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https://hao-ai-lab.github.io/dsc291-s24/

Basics

Single-device Optimization

LLMs

Parallelization



Course Evaluation

• Course evaluation is sent out

• May 27 at 12:00 AM and Saturday, June 8

• We are 47.62% now  --- need to reach 80% to get 2 points
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Where We Are: LLMs

• Transformers and Attentions

• LLM Training Optimizations

• Flash attention

• 3D parallelism

• LLM Inference and Serving

• Continuous batching

• Paged attention

• Speculative decoding

• Scaling Laws
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Inference process of LLMs
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Repeat until the sequence

● Reaches its pre-defined maximum length (e.g., 2048 tokens)

● Generates certain tokens (e.g., “<|end of sequence|>”)



KV Cache
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KV Cache
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KV Cache

• Memory space to store intermediate vector representations of tokens

• Working set rather than a “cache”

• The size of KV Cache dynamically grows and shrinks

• A new token is appended in each step

• Tokens are deleted once the sequence finishes
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Key insight

Efficient management of KV cache is crucial for high-throughput 

LLM serving

13B LLM on A100-40GB

Parameters 

(26GB, 65%)

KV Cache
(13GB, 33%)

Others

40

26

Existing systems vLLM

8 40



9

Key insight

Efficient management of KV cache is crucial for high-throughput 

LLM serving

13B LLM on A100-40GB

Parameters 

(26GB, 65%)

KV Cache
(13GB, 33%)

Others
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Existing systems vLLM
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Memory waste in KV Cache

• Reservation: not used at the current step, but used in the future

• Internal fragmentation: over-allocated due to the unknown 

output length.

Artificial
Intellige

nce
is the future of

technol

ogy
<eos> <resv> … <resv> … …

2040 slots never used 

(internal fragmentation)

3 slots future used

(reserved)

External 

fragmentation

3 token states for 

request A’s prompt
Request A

current step

2 slots for

generated tokens

LLM is …

Request B
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Memory waste in KV Cache

Only 20–40% of KV cache is utilized to store token states

Ours

* Yu, G. I., Jeong, J. S., Kim, G. W., Kim, S., Chun, B. G. “Orca: A Distributed Serving System for Transformer-Based 

Generative Models” (OSDI 22).



vLLM: Efficient memory management for LLM inference

Inspired by virtual memory and paging
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Token block

• A fixed-size contiguous chunk of 

memory that can store token states 

from left to right

Token blocks

(KV Cache)
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Token block

• A fixed-size contiguous chunk of memory that can store token 

states from left to right

Artificial Intelligence is the

Token blocks
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Paged Attention

• An attention algorithm that allows for storing continuous keys 

and values in non-contiguous memory space



1
6

Logical & physical token blocks
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Logical & physical token blocks
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Logical & physical token blocks
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Logical & physical token blocks
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Logical & physical token blocks
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Logical & physical token blocks
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Logical & physical token blocks
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Serving multiple requests
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Memory efficiency of vLLM 

• Minimal internal fragmentation

• Only happens at the last block of a sequence

• # wasted tokens / seq < block size

• Sequence: O(100) – O(1000) tokens

• Block size: 16 or 32 tokens

• No external fragmentation
Alan Turing is a

computer scientist and
mathemati

cian

renowned

Internal fragmentation
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Dynamic block mapping enables sharing

The future of cloud 

computing is
LLM

Prompt

bright and poised for further 

growth and transformation. 

Here's why: …

intertwined with the 

advancement of artificial 

intelligence (AI). …

likely to be characterized by 

several key trends: …

Multiple outputs

Shared btw. sequences

E.g.) Parallel sampling
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Sharing token blocks
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Sharing token blocks
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Sharing token blocks
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Sharing token blocks
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Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Can We Apply FlashAttention to LLM Inference?

Pre-filling phase:

• Yes, compute different queries 
using different thread blocks/warps

Decoding phase:

• No, there is a single query in the 
decoding phase

31
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Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Summary: Autoregressive Decoding

• Pre-filling phase (0-th iteration):

• Process all input tokens at once

• Decoding phase (all other iterations):

• Process a single token generated from previous iteration

• Use attention keys & values of all previous tokens
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Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Serving vs. Inference

Serving: many requests, online 

traffic, emphasize cost-per-query

Inference: fewer request, low 

or offline traffic, emphasize 

latency
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Inference process of LLMs
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Repeat until the sequence

● Reaches its pre-defined maximum length (e.g., 2048 tokens)

● Generates certain tokens (e.g., “<|end of sequence|>”)



The Problem is harder than Thought

Even if only one request (and the system is not busy), we still 

cannot do better

Inference: fewer request

Latency = step latency * # steps 

Can we do better?



Why we cannot do better



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

• Limited degree of parallelism → underutilized GPU resources

• Need all parameters to decode a token → bottlenecked by GPU memory access

37

Why we cannot do better: bottleneck

[Accelerating LLM requires machine] learning systems optimizations

learning systems optimizations [EOS]

Iterations: 0 1 2 3

Outputs:

Transformer Layer 1

Transformer Layer 96

LLM … …

Compute 

Resources*

Memory 

Bandwidth*
76%

2%

* Measured by serving LLAMA-2-70B on 4 A100 GPUs with 4K sequence length



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Tradeoffs between Different Language Models

Large models

Pro: better generative performance

Con: slow and expensive to serve

Small models

Pro: cheap and fast

Con: less accurate 

38

# Parameters 175B 13B 2.7B 760M 125M

TriviaQA 71.2 57.5 42.3 26.5 6.96

PIQA 82.3 79.9 75.4 72.0 64.3

SQuAD 64.9 62.6 50.0 39.2 27.5

latency 20 s 7.6s 2.7s 1.1s 0.3s

# A100s 10 1 1 1 1

* Language Models are Few-Shot Learners. Arxiv. 2005.14165

Comparing multiple GPT-3 models*



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Speculative Decoding

1. Use a small speculative model (SSM) to predict the LLM’s output

• SSM runs much faster than LLM

39
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Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Speculative Decoding

1. Use a small speculative model (SSM) to predict the LLM’s output

• SSM runs much faster than LLM

2. Use the LLM to verify the SSM’s prediction

40

Small Speculative 

Model

[Accelerating LLM 

requires machine] learning systems

learning systems design

0 1 2

Large Language Model

LLM            is          novel     learning   systems optimization principles

[Accelerate   LLM      requires  machine ]  learning   systems  design 

Speculation Verification



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Verifying Speculative Decoding Results

41

Large Language Model

[Accelerate   LLM      requires  machine ]  learning   systems  design 

Generate 3 new tokens in one LLM decoding step

SSM Predictions

LLM Outputs:

Input Prompt



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Verifying Speculative Decoding Results

42

Key takeaway: 

• LLM inference is bottlenecked by accessing model weights

• using LLM to decode multiple tokens to improve GPU utilization

Large Language Model

[Accelerate   LLM      requires  machine ]  learning   systems  design 

LLM Outputs:

SSM PredictionsInput Prompt
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A few questions

1. Can speculative decoding guarantee speedup and why?

2. When will speculative decoding bring speedup and when not?

3. Choice of draft model
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Verification Algorithm

• Greedy Decoding: we already covered

• How about non-greedy decoding?

• How about verifying multiple candidates



Can we overcome autoregressive decoding?

• Self-speculative decoding

• Token-tree verification

• Medusa/Eagle: multi-head prediction

• Jacobi decoding

• Lookahead decoding



Rethink Autoregressive Decoding

Autoregressive Decoding (Greedy): decoding m tokens



Rethink Autoregressive Decoding



One alternative: Jacobi Decoding



Jacobi Decoding Illustrated



What are the trade-offs in Jacobi decoding?



Where We Are: LLMs

• Transformers and Attentions

• LLM Training Optimizations

• Flash attention

• 3D parallelism

• LLM Inference and Serving

• Continuous batching

• Paged attention

• Speculative decoding

• Scaling Laws

• Long context



Recall A few Important Problems (will be HW3)

• How to estimate the number of parameters of an LLM?

• How to estimate the flops needed to train an LLM?

• How to estimate the memory needed to train a transformer?



Motivation of Scaling Laws

• We have locked on transformers-based LLMs

• Assuming you know the answers of the previous 3 Qs

• Given a model architecture with #params, we know #flops, 

amount of memory given a model size

• We want to know: 

• how large a model should we train…

• How many data should we use…

• To achieve a given performance…

• Subject to a compute budget?



How do we do that in traditional ML: data scaling law

• Can we do this for 

transformers LLMs?



Model Scaling Laws

• Problem: How can we efficiently design huge LLMs?

• LSTMs vs transformers

• Adam vs SGD

• Problem: how should we allocate our limited resources:

• Train models longer vs train bigger models?

• Collect more data vs get more GPUs?



Transformers vs LSTMs

• Q: Are transformers better than LSTMs?

• Brute force way: spend tens of millions to train a LSTM GPT-3

• Scaling law way:



Number of Layers

• Does depth or width make a huge difference?

• 1 vs 2 layers makes a huge difference. • More layers have 

diminishing returns below 107 params



The Scaling law way

• Approach:

• Train a few smaller models

• Establish a scaling law (LSTM vs. transformers)

• Select optimal hyperparam based on the scaling law prediction.

• Rationale

• The effect of hyperparameters on big LMs can be predicted before 

training! 

• Optimizer choice

• Model Depth

• Arechitecture choice 



Back to our problem:

• how large a model should we train…

• How many data should we use…

• To achieve a given performance…

• Subject to a compute budget?

• Approach: model size data joint scaling



Model size data joint scaling

• Do we need more data or bigger models?

• Clearly, lots of data is wasted on small models

• Joint data-model scaling laws describe ho the two relate



Compute Trade-offs

• Q: what about other resources? Compute vs. performance?

• For a fixed compute budget…

• Big models that’s undertrained vs small model that’s well 

trained?

• Solving the following optimization?



Approach: empirical scaling law 



Final Remarks

• Scaling law: the physics behind LLMs

• Scaling law also represents a research approach transition:

• Stats and theoretical analysis -> empirical laws

• Exploration of different model architectures -> Scaling 

transformers

• ML systems become essential



Recall A few Important Problems (will be HW3)

• How to estimate the number of parameters of an LLM?

• How to estimate the flops needed to train an LLM?

• How to estimate the memory needed to train a transformer?

• We will give you a scaling law and compute budget

• Task: design your optimal LLM
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