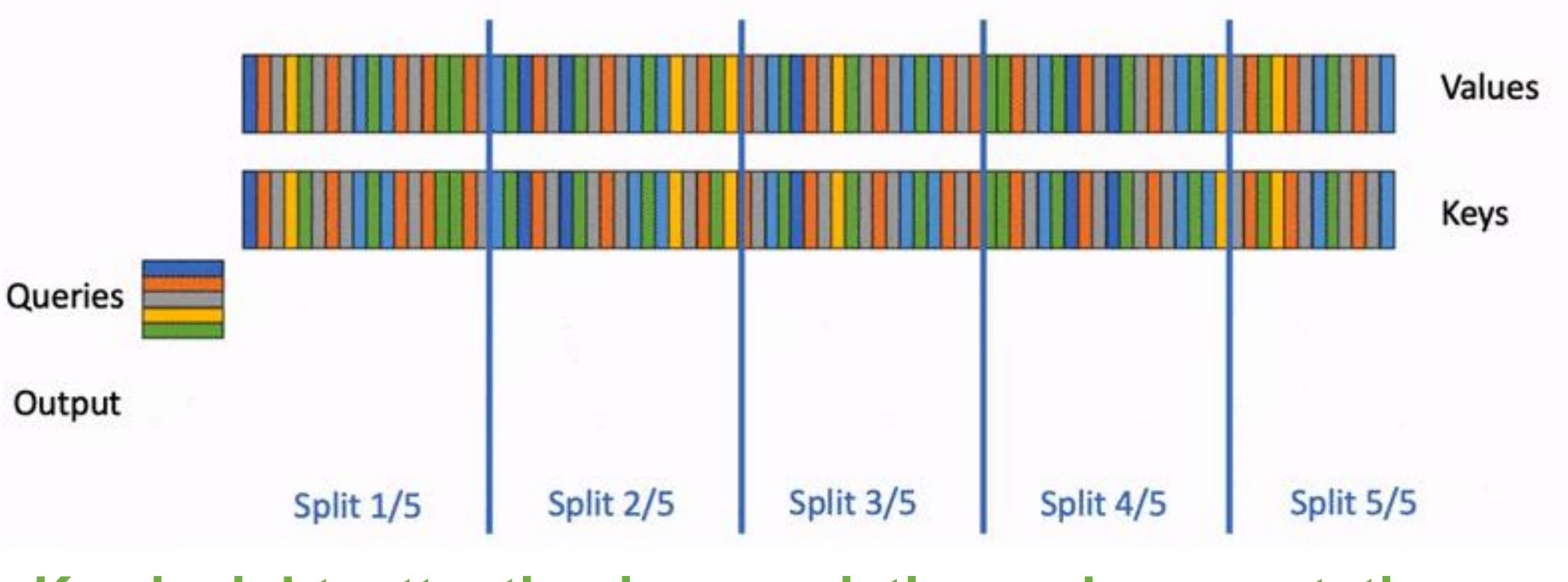
No, there is a single query in the decoding phase

FlashAttention Processes K/V Sequentially

Inefficient for requests with long context (many keys/values)

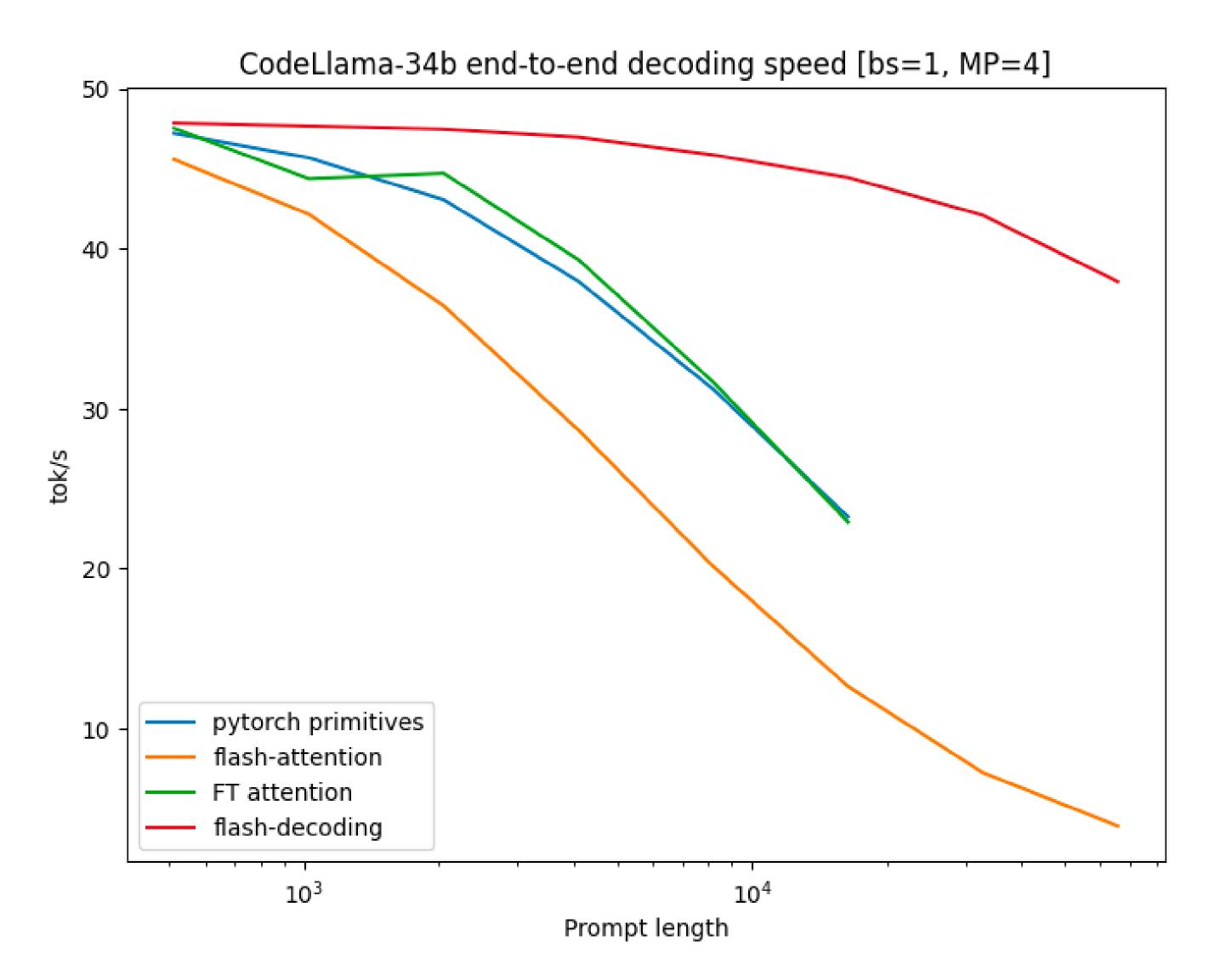
Flash-Decoding Parallelizes Across Keys/Values

- 1. Split keys/values into small chunks
- 2. Compute attention with these splits using FlashAttention
- 3. Reduce overall all splits



Key insight: attention is associative and commutative

Flash-Decoding is up to 8x faster than prior work



Outline: Attention Optimizastions

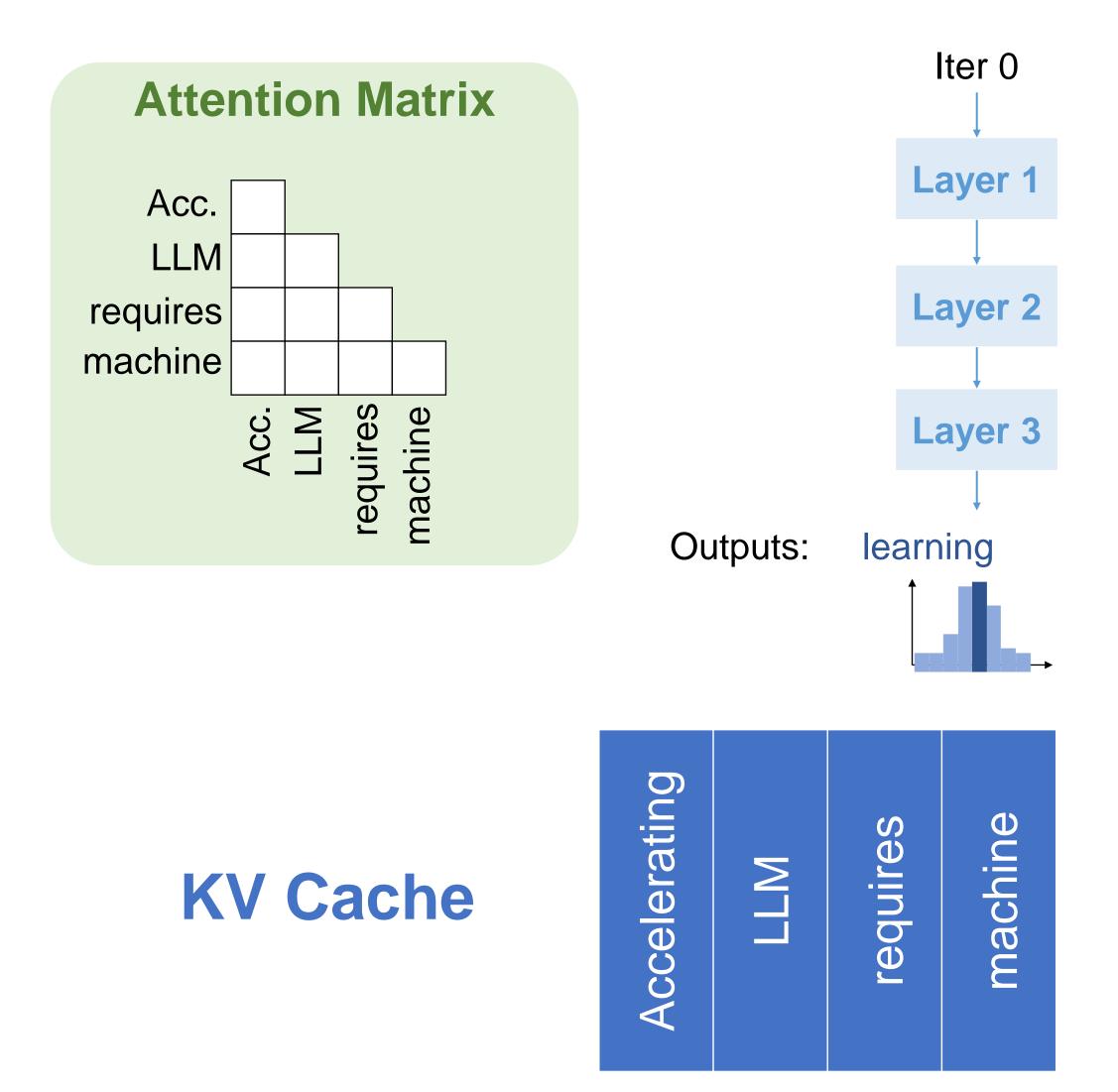
Part 1: LLM Training

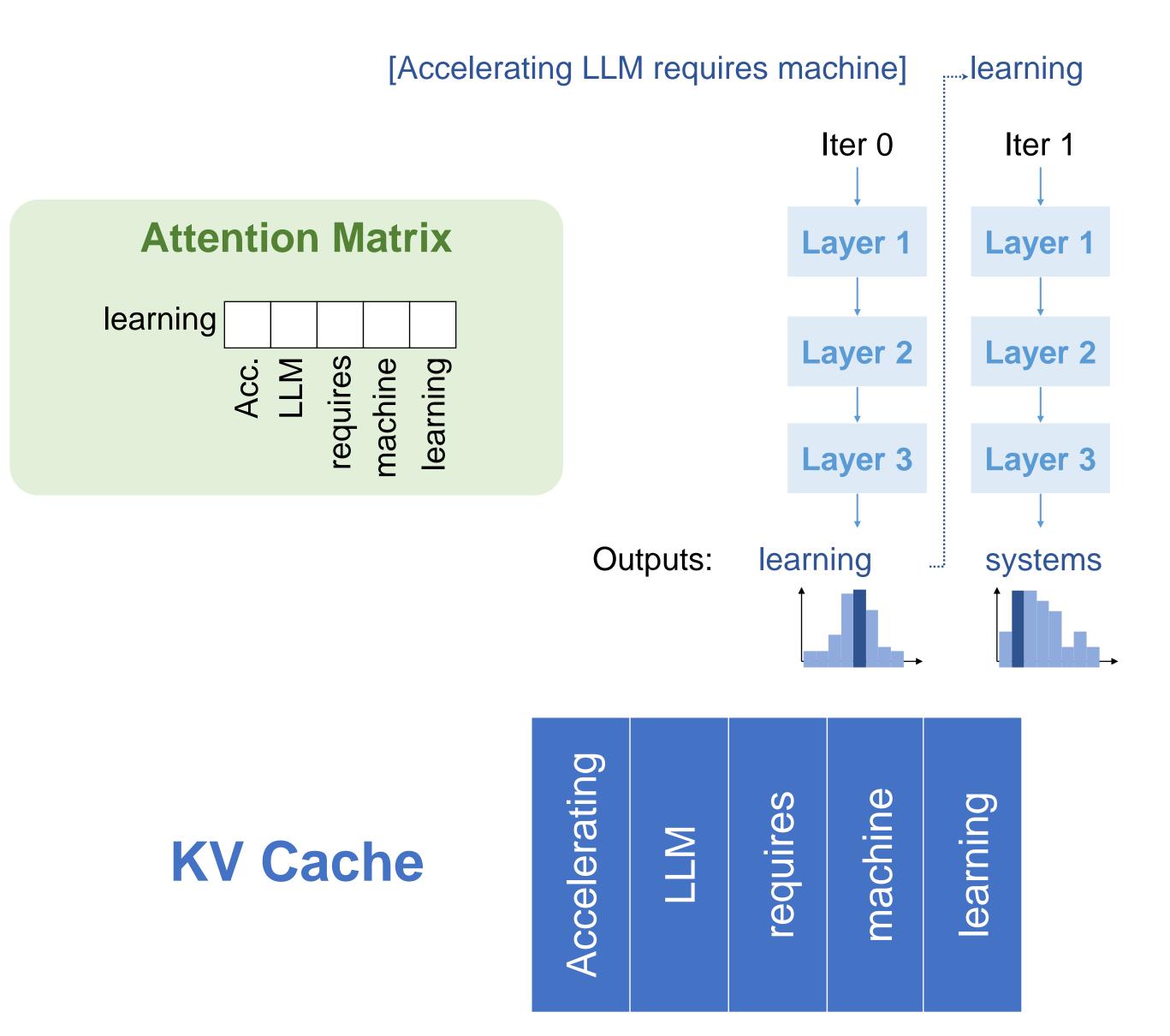
FlashAttention

Part 2: LLM Inference (Auto-regressive Decoding)

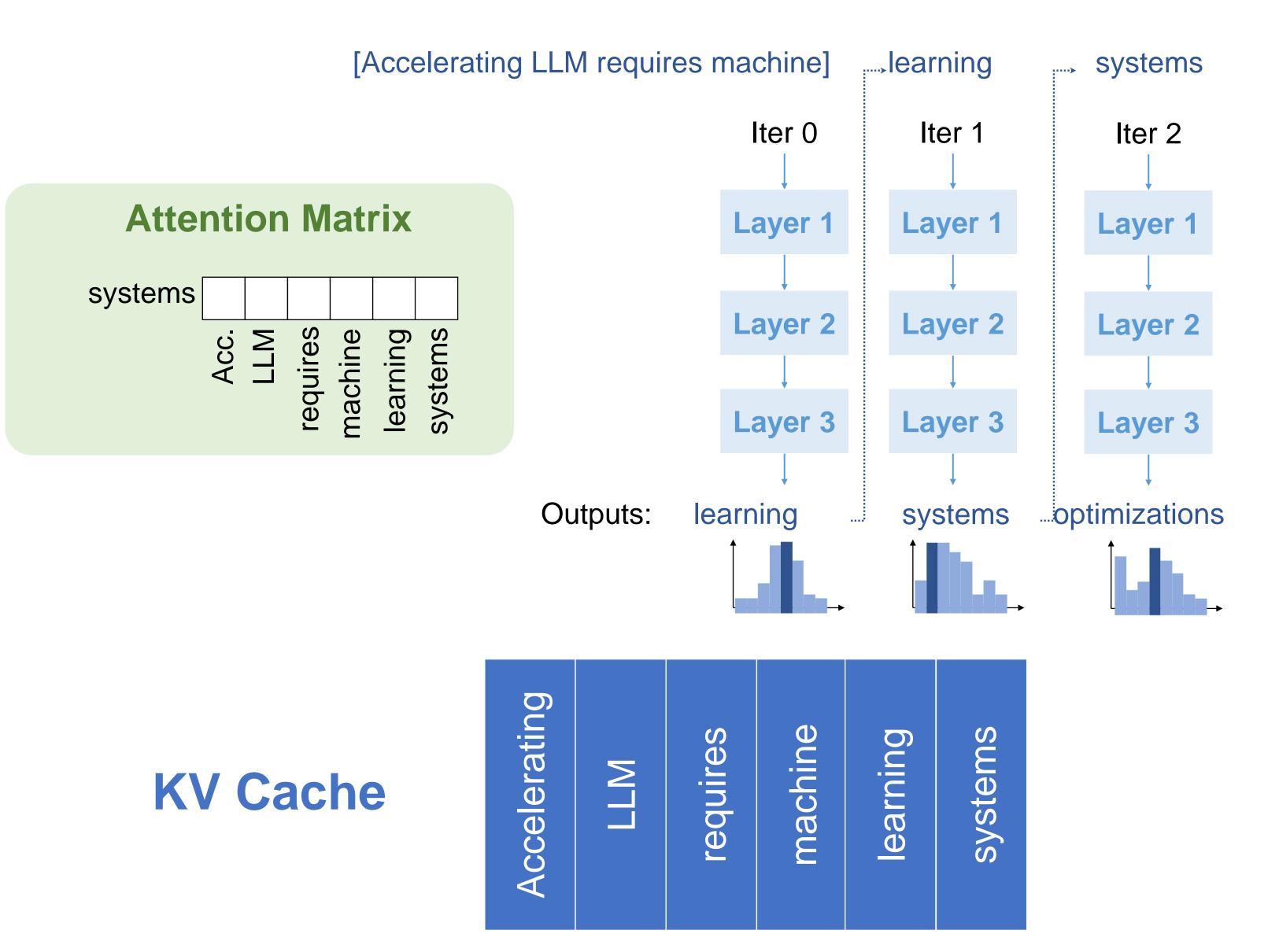
- Flash-Decoding
- PagedAttention

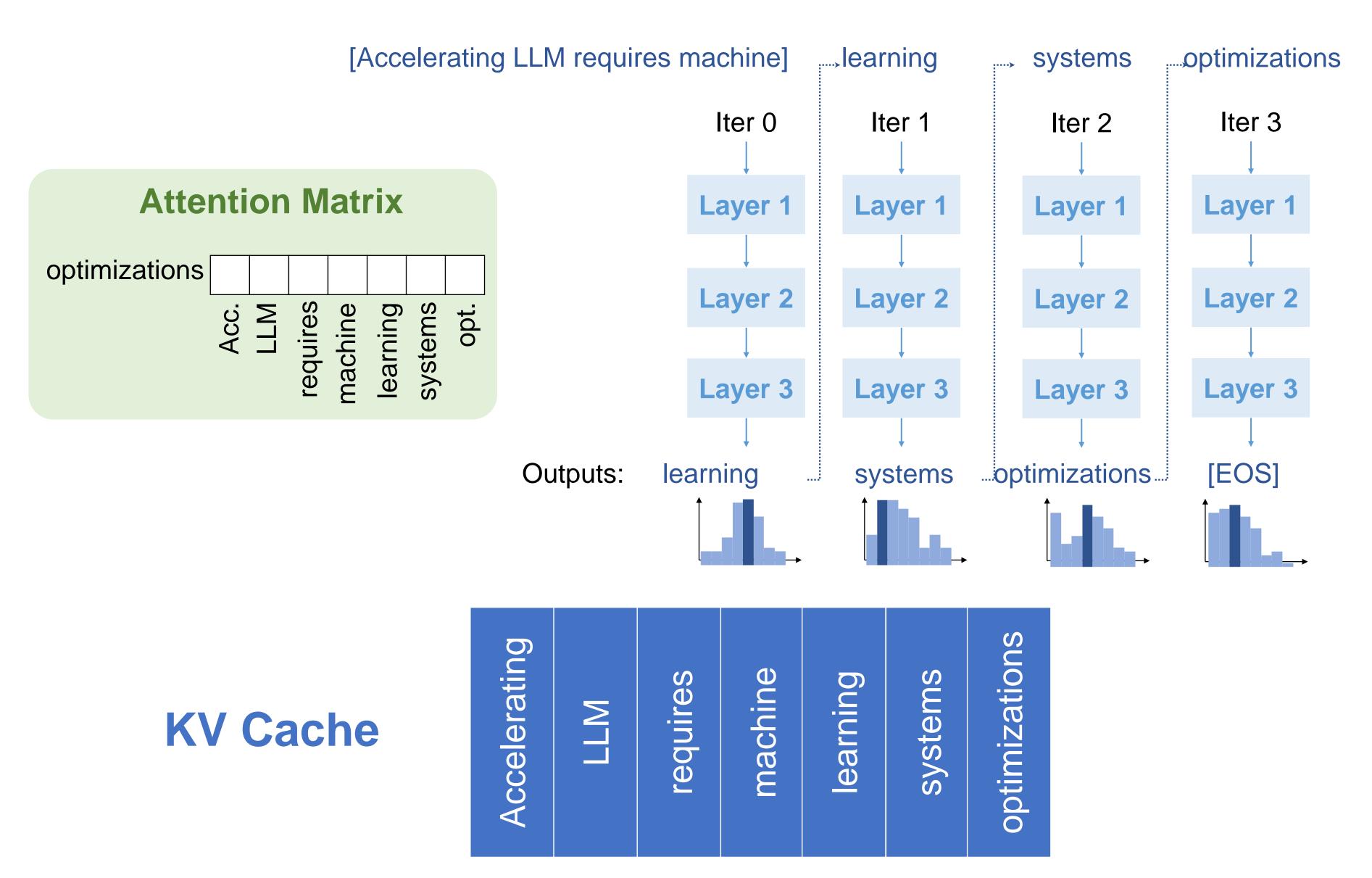
[Accelerating LLM requires machine]



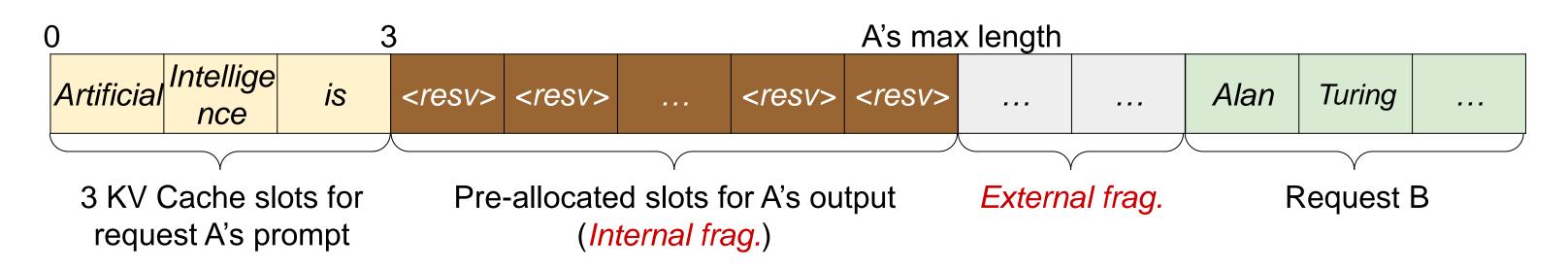


54





Static KV Cache Management Wastes Memory



- length
- Memory fragmentation
 - Internal fragmentation due to unknown output length

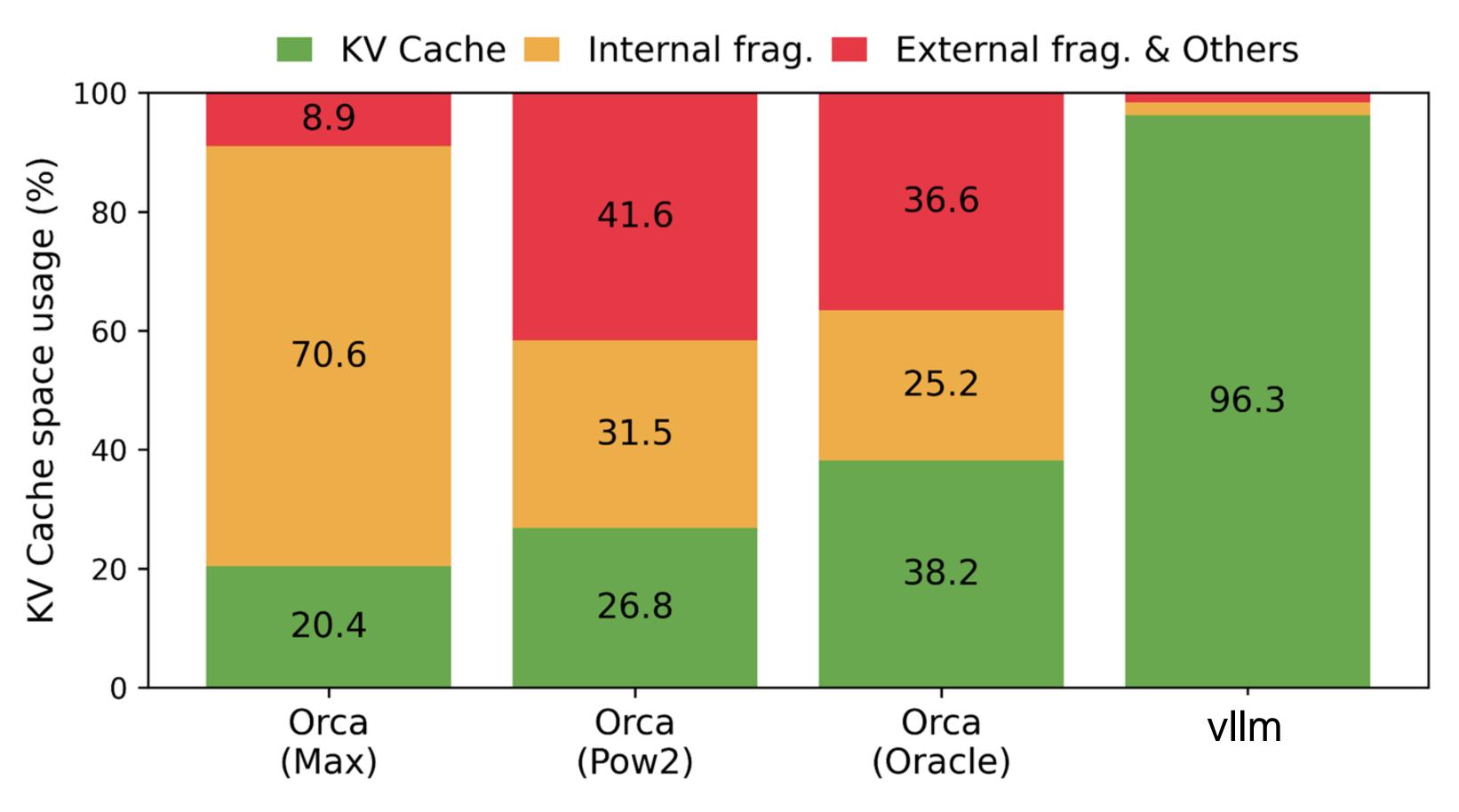
slides from vIIm: Efficient Memory Management for Large Language Model Serving with PagedAttention

Pre-allocates contiguous space of memory to the request's maximum

• External fragmentation due to non-uniform per-request max lengths

Significant Memory Waste in KV Cache

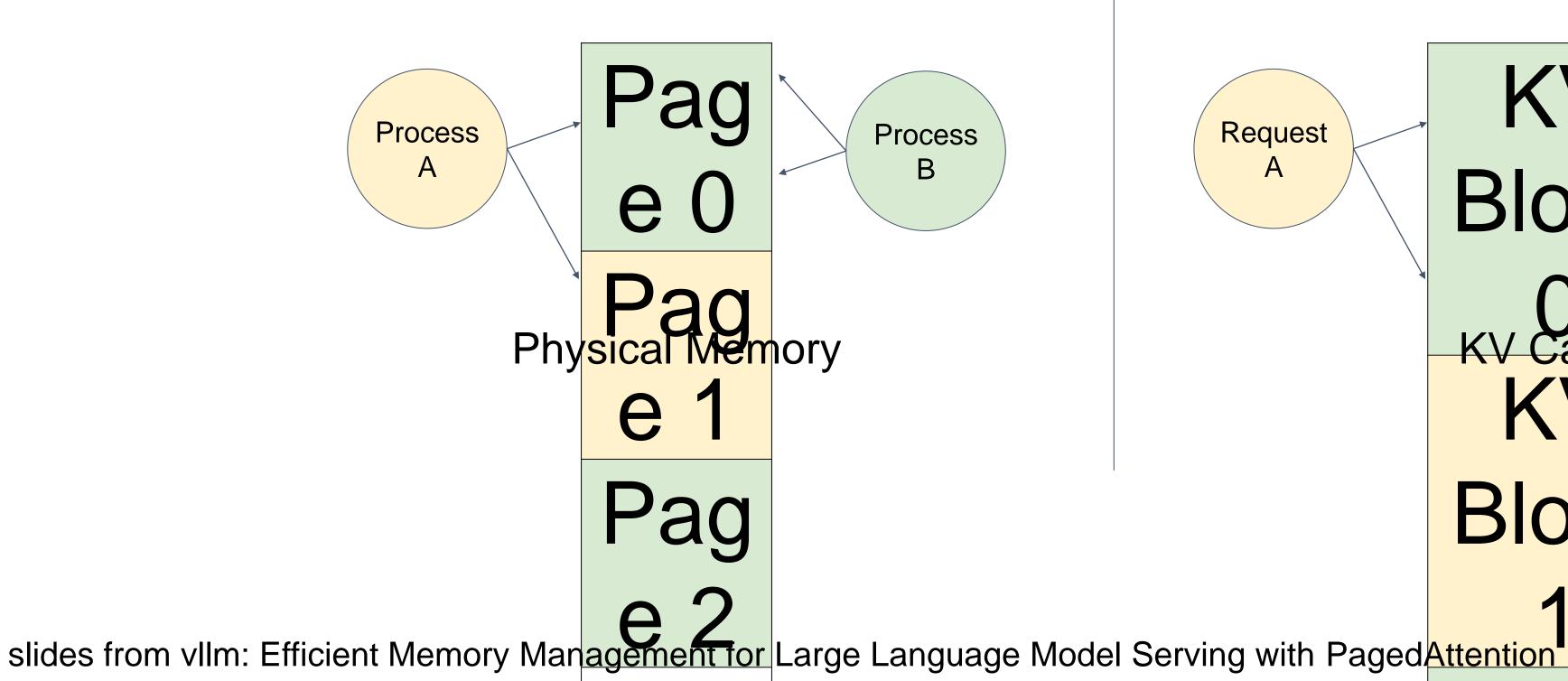
Only 20-40% of KV cache is utilized to store actual token states

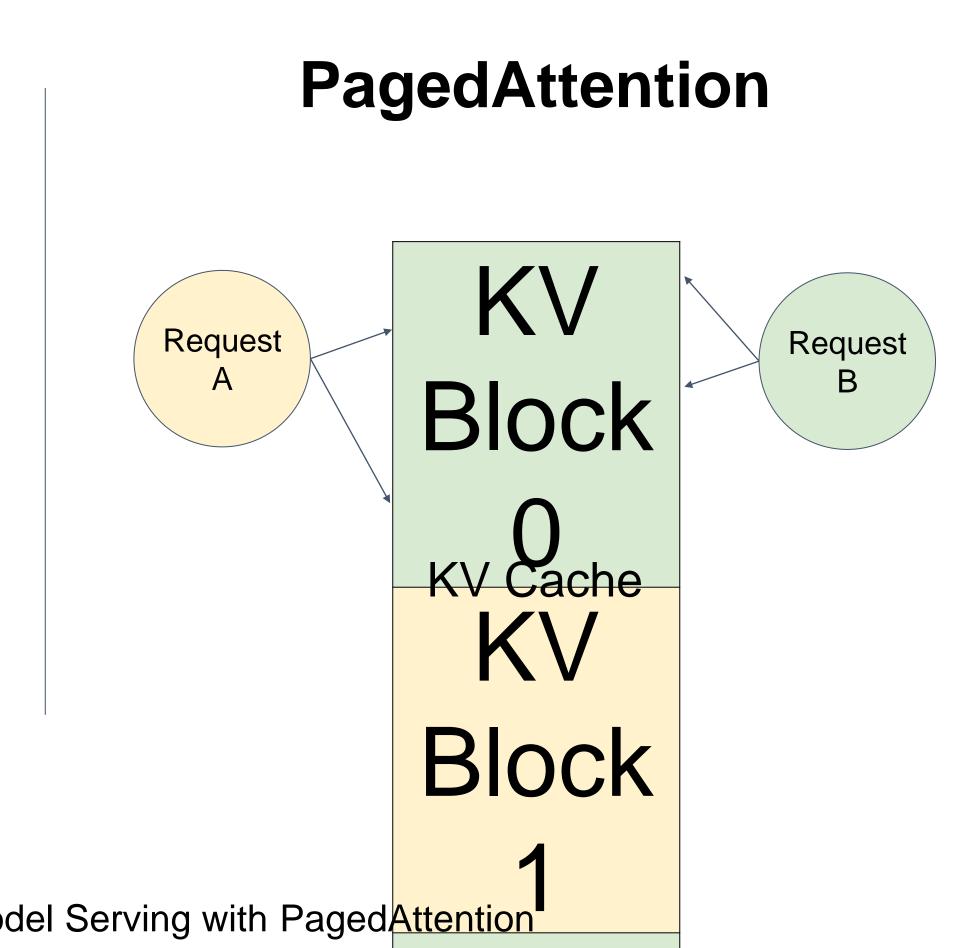


PagedAttention

Application-level memory paging and virtualization for KV cache

Memory management in OS





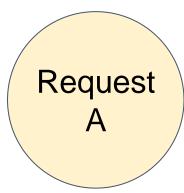
Paging KV Cache Space into KV Blocks*

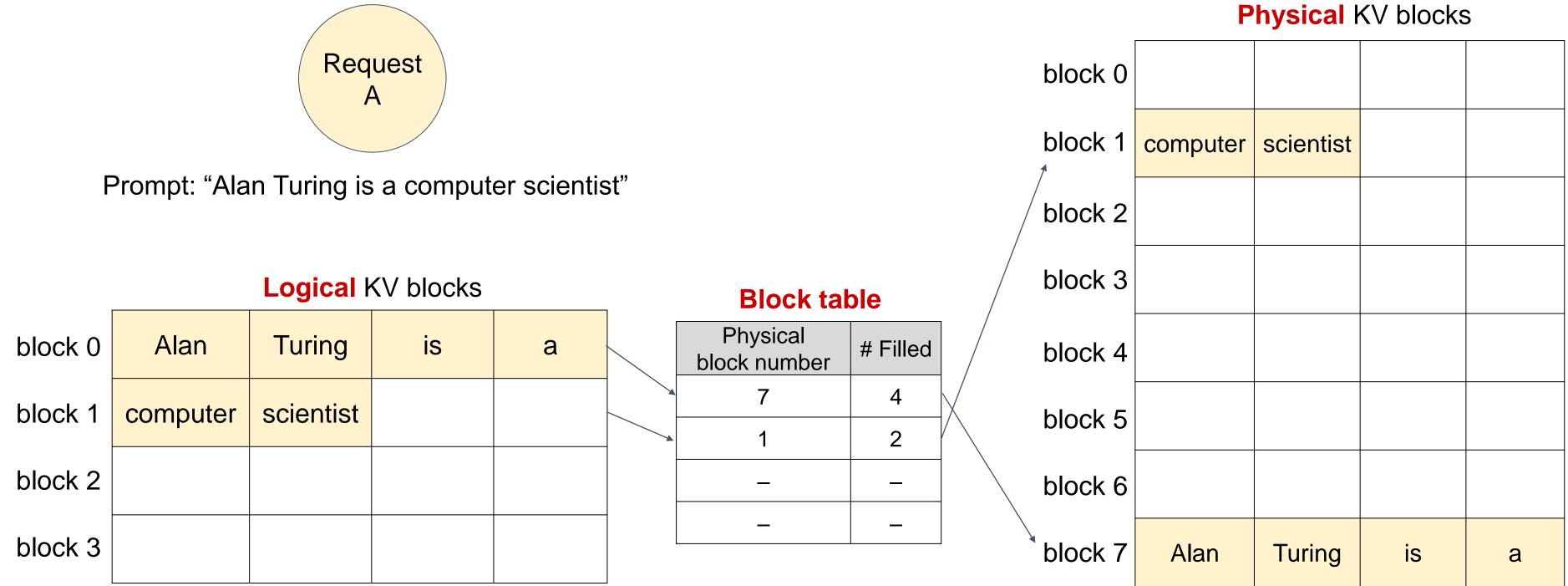
• KV block is a **fixed-size** contiguous chunk of memory that stores KV states from left to right

* The term ``block'' is overloaded in PagedAttention

KV blocks block 0 block 1 block 2 Cache block 3 block 4 Artificial Inte the block 5 block 6 block 7 Block size = 4

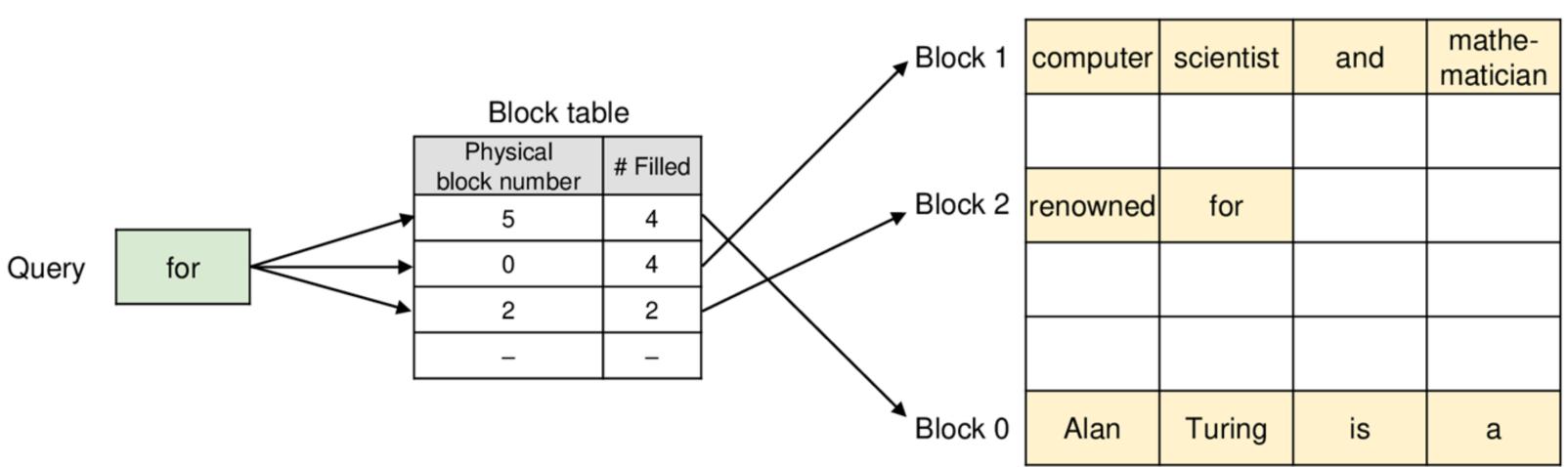
Virtualizing KV Cache





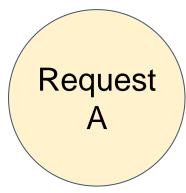
Attention with Virtualized KV Cache

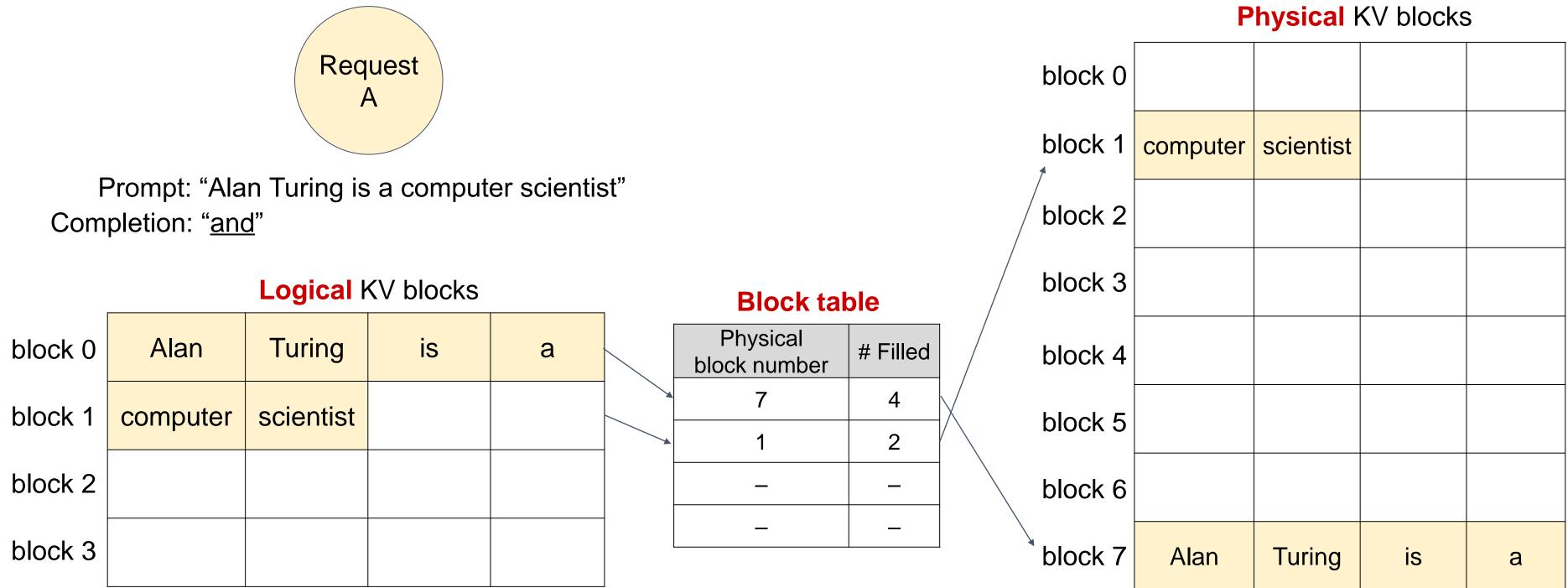
- 1. Fetch non-contiguous KV blocks using the block table
- 2. Apply attention on the fly

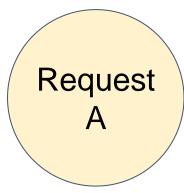


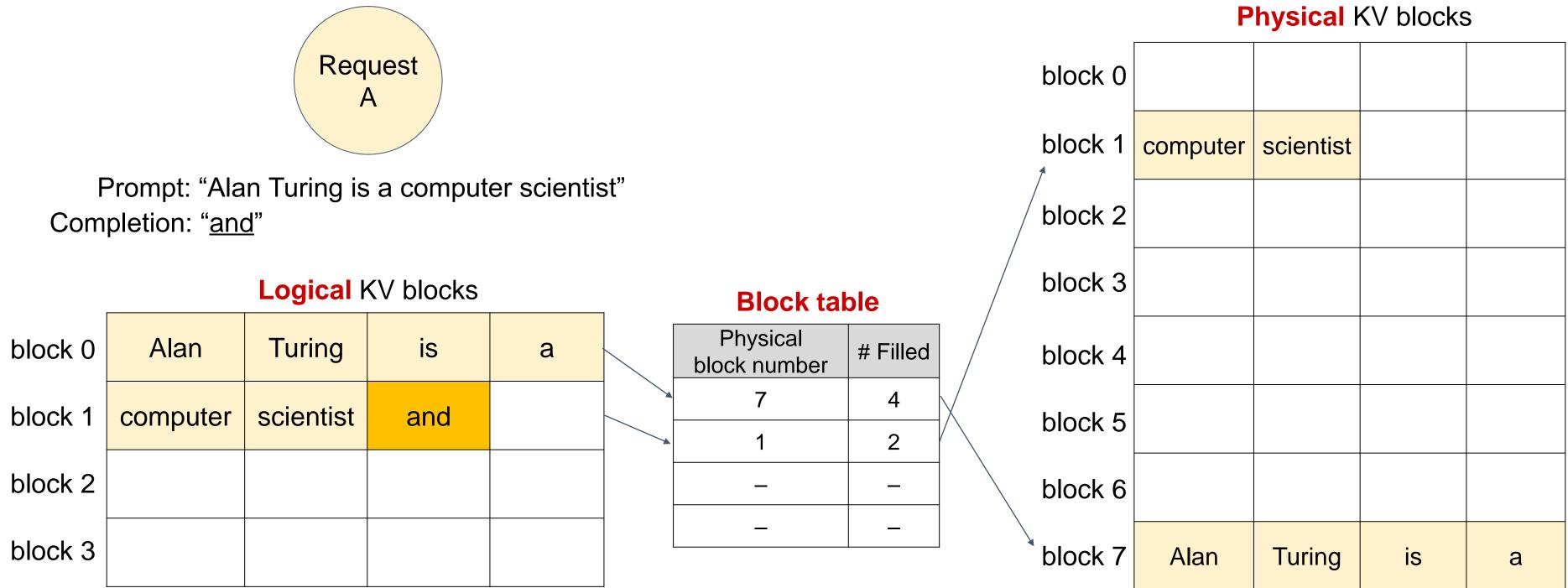
Key insight: attention is associative and commutative

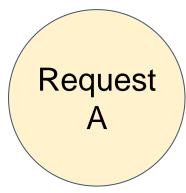
KV Cache

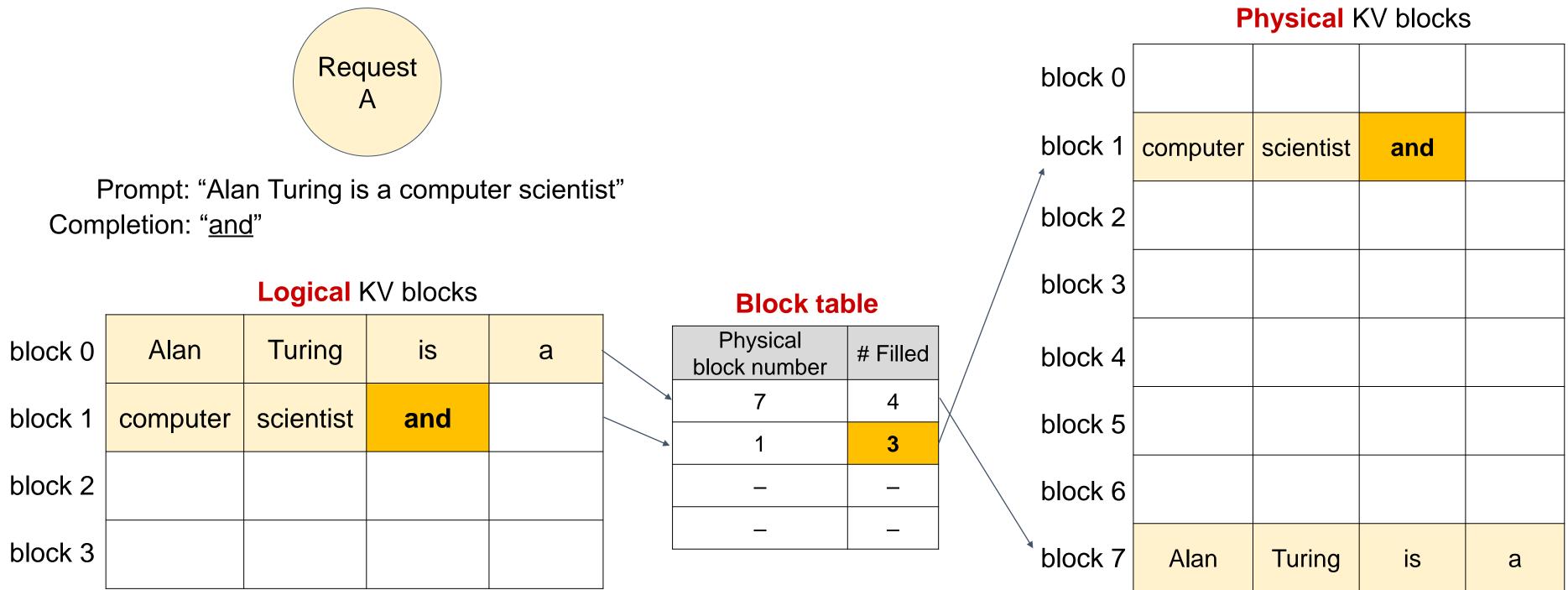


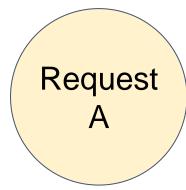


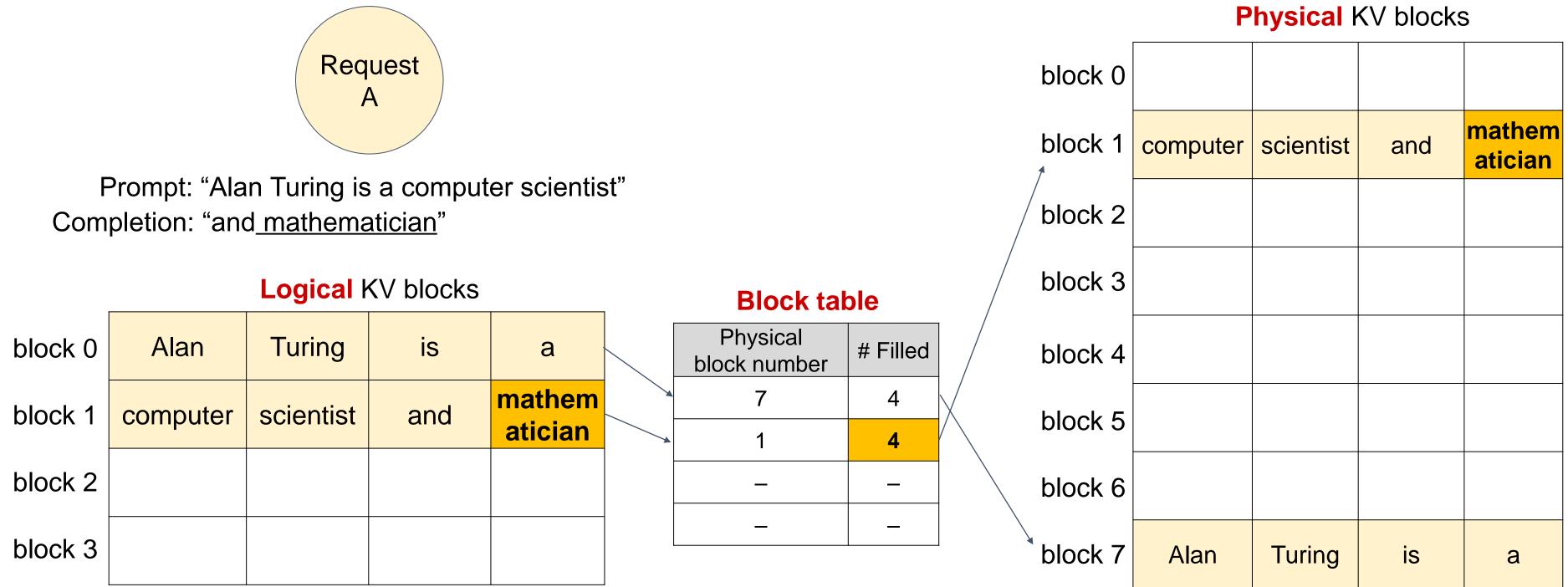


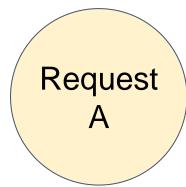


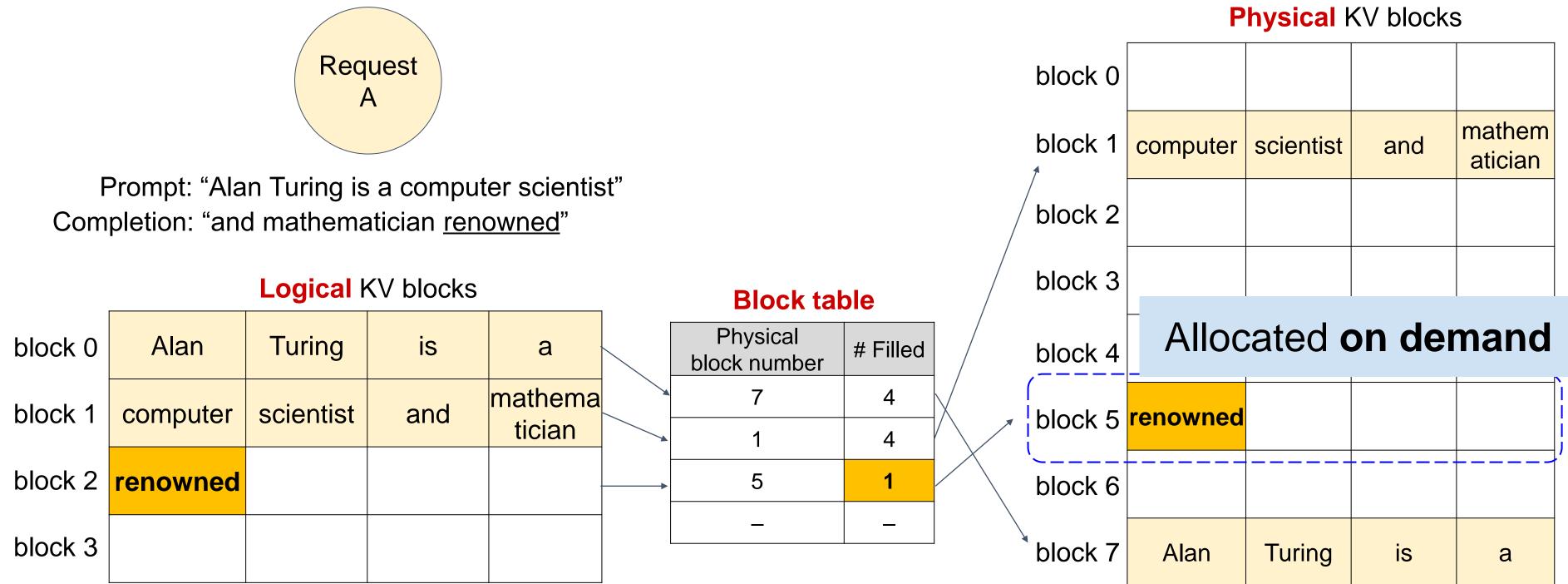










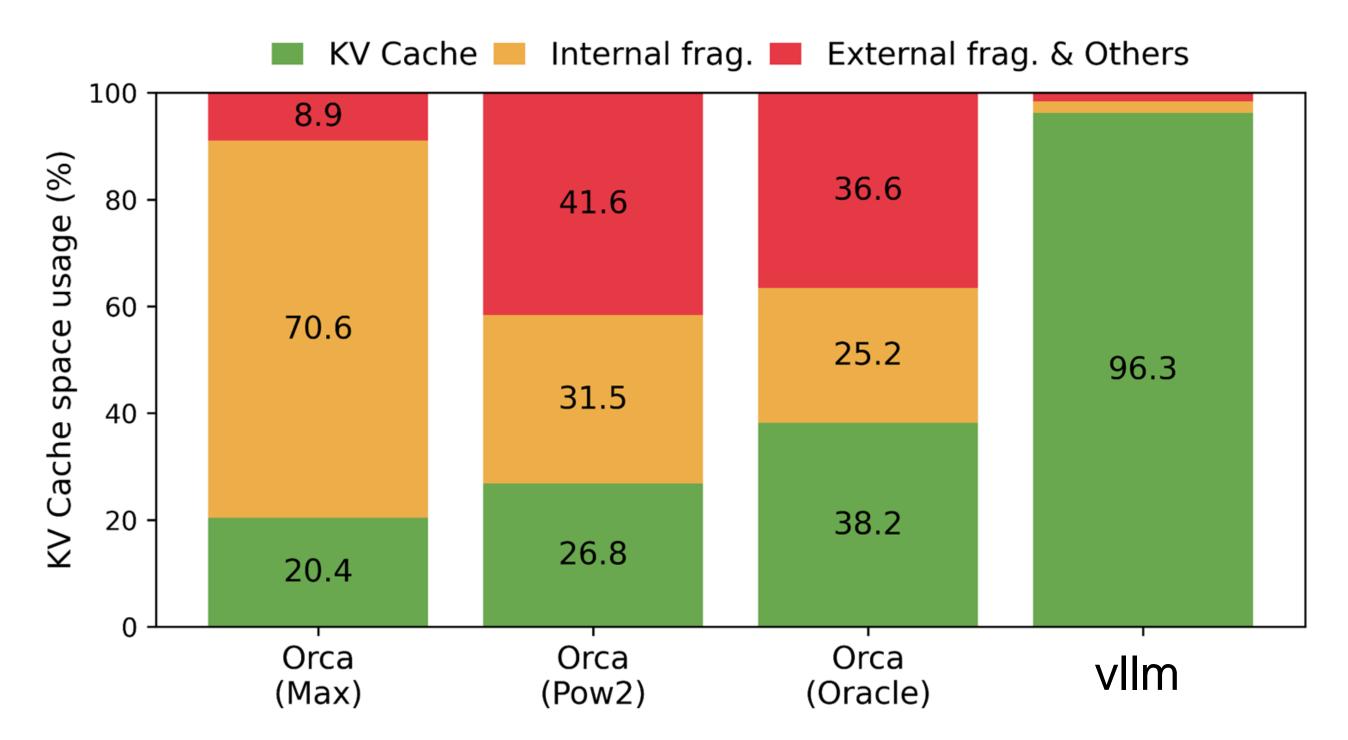


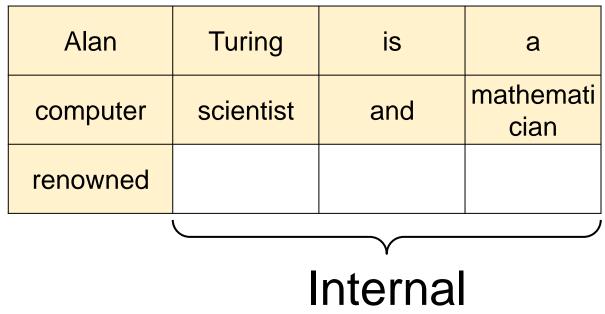
Memory Efficiency of PagedAttention

Minimal internal fragmentation

- Only happens at the last block of a sequence
- # wasted tokens / seq < block size

No external fragmentation





fragmentation

A few Important Problems (will be HW3)

- How to estimate the number of parameters of an LLM?
 - Embedding: position + word
 - Transformers layers:
 - attention Wq,Wk,Wv
 - MLP: up project, down project
 - Layernorm parameters
- How to estimate the flops needed to train an LLM?

• How to estimate the memory needed to train a transformer?