

DSC 291: ML Systems Spring 2024

Parallelization

Single-device Optimization

Basics

https://hao-ai-lab.github.io/dsc291-s24/

LLMs

Course Evaluation

- Course evaluation is sent out
 - May 27 at 12:00 ÅM and Saturday, June 8

• We are 47.62% now --- need to reach 80% to get 2 points

Where We Are: LLMs

- Transformers and Attentions
- LLM Training Optimizations
 - Flash attention
 - 3D parallelism
- LLM Inference and Serving
 - Continuous batching
 - Paged attention
 - Speculative decoding
- Scaling Laws

Inference process of LLMs Output the Layer N Layer 1

Input

Repeat until the sequence

Artificial

Intelligence

Generates certain tokens (e.g., "<|end of sequence|>")

is

Reaches its pre-defined maximum length (e.g., 2048 tokens)

Output

KV Cache

Artificial Intelligence is **the**

Artificial Intelligence is **the**

KV Cache

- - Working set rather than a "cache"
- The size of KV Cache dynamically grows and shrinks • A new token is appended in each step Tokens are deleted once the sequence finishes

Memory space to store intermediate vector representations of tokens

of

Efficient management of KV cache is crucial for high-throughput LLM serving

13B LLM on A100-40GB

Memory usage (GB)

Efficient management of KV cache is crucial for high-throughput LLM serving

13B LLM on A100-40GB

Memory usage (GB) ughput qs/s)

Memory waste in KV Cache

- Reservation: not used at the current step, but used in the future
 Internal fragmentation: over-allocated due to the unknown
- Internal fragmentation: over output length.

Memory waste in KV Cache

Only **20–40%** of KV cache is utilized to store token states

* Yu, G. I., Jeong, J. S., Kim, G. W., Kim, S., Chun, B. G. "Orca: A Distributed Serving System for Transformer-Based Generative Models" (OSDI 22).

vLLM: Efficient memory management for LLM inference

Inspired by virtual memory and paging

Memory management in OS

Physical Memory

KV Cache

Token block

• A **fixed-size** contiguous chunk of memory that can store token states **from left to right**

Token block

• A **fixed-size** contiguous chunk of memory that can store token Token blocks (KV Cache)

Block 4

Artificial	-0.2	0.1
Intelligence	0.9	0.7
is	-0.1	-0.3
the	-1.1	0.5
, i		
		\sim I/D / (

820 KB / token (LLaMA-13B)

Paged Attention

and values in non-configuous memory space

An attention algorithm that allows for storing continuous keys

Key and value vectors

Block 1	computer	scientist	and	mathe- matician
Block 2	renowned	for		
Block 0	Alan	Turing	is	а

Prompt: "Alan Turing is a computer scientist"

Logical token blocks

block 0	Alan	Turing	is	а
block 1	computer	scientist		
block 2				
block 3				

Request block 0 Prompt: "Alan Turing is a computer scientist" block 2 block 3 block 4 block 4 block 5 block 5 block 6 block 6 block 7 block 7 block 7														
Prompt: "Alan Turing is a computer scientist" block 1 computer scientist block 2 block 2 block 3 block 3 block 1 computer scientist block 1 computer scientist block 2 a block 3 a block 4 a block 5 a block 6 a block 7 a block 7 a block 8 a block 1 computer scientist block 2 a block 3 a block 4 a block 5 a block 6 a block 7 Alan block 7 Alan			Req A	uest						block 0				
Prompt: "Alan Turing is a computer scientist" block 2 Logical token blocks Block table block 0 Alan Turing is a Physical block 1 computer scientist 1 block 2 - block 3 - block 4 - block 5 - block 6 - block 7 Alan	_									block 1	computer	scientist		
Logical token blocks Block table block 3 lock 4 block 0 Alan Turing is a Physical # Filled block 4 block 1 computer scientist a block 2 a a block 3 a a block 4 a block 4 block 5 a a block 6 a a block 7 a block 6 block 7 a block 7 block 7 a block 7	F	Prompt: "Ala	n luring is	a comput	er scienti	st"			/	block 2				
block 0AlanTuringisaPhysical block number# Filledblock 4IIblock 1computerscientistII <t< td=""><td></td><td></td><td>Logical to</td><td>ken blocks</td><td>5</td><td></td><td>Block tal</td><td>ble</td><td></td><td>block 3</td><td></td><td></td><td></td><td></td></t<>			Logical to	ken blocks	5		Block tal	ble		block 3				
block 1computerscientist74block 5IIIblock 2III <t< td=""><td>block 0</td><td>Alan</td><td>Turing</td><td>is</td><td>а</td><td></td><td>Physical block number</td><td># Filled</td><td></td><td>block 4</td><td></td><td></td><td></td><td></td></t<>	block 0	Alan	Turing	is	а		Physical block number	# Filled		block 4				
block 2 block 3 block 3	block 1	computer	scientist				7 1	4		block 5				
block 3 block 7 Alan Turing is	block 2							_		block 6				
	block 3							_		block 7	Alan	Turing	is	

	Request A												
									block 1	computer	scientist		
F Com	Prompt: "Ala pletion: " <u>ano</u>	n Turing is <u>d</u> "	s a computer	r scienti	st"			/	block 2				
		Logical to	ken blocks		_	Block tal	ble		block 3				
block 0	Alan	Turing	is	а		Physical block number	# Filled		block 4				
block 1	computer	scientist				7	4		block 5				
block 2							_		block 6				
block 3							_		block 7	Alan	Turing	is	

		Req	uest						block 0				
									block 1	computer	scientist		
F Com	Prompt: "Ala pletion: " <u>ano</u>	n Turing is <u>d</u> "	s a comput	er scientis	st"			/	block 2				
		Logical to	ken blocks		7	Block tal	ble		block 3				
block 0	Alan	Turing	is	а		Physical block number	# Filled		block 4				
block 1	computer	scientist	and			7	4		block 5				
block 2									block 6				
block 3									block 7	Alan	Turing	is	

		Req	uest						block 0				
									block 1	computer	scientist	and	
F Com	Prompt: "Ala pletion: " <u>anc</u>	n Turing is <u>d</u> "	s a comput	er scientis	st"			/	block 2				
		Logical to	ken blocks	5	1	Block tal	ble		block 3				
block 0	Alan	Turing	is	а		Physical block number	# Filled		block 4				
block 1	computer	scientist	and			7	4		block 5				
block 2					_		_		block 6				
block 3							_		block 7	Alan	Turing	is	

		Req	uest					block 0				
								block 1	computer	scientist	and	n
F Com	Prompt: "Ala pletion: "and	n Turing is d <u>mathema</u>	a comput a <u>tician</u> "	er scientis	st"			block 2				
		Logical to	ken blocks	5	٦	Block ta	ble	block 3				
block 0	Alan	Turing	is	а		Physical block number	# Filled	block 4				
block 1	computer	scientist	and	mathema tician		7	4	block 5				
block 2								block 6				
block 3								block 7	Alan	Turing	is	

Prompt: "Alan Turing is a computer scientist" Completion: "and mathematician renowned"

Logical token blocks

block 0	Alan	Turing	is	a	P bloc
block 1	computer	scientist	and	mathema tician	
block 2	renowned				
block 3					

Serving multiple requests

scie er Inte n Tu

		Block	Table	
R	Request A			compute
	Logical to	ken blocks	5	Artificia
Alan	Turing	is	а	
computer	scientist	and	mathema tician	renowne
renowned				future
				Alan

Physical token blocks (KV Cache)

entist	and	mathem atician
ellige ice	is	the
of	technolog y	
iring	is	а

Block Table

Logical token blocks

Artificial	Intelligence	is	
future	of	technology	

Memory efficiency of vLLM

- Minimal internal fragmentation
 - Only happens at the last block of a sequence
 - # wasted tokens / seq < block size</p>
 - Sequence: O(100) O(1000) tokens
 - Block size: 16 or 32 tokens
- No external fragmentation

Alan	Turing	is	а
computer	scientist	and	mathemati cian
renowned			

Internal fragmentation

Dynamic block mapping enables sharing

E.g.) Parallel sampling

The future of cloud computing is

Shared btw. sequences

Prompt

Multiple outputs

			Block	K Table		
ure	of	cloud			Sequer B	Ce
S				Logical to	ken blocks	5
			The	future	of	
			computing	is		

				Block	Table		
ure	of	cloud				Sequer B)Ce
S					Logical to	ken blocks	>
				The	future	of	
				computing	is	intertwined	
			_				
			-				

ciouu						

Physical token blocks (KV Cache) **Block Table** Sequence future of cloud B Logical token blocks is The future of is computing intertwined bright is

ciouu						

				Block			
ure	of	cloud				Sequer B	ice
G	intertwine				Logical to	ken blocks	
5	d			The	future	of	cloud
				computing	is	intertwined	
			-				
S	bright						
						1	

Physical token blocks (KV Cache) **Block Table** Sequence of future cloud B intertwine Logical token blocks is with d The future of is intertwined computing is bright and

Can We Apply FlashAttention to LLM Inference?

Pre-filling phase:

 Yes, compute different queries using different thread blocks/warps

Decoding phase:

No, there is a single query in the decoding phase

Summary: Autoregressive Decoding

- Pre-filling phase (0-th iteration):
 - Process all input tokens at once
- **Decoding phase** (all other iterations):
 - Process a single token generated from previous iteration
 - Use attention keys & values of all previous tokens

Serving vs. Inference

Serving: many requests, online traffic, emphasize cost-per-query

Inference: fewer request, low or offline traffic, emphasize latency

Inference process of LLMs Output the

Repeat until the sequence

Generates certain tokens (e.g., "<|end of sequence|>")

Reaches its pre-defined maximum length (e.g., 2048 tokens)

The Problem is harder than Thought

cannot do better

Even if only one request (and the system is not busy), we still

- Latency = step latency * # steps
 - Can we do better?

Inference: fewer request

Why we cannot do better

Why we cannot do better: bottleneck

- Limited degree of parallelism \rightarrow underutilized GPU resources

* Measured by serving LLAMA-2-70B on 4 A100 GPUs with 4K sequence length

• Need all parameters to decode a token \rightarrow bottlenecked by GPU memory access

Tradeoffs between Different Language Models

# Parameters	175B	13B	2.7B	760M	125M
TriviaQA	71.2	57.5	42.3	26.5	6.96
PIQA	82.3	79.9	75.4	72.0	64.3
SQuAD	64.9	62.6	50.0	39.2	27.5
latency	20 s	7.6s	2.7s	1.1s	0.3s
# A100s	10	1	1	1	1

Comparing multiple GPT-3 models*

Large models

Pro: better generative performance

Con: slow and expensive to serve

* Language Models are Few-Shot Learners. Arxiv. 2005.14165

Small models

Pro: cheap and fast

Con: less accurate

Speculative Decoding

- 1. Use a small speculative model (SSM) to predict the LLM's output
 - SSM runs much faster than LLM

Speculation

SSM) to predict the LLM's output M

Speculative Decoding

- 1. Use a small speculative model (SSM) to predict the LLM's output
 - SSM runs much faster than LLM
- 2. Use the LLM to verify the SSM's prediction

Speculation

SSM) to predict the LLM's output M

Verifying Speculative Decoding Results

Generate 3 new tokens in one LLM decoding step

SSM Predictions

41

Verifying Speculative Decoding Results

Key takeaway:

- LLM inference is bottlenecked by accessing model weights
- using LLM to decode multiple tokens to improve GPU utilization

/ accessing model weights kens to improve GPU utilization

SSM Predictions

A few questions

- 3. Choice of draft model

1. Can speculative decoding guarantee speedup and why? 2. When will speculative decoding bring speedup and when not?

Verification Algorithm

- Greedy Decoding: we already covered
- How about non-greedy decoding?
- How about verifying multiple candidates

Can we overcome autoregressive decoding?

- Self-speculative decoding
- Token-tree verification
- Medusa/Eagle: multi-head prediction
- Jacobi decoding
- Lookahead decoding

Rethink Autoregressive Decoding

Autoregressive Decoding (Greedy): decoding m tokens

$y_i = \arg \max$

 $\begin{cases} y_1 = \arg \max p \\ y_2 = \arg \max p \\ \vdots \end{cases}$ $y_m = \arg\max p_\theta(y_m \mid \mathbf{y}_{1:m-1}, \mathbf{x})$

$$p_{ heta}(y_i \mid \mathbf{y}_{1:i-1}, \mathbf{x})$$

 $p_{ heta}(y_1 \mid \mathbf{x})$
 $p_{ heta}(y_2 \mid y_1, \mathbf{x})$

Rethink Autoregressive Decoding

Define: $f(y_i, y_{1:i-1}, x) = y_i - \arg \max p(y_i | y_{1:i-1}, x)$ $\begin{bmatrix} y_1 = \operatorname{argmax} p(y_1 | \mathbf{x}) \\ y_2 = \operatorname{argmax} p(y_2 | y_1, \mathbf{x}) \\ \vdots \\ y_m = \operatorname{argmax} p(y_m | \mathbf{y}_{1:m-1}, \mathbf{x}) \end{bmatrix}$ Autoregressive decoding

x: prompt, $y = [y_1, y_2, ..., y_m]$: m tokens to decode, p(y|x): LLM distribution

$$\begin{cases} f(y_1, x) = 0 \\ f(y_2, y_1, x) = 0 \\ \vdots \\ f(y_m, y_{1:m-1}, x) = 0 \end{cases}$$

Non-linear system with *m* variables and *m* equations

One alternative: Jacobi Decoding

Algorithm 1 Jacobi decoding

- 1: Input: prompt \mathbf{x}^0 , model p_M , generation length m
- 2: Initialize $\mathbf{y}^0 = (y_1^0, y_2^0, ..., y_m^0)$
- 3: Initialize $\mathbf{y}^{output} \leftarrow ()$
- 4: for i = 1 to m do
- 5: $\mathbf{y}_{1:m}^{i} \leftarrow \operatorname{argmax}(P_M(\mathbf{y}_{1:m}^{i}|\mathbf{y}_{1:m}^{i-1},\mathbf{x}^0))$

6:
$$\mathbf{o} \leftarrow \mathbf{y}^i$$

- 7: $stop \leftarrow STOPCONDITION(\mathbf{y}^{i}, \mathbf{y}^{i-1})$
- 8: **if** *stop* **then**
- 9: break
- 10: **end if**
- 11: end for
- 12: **Output:** $\mathbf{o} = (y_1, y_2, ..., y_m)$

Jacobi Decoding Illustrated

Total Steps: 0 Total Accepted Tokens: 0

What are the trade-offs in Jacobi decoding?

Where We Are: LLMs

- Transformers and Attentions
- LLM Training Optimizations
 - Flash attention
 - 3D parallelism
- LLM Inference and Serving
 - Continuous batching
 - Paged attention
 - Speculative decoding
- Scaling Laws
- Long context

Recall A few Important Problems (will be HW3)

- How to estimate the number of parameters of an LLM?
- How to estimate the flops needed to train an LLM?
- How to estimate the memory needed to train a transformer?

Motivation of Scaling Laws

- We have locked on transformers-based LLMs
 - Assuming you know the answers of the previous 3 Qs
 - Given a model architecture with #params, we know #flops, amount of memory given a model size
- We want to know:
 - how large a model should we train...
 - How many data should we use...
 - To achieve a given performance...
 - Subject to a compute budget?

How do we do that in traditional ML: data scaling law

Input: $x_1 \dots x_n \sim N(\mu, \sigma^2)$

Task: estimate the average as $\hat{\mu} = \frac{\sum_{i} x_{i}}{m}$

What's the error? By standard arguments..

$$\mathrm{E}[(\hat{\mu}-\mu)^2] = \frac{\sigma^2}{n}$$

This is a scaling law!! $log(Error) = -log n + 2 log \sigma$

More generally, any polynomial rate $1/n^{\alpha}$ is a scaling law

 Can we do this for transformers LLMs?

Model Scaling Laws

- Problem: How can we efficiently design huge LLMs?
 - LSTMs vs transformers
 - Adam vs SGD
- Problem: how should we allocate our limited resources:
 - Train models longer vs train bigger models?
 - Collect more data vs get more GPUs?

Transformers vs LSTMs

- Q: Are transformers better than LSTMs?
- Scaling law way:

Brute force way: spend tens of millions to train a LSTM GPT-3

[Kaplan+ 2021]

Number of Layers

- Does depth or width make a huge difference?
 - 1 vs 2 layers makes a huge difference.
 More layers have diminishing returns below 107 params

The Scaling law way

- Approach:
 - Train a few smaller models
 - Establish a scaling law (LSTM vs. transformers)
- Rationale
 - training!
 - Optimizer choice
 - Model Depth
 - Arechitecture choice

Select optimal hyperparam based on the scaling law prediction.

The effect of hyperparameters on big LMs can be predicted before

Back to our problem:

- how large a model should we train...
 - How many data should we use...
 - To achieve a given performance...
 - Subject to a compute budget?
- Approach: model size data joint scaling

Model size data joint scaling

- Do we need more data or bigger model:
 - Clearly, lots of data is wasted on small models
- Joint data-model scaling laws describe ho the two relate

From Rosenfeld+ 2020,

From Kaplan+ 2021

Provides surprisingly good fits to model-data joint error.

$$Error = n^{-\alpha} + m^{-\beta} + C$$

$$Error = [m^{-\alpha} + n^{-1}]^{\beta}$$

Compute Trade-offs

- For a fixed compute budget...
 - trained?
 - Solving the following optimization?

 $N_{opt}(C), D_{opt}(C) =$

• Q: what about other resources? Compute vs. performance?

Big models that's undertrained vs small model that's well

argmin L(N, D). N,D s.t. FLOPs(N,D)=C

Approach: empirical scaling law

number of FLOPs used to train *Gopher* (5.76×10^{23}) .

Figure 2 | **Training curve envelope.** On the **left** we show all of our different runs. We launched a range of model sizes going from 70M to 10B, each for four different cosine cycle lengths. From these curves, we extracted the envelope of minimal loss per FLOP, and we used these points to estimate the optimal model size (center) for a given compute budget and the optimal number of training tokens (**right**). In green, we show projections of optimal model size and training token count based on the

Final Remarks

- Scaling law: the physics behind LLMs
- Scaling law also represents a research approach transition:
 - Stats and theoretical analysis -> empirical laws
 - Exploration of different model architectures -> Scaling transformers
 - ML systems become essential

Recall A few Important Problems (will be HW3)

- How to estimate the number of parameters of an LLM? How to estimate the flops needed to train an LLM? How to estimate the memory needed to train a transformer?

 We will give you a scaling law and compute budget Task: design your optimal LLM