@ https://hao-ai-lab.github.io/dsc291-524/

DSC 291: ML Systems
Spring 2024

LLMs

Parallelization
Single-device Optimization

Basics

Course Evaluation

® Course evaluation is sent out
* May 27 at 12:00 AM and Saturday, June 8
* We are 47.62% now --- need to reach 80% to get 2 points

Where We Are: LLMS

®* Transformers and Attentions
* LLM Training Optimizations
* Flash aftention
* 3D parallelism
* [LM Inference and Serving
* Continuous batching
* Paged attention
* Speculative decoding
® Scaling Laws

INnference process of LLMs

future

of

Layer N

Layer N

Layer 1

Layer 1

Output the
Layer N
Layer 1
—Hlr—
Input Artificial Intelligence s

Repeat until the sequence

the

—r—

future

Reaches Its pre-defined maximum length (e.g., 2048 tokens)

Generates certain tokens (e.g., "<|end of sequence|>")

KV Cache

Output the future
Layer N Layer N
,{ Artificial -0.2 0.1 -1.1 \: the -1.1 0.5
Intelligence | 0.9 0.7 0.2 |
s -0.1 | -0.3 0.1 !

KV Cache Layer 1 Layer 1
[Arificial [01 | 03 | 12 | the [-0.7 | 0.1
'Intelligence | 0.7 -0.4 0.8 |
s 0.2 -0.1 1.1 |

Input Artificial Intelligence is the

Output

Input

KV Cache

KV Cache

- — —

/ Artificial | -0.2 0.1 1.1
Intelligence| 0.9 0.7 0.2
IS -0.1 -0.3 0.1

the -1.1 0.5 0.4

Artificial -0.1 0.3 1.2
Intelligence| 0.7 -0.4 0.8
\ IS 0.2 -0.1 1.1

I
|
I
I
I
|
I
I
I
|
I
I
I
|
I
I
I
|
I
I
I
\

________________________/

— — — — — — — e E— T T —— E—— E—— E—— E—— E—— E— — —

future

future

of

Layer N

0.1

2.1

0.5

Layerl

0.0

0.9

——

future

KV Cache

* Memory space to store infermediate vector representations of tokens

®* Working set rather than a “cache”

* The size of KV Cache dynamically grows and shrinks

* A new token is appended in each step

* Tokens are deleted once the sequence finishes

KV Cache

' &
Artificial

Intelligence
is
the

Artificial

Intelligence
is

b !
~ the

-0.2 0.1 -1.1
0.9 0.7 0.2
-0.1 -0.3 0.1
-1.1 0.5 0.4
-0.1 0.3 1.2
0.7 -0.4 0.8
0.2 -0.1 1.1
-0.7 0.1 -0.2

of

—

Layer N
o

\ future| 0.1 21 0.5

Al_aer 1
[

future| -0.6 0.0 0.9

—

future

Key Insight

Efficient management of KV cache is crucial for high-throughput

LLM serving
. Existing systems — VLLM
m
S
O,
@)
®
KV Cache =
Parameters (13GB, 33%) g
(26GB, 65%) =
= Param. 38 4IO |
size Batch size (# requests)

Others

13B LLM on A100-40GB

Key Insight

Efficient management of KV cache is crucial for high-throughput

LLM serving -
. Existing systems — vLLM
o
D
O)
Qv
KV Cache =
Parameters (13GB, 33%) g
(26GB, 65%) =
=
. 32 ““
h
Others é@‘
o) U
13B LLM on A100-40GB > ©
<= 0.8

Batch size (# requests)

Memory waste In KV Cache

2 slots for 3 slots future used External
generated tokens (reserved) fragmentation
N A N
4 N 4)
Artificial Intellige IS the | future of {EChno! <e0S> <resv> ... <resv> S LLM IS
nce ogy
N 7 N
g [g g
3 token states for 2040 slots never used Request B

Request A

request A’s prompt current step

(internal fragmentation)

® Reservation: not used at the current step, but used In the future
* Internal fragmentation: over-allocated due to the unknown

output length.

Memory waste In KV Cache

. Internal External
B Token states ™ Reservation 8 fragmentation fragmentation

AlDD 30

2

< 4. 36.6

()]

o

P

2 60-

(b

e

O 40 -

®

@

> 20 -

A’

D' I

Orca Orca Orca ours
(Max) (Pow2) (Oracle)

Only 20-40% of KV cache is utilized to store token states

*Yu, G. 1., Jeong, J. S., Kim, G. W., Kim, S., Chun, B. G. “Orca: A Distributed Serving System for Transformer-Based
Generative Models” (OSDI 22).

VLLM: Efficient memory management for LLM inference

Inspired by virtual memory and paging

Memory management in OS Memory management in vLLM
Page O Token Block O
Process Page 1 Process Request Token Block 1 Request
A Page 2 B A Token Block 2 B
Page 3 Token Block 3
Page 4 Token Block 4
Physical Memory KV Cache

Token block

* A fixed-size configuous chunk of
memory that can store token states

from left to right

block O

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Token blocks
(KV Cache)

KV C

~

Block size

Token block

* A fixed-size configuous chunk of memory that can store token

Token blocks

states from left to right (KV Cache)
block O
block 1
block 2
Block 4 block 3
Artificial | -0.2 0.1 1.1 | 4= o0k 4
Intelligence| 0.9 0.7 0.2
i 0.1 0.3 0.1 block 5| Artificial |Intelligence 1S the
the 1.1 0.5 0.4
\) block 6
Y
820 KB / token
(LLaMA-13B) block 7
N
-
Block size = 4

Paged Attention

* An atftention algorithm that allows for storing continuous keys

and values In non-contiguous memaory space

Key and value vectors

mathe-

Block 1 |computer| scientist and .
matician

Block 2 |renowned for
Query

vector

for

Block 0 | Alan Turing IS a

block O

block 1

block 2

block 3

Logical & physical token blocks

Prompt: “Alan Turing is a computer scientist”

Request
A

_ogical token blocks
Alan Turing IS
computer | scientist

block O

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Physical token blocks
(KV Cache)

Logical & physical token blocks

Physical token blocks
(KV Cache)

Re%eﬂ block O

block 1 | computer | scientist

Prompt: “Alan Turing is a computer scientist”

block 2

_ogical token blocks Block table block 3

block O Alan Turing IS a \ blozﬂyriﬁ)er # Filled block 4
7 4

block 1 | computer | scientist block 5
T 1 2

block 2 — — block 6

block 3 block 7| Alan Turing IS

Logical & physical token blocks

Physical token blocks
(KV Cache)

Re%eﬂ block O

block 1 | computer | scientist

Prompt: “Alan Turing is a computer scientist”

Completion: “and” block 2
_ogical token blocks Block table block 3
block 0| Alan Turing is a \ blozﬂyriﬁéer # Filled block 4
S 7 4
block 1 | computer | scientist ~_) 2 block 5
block 2 - - block 6
block 3 - : block 7| Alan Turing IS

Logical & physical token blocks

Physical token blocks
(KV Cache)

Re%eﬂ block O

block 1 | computer | scientist

Prompt: “Alan Turing is a computer scientist”

Completion: “and” block 2
_ogical token blocks Block table block 3
block 0| Alan Turing is a \ blozﬂyriﬁéer # Filled block 4
S 7 4
block 1 | computer | scientist and ~_) » block 5
block 2 - - block 6
block 3 - : block 7| Alan Turing IS

Logical & physical token blocks

Physical token blocks
(KV Cache)

Request block O

A
block 1| computer scientist-

Prompt: “Alan Turing is a computer scientist”
Completion: “and’ block 2
_ogical token blocks Block table block 3
: : Physical .
block O Alan Turing IS a \ block number | Filled block 4
7 4
block 1 | computer | scientist - block 5
T 1 3
block 2 —~ - block 6
block 3 block 7| Alan Turing IS

block O

block 1

block 2

block 3

Logical & physical token blocks

Request
A

Prompt: “Alan Turing is a computer scientist”
Completion: “and mathematician”

_ogical token blocks
Alan Turing IS a
L mathema
computer | scientist and .
tician

RN
.

Block table
Physical .
block number # IFIIEE
7 4
1 4

block O

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Physical token blocks

(KV Cache)
L mathem
computer | scientist| and -
atician
Alan Turing IS a

Logical & physical token blocks

Physical token blocks
(KV Cache)

Re@kleﬂ block 0

L hem
block 1| computer | scientist| and mathe
atician

Prompt: “Alan Turing is a computer scientist”

Completion: “and mathematician renowned” block 2
_ogical token blocks Block table block 3
. . Physical . Allocated on demand
block 0 | Alan Turing IS a \ block number | Filled / block4|
block 1 | computer | scientist and mathema ! : : d
o fian \ X p :block 5 |renowne
block 2 [renowned 5 1 block 6
block 3 block 7| Alan Turing IS a

\————_

Serving multiple requests

Physical token blocks

(KV Cache)
Block Table Block Table
Request computer | scientist| and mathem Request
A atician B
Logical token blocks Artificial Intneclllege IS the Logical token blocks
Alan Turing IS a Artificial |Intelligence IS the
computer | scientist and ma_thema - future of -
tician

Alan

Memory efficiency of vLLM

* Minimal infernal fragmentation
* Only happens at the last block of a sequence
* # wasted tokens / seq < block size

®* Segquence: O(100) — O(1000) tokens

® Block size: 16 or 32 tokens

. Alan Turing IS a
®* No external fragmentation e
computer scientist and cian
renowned
N J
Y

Internal fragmentation

E.g.) Parallel sampling

Dynamic block mapping enables sharing

g bright and poised for further
growth and transformation.

-

The future of cloud
computing Is

__
Shared btw. sequences

Prompt

LLM

_Here's why: ...

" intertwined with the

advancement of artificial

_intelligence (Al). ...

p
likely to be characterized by

several key trends: ...
N

Multiple outputs

Sharing token blocks

Physical token blocks

(KV Cache)
Block Table
Sequence The future of cloud
A /
Ref count: 2
_ogical token blocks / . .
computing IS
The future of cloud

computing

1S

Block Table

_ogical token blocks

Sequence

B

The

future

of

cloud

computing

IS

Sharing token blocks

Physical token blocks

Block Table

Logical token blocks

Sequence

B

The

future

(KV Cache)
Block Table
Sequence The | future of cloud

A /

Ref count: 2 — 1

Logical token blocks / . .
f computing IS

The future of cloud /

Copy-on-Write

computing IS

\

computing

of

cloud

Sharing token blocks

Physical token blocks

Block Table

Logical token blocks

Sequence

B

The

future

(KV Cache)
Block Table
Sequence The | future of cloud

A /

Ref count: 1

Logical token blocks / . .
f computing IS

The future of cloud /

Copy-on-Write
computing IS \

computing

computing

of

cloud

Sharing token blocks

Block Table
Seqguence
A
Logical token blocks
The future of cloud
computing IS

/

Physical token blocks

Block Table

Logical token blocks

Sequence

B

The

future

computing

(KV Cache)
The future of cloud
computing IS
computing IS

of

cloud

Sharing token blocks

Physical token blocks

(KV Cache)
Block Table Block Table
Sequence The | future of | cloud Sequence
A B
Logical token blocks computing| is i”tef;W‘”e- Logical token blocks
The future of cloud The future of cloud

computing IS bright -\ computing IS intertwined-
computing 1S bright -

Can We Apply FlashAttention to LLM Inference?

Attention Comp. Attention Comp

Acc. .
learning

LLM
. = g2gQ
requires g = = £ 2
machine o S &
Y c o
53 o 2
< O 5 %
S
Pre-filling phase: Decoding phase:
* Yes, compute different queries * No, there Is a single query In the

using different thread blocks/warps decoding phase

Summary: Autoregressive Decoding

(O-th iteration):
* Process all input tokens at once

(all other Iterations):
* Process a single token generated from previous Iteration
» Use attention keys & values of all previous tokens

32

Serving vs. Inference

Serving: many reguests, online Inference: fewer request, low
traffic, emphasize cost-per-query or offline traffic, emphasize
latency

INnference process of LLMs

future

of

Layer N

Layer N

Layer 1

Layer 1

Output the
Layer N
Layer 1
—Hlr—
Input Artificial Intelligence s

Repeat until the sequence

the

—r—

future

Reaches Its pre-defined maximum length (e.g., 2048 tokens)

Generates certain tokens (e.g., "<|end of sequence|>")

The Problem is harder than Thought

Even it only one request (and the system is not busy), we still

cannot do better

Latency = step latency * # steps

Can we do better?

Inference: fewer request

Why we cannot do better

Why we cannot do better: bottleneck

[Accelerating LLM requires machine] ...learning -- Systems _.optimizations
lterations: 0 1 5 3
Transformer Layer 1 Compute fil:
ARy Resources™ =¥
Memory
‘grransforme?r Layer 96 sandwidth*

T 7

Outputs: learning .. systems ...bptimizations...ﬁ [EOS]

Lo e e

 Limited degree of parallelism — underutilized GPU resources

* Need all parameters to decode a token — bottlenecked by GPU memory access

* Measured by serving LLAMA-2-70B on 4 A100 GPUs with 4K sequence length

Tradeoffs between Different Language Models

TriviaQA 71.2 57.5 42.3 26.5 6.96
PIQA 82.3 79.9 75.4 72.0 64.3
SQUAD 64.9 62.6 50.0 39.2 27.5
latency 20 s 7.6S 2.7S 1.1s 0.3s
A100s 10 1 1 1 1

Comparing multiple GPT-3 models*

Large models Small models

l‘ Pro: better generative performance I‘Pro: cheap and fast

|’ Con: slow and expensive to serve |’Con: less accurate

* Language Models are Few-Shot Learners. Arxiv. 2005.14165

Speculative Decoding

1. Use a small speculative model (SSM) to predict the LLM’s output
 SSM runs much faster than LLM

[Accelerating LLM

requires machine] learning systems
/4\\// \\// ‘\:/,
Small Speculativ
- Model
- /
NV N N
learning | systems | design

Speculation

Speculative Decoding

1. Use a small speculative model (SSM) to predict the LLM’s output
 SSM runs much faster than LLM

2. Use the LLM to verify the SSM's prediction

[Accelerating LLM [Accelerate LLM requires machine | learning systems design
requires machme] """ > learning {7 " systems e ooy
s T I e T Y (T o e et N A
i O i i l i iz i \\\\\\\\\\\\\\
N g)
Small Speculatlve Large Language Model
I\/Iodel
A A - ~
learning systems design V V U V \/ % 4
LLM novel learning systems optimization principles

Speculation Verification

Verifying Speculative Decoding Results

v Vv

Input Prompt [Accelerate LLM requires machine] learning systems design SSM Predictions

""

_

\\
~
~
\\
~ L e
\\,/

Large Language Model

LLM Outputs:

v
K) K) K) VY,

\,\z

o S o) =
@a@‘(\ N e\@‘“ \\@1‘3‘ o c,\)\
ov Q

v Vv
I C—

Generate 3 new tokens in one LLM decoding step

$O

41

Verifying Speculative Decoding Results

Input Prompt [Accelerate LLM requires machine] learning systems design SSM Predictions
Large Language Model
LLM Outputs: v (\\0(3 ,@6\5 ,I/@\\OQ Q\69’
. \,\« $0 e N Q\(g\ Q‘\(\G
Key takeaway: v \/

 LLM inference Is bottlenecked by accessing model weights
* using LLM to decode multiple tokens to improve GPU utilization

43

A few questions

1. Can speculative decoding guarantee speedup and why?

2. When will speculative decoding bring speedup and when not?
3. Choice of draft model

44

Verification Algorithm

* Greedy Decoding: we already covered
* How about non-greedy decodinge

* How about verifying multiple candidates

Can we overcome autoregressive decodinge

* Self-speculative decoding

* Token-tree veritication

* Medusa/Eagle: multi-head prediction
* Jacobl decoding

* L[ookahead decoding

Rethink Autoregressive Decoding

Autoregressive Decoding (Greedy):. decoding m tokens

yi = argmax pg(¥i | ¥1:4i-1,X)

A4
y1 = arg max pg(y1 | X)
y2 = argmax pg(y2 | Y1, X)

Ym = arg max po(Ym | Yi:m—1,X)

Rethink Autoregressive Decoding

x: prompt, ¥y = [v41, V2, ..., Vim|: m tokens to decode, p(y|x): LLM distribution

Define: f(y;:. yl:i—lﬁx) = Yi — darghax p(yilyl:i—l-'x)

y; = argmax p(y;|x) f(y,x) =0
yz =argmaxp(y2‘y1;x) E } f(yZIy]_Jx) =0
VYm = argmax p(Ym|¥1.m-1, X) f Vo> YV1im-1,%X) =0

Non-linear system with
m variables and m equations

Autoregressive decoding

One alternative: Jacobl Decoding

Algorithm 1 Jacobi decoding

1: Input: prompt x°, model p,,, generation length m
2: Initialize y° = (37,95, ...,y)
3: Initialize y°“"P%" < ()
4: forz =1tomdo
: i 7 1—1 0
X Yiim argmax (Par (Y., [Y1m: X))
6: O+ Yy’
7: stop <~STOPCONDITION(y*,y*~ 1)
8: 1f stop then
9: break
10: endif
11: end for
12: Output: o = (ylj Y2,y eees ?Jm)

Jacobl Decoding lllustrated

| Prefill Tokens | | Guess Tokens [| Accepted Tokens

Alan Turing | who | is | the | he just

Total Steps: O
Total Accepted Tokens: O

What are the trade-offs in Jacobl decodinge

Where We Are: LLMS

* Transformers and Attentions
* LLM Training Optimizations
* Flash attention
* 3D parallelism
* LLM Inference and Serving
* Confinuous batching
* Paged attention
®* Speculative decoding
* Scaling Laws
®* Long context

Recall A few Important Problems (will be HW3)

* How to estimate the number of parameters of an LLM?¢
* How to estimate the flops needed to train an LLM®e

* How to estimate the memory needed to frain a fransformere

Moftivation of Scaling Laws

* We have locked on fransformers-based LLMs

* Assuming you know the answers of the previous 3 Qs

* Gliven a model architecture with

params, we kKnow

amount of memory given a model size

* We want 1o know:

* how large a model should we frain...

* How many data should we use...

®* To achieve a given performance...

® Subject to a compute budgete

flops,

How do we do that In fraditional ML: data scaling law

g)
Input: x; ..x, ~ N(u,0o%)
Task: estimate the average as i = Z;xi
e * Can we do this for
What's the error? By standard arguments. transformers LLMs?

0.2

E[(fi —w)?] =—

n

This is a scaling law!!
log(Error) = —logn + 2logo

More generally, any polynomial rate 1/n% is a scaling law

Model Scaling Laws

®* Problem: How can we efficiently design huge LLMs®e
® | STMs vs transtormers
* Adam vs SGD

* Problem: how should we allocate our limited resources:
®* Train models longer vs train bigger modelse

®* Collect more data vs get more GPUs<

Transtormers vs LSTMS

® Q: Are fransformers better than LSTMs?¢

®* Brute force way: spend tens of millions to train a LSTM GPT-3

* Scaling law way:

Test Loss 5.41
4.8 -
4.2 1 /. LSTMs
3.6 -
1 Layer
2 Layers
3.0 Transformers 4 Layers
2.4

105 106 107 108 10°
Parameters (non-embedding) [Kapla n+ 2021]

Number of Layers

®* Does depth or width make a huge differencee
* | vs 2layers makes a huge difference. « More layers have

diminishing returns below 107 params

7.
6.

5 .

S

—e— 1 Layer e,

—e— 2 Layers \,\

| —e— 3 Layers \
6 Layers |
> 6 Layers

Test Loss

o8

10° 1.6* 10° 10° 107 108 10°
Parameters (non-embedding)

The Scaling law way

* Approach:
* Train a few smaller models
® Establish a scaling law (LSTM vs. transtormers)
* Select optimal hyperparam based on the scaling law prediction.

* Rationale
* The effect of hyperparameters on big LMs can be predicted before
fraining!
* Optimizer choice
* Model Depth
®* Arechitecture choice

Back 1o our problem:

* how large a model should we frain...
* How many data should we use...

®* To achieve a given performance...
® Subject to a compute budgete

* Approach: model size data joint scaling

Loss vs Model and Dataset Size

Model size data joint scaling R (T
* Do we need more data or bigger model 3

107 10" 10¢ 10

. Tokens in Dataset
* Clearly, lofs of data is wasted on small models

* Joint data-model scaling laws describe ho the two relate

From Rosenfeld+ 2020,
Error=n"%+m P +C

From Kaplan+ 2021
Error = [m~% + n~1]¥

Provides surprisingly good fits to model-data joint error.

Compute Trade-offs

* Q: what about other resourcese Compute vs. performancee

®* For a fixed compute budget...
®* Big models that's undertrained vs small model that's well
frainede

® Solving the following optimization?

Nopr(c): Dopt(c) — argmin L(N: D)-
N,D s.t. FLOPs(N,D)=C

Approach: empirical scaling law

-10B 1T
1012

-2.5B 100B ¢78

1011

-
o
o

-500M

-
. a®
-250M]
50 . ‘:?r
1.0B /
-75M o &
o

100M

Parameters
Tokens

1010

-

100 .~

1.5T

101? 1018 1019 102D 1021 1022 101? 1019 1021 1023 1025 101? 1019 1021 1023 1025

FLOPS FLOPs

Figure 2 | Training curve envelope. On the left we show all of our

FLOPs

different runs. We launched a

range of model sizes going from 70M to 10B, each for four different cosine cycle lengths. From these
curves, we extracted the envelope of minimal loss per FLOP, and we used these points to estimate the

imal number of training tokens

optimal model size (center) for a given compute budget and the opt:

(right). In green, we show projections of optimal model size and training token count based on the

number of FLOPs used to train Gopher (5.76 x 10%3).

FiInal Remarks

* Scaling law: the physics behind LLMs

* Scaling law also represents a research approach fransition:
* Stats and theoretical analysis -> empirical laws
* Exploration of different model architectures -> Scaling
franstformers

* ML systems become essential

Recall A few Important Problems (will be HW3)

* How to estimate the number of parameters of an LLM?¢
* How to estimate the flops needed to train an LLM®e

* How to estimate the memory needed to frain a fransformere

* We will give you a scaling law and compute budget

® Task: design your optimal LLM

	幻灯片 1: DSC 291: ML Systems Spring 2024
	幻灯片 2: Course Evaluation
	幻灯片 3: Where We Are: LLMs
	幻灯片 4: Inference process of LLMs
	幻灯片 5: KV Cache
	幻灯片 6: KV Cache
	幻灯片 7: KV Cache
	幻灯片 8: Key insight
	幻灯片 9: Key insight
	幻灯片 10: Memory waste in KV Cache
	幻灯片 11: Memory waste in KV Cache
	幻灯片 12: vLLM: Efficient memory management for LLM inference
	幻灯片 13: Token block
	幻灯片 14: Token block
	幻灯片 15: Paged Attention
	幻灯片 16: Logical & physical token blocks
	幻灯片 17: Logical & physical token blocks
	幻灯片 18: Logical & physical token blocks
	幻灯片 19: Logical & physical token blocks
	幻灯片 20: Logical & physical token blocks
	幻灯片 21: Logical & physical token blocks
	幻灯片 22: Logical & physical token blocks
	幻灯片 23: Serving multiple requests
	幻灯片 24: Memory efficiency of vLLM
	幻灯片 25: Dynamic block mapping enables sharing
	幻灯片 26: Sharing token blocks
	幻灯片 27: Sharing token blocks
	幻灯片 28: Sharing token blocks
	幻灯片 29: Sharing token blocks
	幻灯片 30: Sharing token blocks
	幻灯片 31: Can We Apply FlashAttention to LLM Inference?
	幻灯片 32: Summary: Autoregressive Decoding
	幻灯片 33: Serving vs. Inference
	幻灯片 34: Inference process of LLMs
	幻灯片 35: The Problem is harder than Thought
	幻灯片 36: Why we cannot do better
	幻灯片 37: Why we cannot do better: bottleneck
	幻灯片 38: Tradeoffs between Different Language Models
	幻灯片 39: Speculative Decoding
	幻灯片 40: Speculative Decoding
	幻灯片 41: Verifying Speculative Decoding Results
	幻灯片 42: Verifying Speculative Decoding Results
	幻灯片 43: A few questions
	幻灯片 44: Verification Algorithm
	幻灯片 45: Can we overcome autoregressive decoding?
	幻灯片 46: Rethink Autoregressive Decoding
	幻灯片 47: Rethink Autoregressive Decoding
	幻灯片 48: One alternative: Jacobi Decoding
	幻灯片 49: Jacobi Decoding Illustrated
	幻灯片 50: What are the trade-offs in Jacobi decoding?
	幻灯片 51: Where We Are: LLMs
	幻灯片 52: Recall A few Important Problems (will be HW3)
	幻灯片 53: Motivation of Scaling Laws
	幻灯片 54: How do we do that in traditional ML: data scaling law
	幻灯片 55: Model Scaling Laws
	幻灯片 56: Transformers vs LSTMs
	幻灯片 57: Number of Layers
	幻灯片 58: The Scaling law way
	幻灯片 59: Back to our problem:
	幻灯片 60: Model size data joint scaling
	幻灯片 61: Compute Trade-offs
	幻灯片 62: Approach: empirical scaling law
	幻灯片 63: Final Remarks
	幻灯片 64: Recall A few Important Problems (will be HW3)

