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Course Evaluation

® Course evaluation is sent out
* May 27 at 12:00 AM and Saturday, June 8
* We are 47.62% now --- need to reach 80% to get 2 points



Where We Are: LLMS

®* Transformers and Attentions
* LLM Training Optimizations
* Flash aftention
* 3D parallelism
* [LM Inference and Serving
* Continuous batching
* Paged attention
* Speculative decoding
® Scaling Laws



INnference process of LLMs
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KV Cache
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KV Cache

* Memory space to store infermediate vector representations of tokens

®* Working set rather than a “cache”

* The size of KV Cache dynamically grows and shrinks

* A new token is appended in each step

* Tokens are deleted once the sequence finishes
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Key Insight

Efficient management of KV cache is crucial for high-throughput

LLM serving
. Existing systems — VLLM
m
S
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@)
®
KV Cache =
Parameters (13GB, 33%) g
(26GB, 65%) =
= Param. 38 4IO |
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Memory waste In KV Cache

2 slots for 3 slots future used External
generated tokens (reserved) fragmentation
N A N
4 N 4 )
Artificial Intellige IS the | future of {EChno! <e0S> <resv> ... <resv> S LLM IS
nce ogy
N 7 N
g [ g g
3 token states for 2040 slots never used Request B

Request A

request A’s prompt current step

(internal fragmentation)

® Reservation: not used at the current step, but used In the future
* Internal fragmentation: over-allocated due to the unknown

output length.



Memory waste In KV Cache

. Internal External
B Token states ™ Reservation 8 fragmentation fragmentation
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Only 20-40% of KV cache is utilized to store token states

*Yu, G. 1., Jeong, J. S., Kim, G. W., Kim, S., Chun, B. G. “Orca: A Distributed Serving System for Transformer-Based
Generative Models” (OSDI 22).



VLLM: Efficient memory management for LLM inference

Inspired by virtual memory and paging

Memory management in OS Memory management in vLLM
Page O Token Block O
Process Page 1 Process Request Token Block 1 Request
A Page 2 B A Token Block 2 B
Page 3 Token Block 3
Page 4 Token Block 4
Physical Memory KV Cache




Token block

* A fixed-size configuous chunk of
memory that can store token states

from left to right
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Token block

* A fixed-size configuous chunk of memory that can store token

Token blocks

states from left to right (KV Cache)
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Paged Attention

* An atftention algorithm that allows for storing continuous keys

and values In non-contiguous memaory space
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Logical & physical token blocks
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Logical & physical token blocks
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Logical & physical token blocks

Physical token blocks
(KV Cache)

Re%eﬂ block O

block 1 | computer | scientist

Prompt: “Alan Turing is a computer scientist”

Completion: “and” block 2
_ogical token blocks Block table block 3
block 0| Alan Turing is a \ blozﬂyriﬁéer # Filled block 4
S 7 4
block 1 | computer | scientist and ~_ ) » block 5
block 2 - - block 6
block 3 - : block 7| Alan Turing IS




Logical & physical token blocks
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Logical & physical token blocks

Physical token blocks
(KV Cache)

Re@kleﬂ block 0

L hem
block 1| computer | scientist| and mathe
atician

Prompt: “Alan Turing is a computer scientist”

Completion: “and mathematician renowned” block 2
_ogical token blocks Block table block 3
. . Physical . Allocated on demand
block 0 | Alan Turing IS a \ block number | Filled / block4|
block 1 | computer | scientist and mathema ! : : d
o fian \ X p :block 5 |renowne
block 2 [renowned 5 1 block 6
block 3 block 7| Alan Turing IS a

\————_



Serving multiple requests

Physical token blocks

(KV Cache)
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Memory efficiency of vLLM

* Minimal infernal fragmentation
* Only happens at the last block of a sequence
* # wasted tokens / seq < block size

®* Segquence: O(100) — O(1000) tokens

® Block size: 16 or 32 tokens

. Alan Turing IS a
®* No external fragmentation e
computer scientist and cian
renowned
N J
Y

Internal fragmentation



E.g.) Parallel sampling

Dynamic block mapping enables sharing

g bright and poised for further
growth and transformation.

-

The future of cloud
computing Is

\__
Shared btw. sequences

Prompt

LLM

_Here's why: ...

" intertwined with the

advancement of artificial

_intelligence (Al). ...

p
likely to be characterized by

several key trends: ...
N

Multiple outputs



Sharing token blocks
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Sharing token blocks

Physical token blocks

(KV Cache)
Block Table Block Table
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Can We Apply FlashAttention to LLM Inference?

Attention Comp. Attention Comp

Acc. .
learning

LLM
. = g2gQ
requires g = = £ 2
machine o S &
Y c o
53 o 2
< O 5 %
S
Pre-filling phase: Decoding phase:
* Yes, compute different queries * No, there Is a single query In the

using different thread blocks/warps decoding phase



Summary: Autoregressive Decoding

(O-th iteration):
* Process all input tokens at once

(all other Iterations):
* Process a single token generated from previous Iteration
» Use attention keys & values of all previous tokens

32



Serving vs. Inference

Serving: many reguests, online Inference: fewer request, low
traffic, emphasize cost-per-query or offline traffic, emphasize
latency



INnference process of LLMs
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The Problem is harder than Thought

Even it only one request (and the system is not busy), we still

cannot do better

Latency = step latency * # steps

Can we do better?

Inference: fewer request



Why we cannot do better



Why we cannot do better: bottleneck

[Accelerating LLM requires machine] ...learning -- Systems _.optimizations
lterations: 0 1 5 3
Transformer Layer 1 Compute fil:
ARy Resources™ =¥
Memory
‘grransforme?r Layer 96 sandwidth*

T 7

Outputs: learning .. systems ...bptimizations...ﬁ [EOS]

Lo e e

 Limited degree of parallelism — underutilized GPU resources

* Need all parameters to decode a token — bottlenecked by GPU memory access

* Measured by serving LLAMA-2-70B on 4 A100 GPUs with 4K sequence length



Tradeoffs between Different Language Models

TriviaQA 71.2 57.5 42.3 26.5 6.96
PIQA 82.3 79.9 75.4 72.0 64.3
SQUAD 64.9 62.6 50.0 39.2 27.5
latency 20 s 7.6S 2.7S 1.1s 0.3s
# A100s 10 1 1 1 1

Comparing multiple GPT-3 models*

Large models Small models

l‘ Pro: better generative performance I‘Pro: cheap and fast

|’ Con: slow and expensive to serve |’Con: less accurate

* Language Models are Few-Shot Learners. Arxiv. 2005.14165



Speculative Decoding

1. Use a small speculative model (SSM) to predict the LLM’s output
 SSM runs much faster than LLM

[Accelerating LLM

requires machine] learning systems
/4\\// \\// ‘\:/,
Small Speculativ
- Model
- /
NV N N
learning | systems | design

Speculation



Speculative Decoding

1. Use a small speculative model (SSM) to predict the LLM’s output
 SSM runs much faster than LLM

2. Use the LLM to verify the SSM's prediction

[Accelerating LLM [Accelerate LLM  requires machine | learning systems design
requires machme] """ > learning {7 " systems e ooy
s T I e T Y (T o e et N A
i O i i l i iz i \\\\\\\\\\\\\\
N g )
Small Speculatlve Large Language Model
I\/Iodel
A A - ~
learning systems design V V U V \/ % 4
LLM novel learning systems optimization principles

Speculation Verification




Verifying Speculative Decoding Results

v Vv

Input Prompt [Accelerate LLM  requires machine ] learning systems design SSM Predictions

""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
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Large Language Model

LLM Outputs:

v
K) K) K) VY,

\,\z

o S o) =
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ov Q

v Vv
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Generate 3 new tokens in one LLM decoding step

$O

41



Verifying Speculative Decoding Results

Input Prompt [Accelerate LLM  requires machine ] learning systems design SSM Predictions
Large Language Model
LLM Outputs: v (\\0(3 ,@6\5 ,I/@\\OQ Q\69’
. \,\« $0 e N Q\(g\ Q‘\(\G
Key takeaway: v \/

 LLM inference Is bottlenecked by accessing model weights
* using LLM to decode multiple tokens to improve GPU utilization



43

A few questions

1. Can speculative decoding guarantee speedup and why?

2. When will speculative decoding bring speedup and when not?
3. Choice of draft model
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Verification Algorithm

* Greedy Decoding: we already covered
* How about non-greedy decodinge

* How about verifying multiple candidates



Can we overcome autoregressive decodinge

* Self-speculative decoding

* Token-tree veritication

* Medusa/Eagle: multi-head prediction
* Jacobl decoding

* L[ookahead decoding



Rethink Autoregressive Decoding

Autoregressive Decoding (Greedy):. decoding m tokens

yi = argmax pg(¥i | ¥1:4i-1,X)

A4
y1 = arg max pg(y1 | X)
y2 = argmax pg(y2 | Y1, X)

Ym = arg max po(Ym | Yi:m—1,X)



Rethink Autoregressive Decoding

x: prompt, ¥y = [v41, V2, ..., Vim|: m tokens to decode, p(y|x): LLM distribution

Define: f(y;:. yl:i—lﬁx) = Yi — darghax p(yilyl:i—l-'x)

y; = argmax p(y;|x) f(y,x) =0
yz =argmaxp(y2‘y1;x) E } f(yZIy]_Jx) =0
VYm = argmax p(Ym|¥1.m-1, X) f Vo> YV1im-1,%X) =0

Non-linear system with
m variables and m equations

Autoregressive decoding



One alternative: Jacobl Decoding

Algorithm 1 Jacobi decoding

1: Input: prompt x°, model p,,, generation length m
2: Initialize y° = (37,95, ...,y )
3: Initialize y°“"P%" < ()
4: forz =1tomdo
: i 7 1—1 0
X Yiim argmax (Par (Y., [Y1m: X))
6: O+ Yy’
7:  stop <~STOPCONDITION(y*,y*~ 1)
8: 1f stop then
9: break
10:  endif
11: end for
12: Output: o = (ylj Y2,y eees ?Jm)




Jacobl Decoding lllustrated

| Prefill Tokens | | Guess Tokens [ | Accepted Tokens

Alan Turing | who | is | the | he just

Total Steps: O
Total Accepted Tokens: O




What are the trade-offs in Jacobl decodinge



Where We Are: LLMS

* Transformers and Attentions
* LLM Training Optimizations
* Flash attention
* 3D parallelism
* LLM Inference and Serving
* Confinuous batching
* Paged attention
®* Speculative decoding
* Scaling Laws
®* Long context



Recall A few Important Problems (will be HW3)

* How to estimate the number of parameters of an LLM?¢
* How to estimate the flops needed to train an LLM®e

* How to estimate the memory needed to frain a fransformere



Moftivation of Scaling Laws

* We have locked on fransformers-based LLMs

* Assuming you know the answers of the previous 3 Qs

* Gliven a model architecture with

params, we kKnow

amount of memory given a model size

* We want 1o know:

* how large a model should we frain...

* How many data should we use...

®* To achieve a given performance...

® Subject to a compute budgete

flops,



How do we do that In fraditional ML: data scaling law

g )
Input: x; ..x, ~ N(u,0o%)
Task: estimate the average as i = Z;xi
e * Can we do this for
What's the error? By standard arguments. transformers LLMs?

0.2

E[(fi —w)?] =—

n

This is a scaling law!!
log(Error) = —logn + 2logo

More generally, any polynomial rate 1/n% is a scaling law



Model Scaling Laws

®* Problem: How can we efficiently design huge LLMs®e
® | STMs vs transtormers
* Adam vs SGD

* Problem: how should we allocate our limited resources:
®* Train models longer vs train bigger modelse

®* Collect more data vs get more GPUs<



Transtormers vs LSTMS

® Q: Are fransformers better than LSTMs?¢

®* Brute force way: spend tens of millions to train a LSTM GPT-3

* Scaling law way:

Test Loss 5.41
4.8 -
4.2 1 /. LSTMs
3.6 -
1 Layer
2 Layers
3.0 Transformers 4 Layers
2.4

105 106 107 108 10°
Parameters (non-embedding) [Kapla n+ 2021]



Number of Layers

®* Does depth or width make a huge differencee
* | vs 2layers makes a huge difference. « More layers have

diminishing returns below 107 params

7.
6.

5 .

S

—e— 1 Layer e,

—e— 2 Layers \,\

| —e— 3 Layers \
6 Layers |
> 6 Layers

Test Loss

o8

10° 1.6* 10° 10° 107 108 10°
Parameters (non-embedding)



The Scaling law way

* Approach:
* Train a few smaller models
® Establish a scaling law (LSTM vs. transtormers)
* Select optimal hyperparam based on the scaling law prediction.

* Rationale
* The effect of hyperparameters on big LMs can be predicted before
fraining!
* Optimizer choice
* Model Depth
®* Arechitecture choice




Back 1o our problem:

* how large a model should we frain...
* How many data should we use...

®* To achieve a given performance...
® Subject to a compute budgete

* Approach: model size data joint scaling



Loss vs Model and Dataset Size

Model size data joint scaling R (T
* Do we need more data or bigger model 3

107 10" 10¢ 10

. Tokens in Dataset
* Clearly, lofs of data is wasted on small models

* Joint data-model scaling laws describe ho the two relate

From Rosenfeld+ 2020,
Error=n"%+m P +C

From Kaplan+ 2021
Error = [m~% + n~1]¥

Provides surprisingly good fits to model-data joint error.



Compute Trade-offs

* Q: what about other resourcese Compute vs. performancee

®* For a fixed compute budget...
®* Big models that's undertrained vs small model that's well
frainede

® Solving the following optimization?

Nopr(c): Dopt(c) — argmin L(N: D)-
N,D s.t. FLOPs(N,D)=C



Approach: empirical scaling law

-10B 1T
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-2.5B 100B ¢78

1011
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o
o

-500M

-
. a®
-250M ]
50 . ‘:?r
1.0B /
-75M o &
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100M

Parameters
Tokens

1010

-

100 .~

1.5T

101? 1018 1019 102D 1021 1022 101? 1019 1021 1023 1025 101? 1019 1021 1023 1025

FLOPS FLOPs

Figure 2 | Training curve envelope. On the left we show all of our

FLOPs

different runs. We launched a

range of model sizes going from 70M to 10B, each for four different cosine cycle lengths. From these
curves, we extracted the envelope of minimal loss per FLOP, and we used these points to estimate the

imal number of training tokens

optimal model size (center) for a given compute budget and the opt:

(right). In green, we show projections of optimal model size and training token count based on the

number of FLOPs used to train Gopher (5.76 x 10%3).



FiInal Remarks

* Scaling law: the physics behind LLMs

* Scaling law also represents a research approach fransition:
* Stats and theoretical analysis -> empirical laws
* Exploration of different model architectures -> Scaling
franstformers

* ML systems become essential



Recall A few Important Problems (will be HW3)

* How to estimate the number of parameters of an LLM?¢
* How to estimate the flops needed to train an LLM®e

* How to estimate the memory needed to frain a fransformere

* We will give you a scaling law and compute budget

® Task: design your optimal LLM
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