
DSC 291: ML Systems

Spring 2024

1

https://hao-ai-lab.github.io/dsc291-s24/

Basics

Single-device Optimization

LLMs

Parallelization

Course Evaluation

• Course evaluation is sent out

• May 27 at 12:00 AM and Saturday, June 8

• We are 47.62% now --- need to reach 80% to get 2 points

2

Where We Are: LLMs

• Transformers and Attentions

• LLM Training Optimizations

• Flash attention

• 3D parallelism

• LLM Inference and Serving

• Continuous batching

• Paged attention

• Speculative decoding

• Scaling Laws

4

Inference process of LLMs

Layer 1

Layer N

Artificial

the

the

future

Layer 1

Layer N

Layer 1

Layer N

future

of

Intelligence isInput

Output

… … …

Repeat until the sequence

● Reaches its pre-defined maximum length (e.g., 2048 tokens)

● Generates certain tokens (e.g., “<|end of sequence|>”)

KV Cache

Layer 1

Layer N

Artificial

the

the

future

Layer 1

Layer N

5
Intelligence is

… …
-0.1 0.3 1.2

0.7 -0.4 0.8

0.2 -0.1 1.1

Input

Output

Artificial

Intelligence

is

-0.7 0.1 -0.2the

-0.2 0.1 -1.1

0.9 0.7 0.2

-0.1 -0.3 0.1

Artificial

Intelligence

is

-1.1 0.5 0.4the

KV Cache

6

KV Cache

Layer 1

Layer N

future

of

…

-0.1 0.3 1.2

0.7 -0.4 0.8

0.2 -0.1 1.1

Input

Output

Artificial

Intelligence

is

-0.7 0.1 -0.2the

-0.6 0.0 0.9future

-0.2 0.1 -1.1

0.9 0.7 0.2

-0.1 -0.3 0.1

Artificial

Intelligence

is
-1.1 0.5 0.4the

0.1 -2.1 0.5future

KV Cache

7

KV Cache

• Memory space to store intermediate vector representations of tokens

• Working set rather than a “cache”

• The size of KV Cache dynamically grows and shrinks

• A new token is appended in each step

• Tokens are deleted once the sequence finishes

8

Key insight

Efficient management of KV cache is crucial for high-throughput

LLM serving

13B LLM on A100-40GB

Parameters

(26GB, 65%)

KV Cache
(13GB, 33%)

Others

40

26

Existing systems vLLM

8 40

9

Key insight

Efficient management of KV cache is crucial for high-throughput

LLM serving

13B LLM on A100-40GB

Parameters

(26GB, 65%)

KV Cache
(13GB, 33%)

Others

40

26

Existing systems vLLM

8 40

0.8

3.2

1
0

Memory waste in KV Cache

• Reservation: not used at the current step, but used in the future

• Internal fragmentation: over-allocated due to the unknown

output length.

Artificial
Intellige

nce
is the future of

technol

ogy
<eos> <resv> … <resv> … …

2040 slots never used

(internal fragmentation)

3 slots future used

(reserved)

External

fragmentation

3 token states for

request A’s prompt
Request A

current step

2 slots for

generated tokens

LLM is …

Request B

1
1

Memory waste in KV Cache

Only 20–40% of KV cache is utilized to store token states

Ours

* Yu, G. I., Jeong, J. S., Kim, G. W., Kim, S., Chun, B. G. “Orca: A Distributed Serving System for Transformer-Based

Generative Models” (OSDI 22).

vLLM: Efficient memory management for LLM inference

Inspired by virtual memory and paging

1
3

Token block

• A fixed-size contiguous chunk of

memory that can store token states

from left to right

Token blocks

(KV Cache)

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Block size = 4

KV Cache

1
4

Token block

• A fixed-size contiguous chunk of memory that can store token

states from left to right

Artificial Intelligence is the

Token blocks

(KV Cache)

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Block size = 4

-0.2 0.1 -1.1

0.9 0.7 0.2

-0.1 -0.3 0.1

Artificial

Intelligence

is

-1.1 0.5 0.4the

Block 4

820 KB / token

(LLaMA-13B)

1
5

Paged Attention

• An attention algorithm that allows for storing continuous keys

and values in non-contiguous memory space

1
6

Logical & physical token blocks

Request

A

Alan Turing is a

computer scientist

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

Physical token blocks

(KV Cache)

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical token blocks

1
7

Logical & physical token blocks

Request

A

Alan Turing is a

computer scientist

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist

Alan Turing is a

Physical token blocks

(KV Cache)

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical token blocks

Physical

block number
Filled

7 4

1 2

– –

– –

Block table

1
8

Logical & physical token blocks

Request

A

Alan Turing is a

computer scientist

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist

Alan Turing is a

Physical token blocks

(KV Cache)

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical token blocks

Physical

block number
Filled

7 4

1 2

– –

– –

Block table

Completion: “and”

1
9

Logical & physical token blocks

Request

A

Alan Turing is a

computer scientist and

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist

Alan Turing is a

Physical token blocks

(KV Cache)

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical token blocks

Physical

block number
Filled

7 4

1 2

– –

– –

Block table

Completion: “and”

2
0

Logical & physical token blocks

Request

A

Alan Turing is a

computer scientist and

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist and

Alan Turing is a

Physical token blocks

(KV Cache)

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical token blocks

Physical

block number
Filled

7 4

1 3

– –

– –

Block table

Completion: “and”

2
1

Logical & physical token blocks

Request

A

Alan Turing is a

computer scientist and
mathema

tician

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist and
mathem

atician

Alan Turing is a

Physical token blocks

(KV Cache)

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical token blocks

Physical

block number
Filled

7 4

1 4

– –

– –

Block table

Completion: “and mathematician”

2
2

Logical & physical token blocks

Request

A

Alan Turing is a

computer scientist and
mathema

tician

renowned

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist and
mathem

atician

renowned

Alan Turing is a

Physical token blocks

(KV Cache)

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical token blocks

Physical

block number
Filled

7 4

1 4

5 1

– –

Block table

Completion: “and mathematician renowned”

Allocated on demand

2
3

Serving multiple requests

Alan Turing is a

computer scientist and
mathema

tician

renowned

Logical token blocks

Request

A

Block Table

computer scientist and
mathem

atician

Artificial
Intellige

nce
is the

renowned

future of
technolog

y

Alan Turing is a

Physical token blocks

(KV Cache)

Artificial Intelligence is the

future of technology

Logical token blocks

Request

B

Block Table

2
4

Memory efficiency of vLLM

• Minimal internal fragmentation

• Only happens at the last block of a sequence

• # wasted tokens / seq < block size

• Sequence: O(100) – O(1000) tokens

• Block size: 16 or 32 tokens

• No external fragmentation
Alan Turing is a

computer scientist and
mathemati

cian

renowned

Internal fragmentation

2
5

Dynamic block mapping enables sharing

The future of cloud

computing is
LLM

Prompt

bright and poised for further

growth and transformation.

Here's why: …

intertwined with the

advancement of artificial

intelligence (AI). …

likely to be characterized by

several key trends: …

Multiple outputs

Shared btw. sequences

E.g.) Parallel sampling

2
6

Sharing token blocks

The future of cloud

computing is

Logical token blocks

Sequence

A

Block Table

The future of cloud

computing is

Physical token blocks

(KV Cache)

The future of cloud

computing is

Logical token blocks

Sequence

B

Block Table

Ref count: 2

2
7

Sharing token blocks

The future of cloud

computing is bright

Logical token blocks

Sequence

A

Block Table

The future of cloud

computing is

Physical token blocks

(KV Cache)

The future of cloud

computing is intertwined

Logical token blocks

Sequence

B

Block Table

Ref count: 2 → 1

Copy-on-Write

2
8

Sharing token blocks

The future of cloud

computing is bright

Logical token blocks

Sequence

A

Block Table

The future of cloud

computing is

computing is bright

Physical token blocks

(KV Cache)

The future of cloud

computing is intertwined

Logical token blocks

Sequence

B

Block Table

Ref count: 1

Copy-on-Write

2
9

Sharing token blocks

The future of cloud

computing is bright

Logical token blocks

Sequence

A

Block Table

The future of cloud

computing is
intertwine

d

computing is bright

Physical token blocks

(KV Cache)

The future of cloud

computing is intertwined

Logical token blocks

Sequence

B

Block Table

3
0

Sharing token blocks

The future of cloud

computing is bright and

Logical token blocks

Sequence

A

Block Table

The future of cloud

computing is
intertwine

d
with

computing is bright and

Physical token blocks

(KV Cache)

The future of cloud

computing is intertwined with

Logical token blocks

Sequence

B

Block Table

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Can We Apply FlashAttention to LLM Inference?

Pre-filling phase:

• Yes, compute different queries
using different thread blocks/warps

Decoding phase:

• No, there is a single query in the
decoding phase

31

Acc.

LLM

requires

machine
A

c
c
.

L
L

M

re
q
u

ir
e

s

m
a
c
h
in

e

Attention Comp.

Layer 3

Layer 2
learning

A
c
c
.

L
L

M

re
q
u

ir
e

s

m
a
c
h
in

e

Attention Comp.

le
a
rn

in
g

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Summary: Autoregressive Decoding

• Pre-filling phase (0-th iteration):

• Process all input tokens at once

• Decoding phase (all other iterations):

• Process a single token generated from previous iteration

• Use attention keys & values of all previous tokens

32

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Serving vs. Inference

Serving: many requests, online

traffic, emphasize cost-per-query

Inference: fewer request, low

or offline traffic, emphasize

latency

3
4

Inference process of LLMs

Layer 1

Layer N

Artificial

the

the

future

Layer 1

Layer N

Layer 1

Layer N

future

of

Intelligence isInput

Output

… … …

Repeat until the sequence

● Reaches its pre-defined maximum length (e.g., 2048 tokens)

● Generates certain tokens (e.g., “<|end of sequence|>”)

The Problem is harder than Thought

Even if only one request (and the system is not busy), we still

cannot do better

Inference: fewer request

Latency = step latency * # steps

Can we do better?

Why we cannot do better

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

• Limited degree of parallelism → underutilized GPU resources

• Need all parameters to decode a token → bottlenecked by GPU memory access

37

Why we cannot do better: bottleneck

[Accelerating LLM requires machine] learning systems optimizations

learning systems optimizations [EOS]

Iterations: 0 1 2 3

Outputs:

Transformer Layer 1

Transformer Layer 96

LLM … …

Compute

Resources*

Memory

Bandwidth*
76%

2%

* Measured by serving LLAMA-2-70B on 4 A100 GPUs with 4K sequence length

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Tradeoffs between Different Language Models

Large models

Pro: better generative performance

Con: slow and expensive to serve

Small models

Pro: cheap and fast

Con: less accurate

38

Parameters 175B 13B 2.7B 760M 125M

TriviaQA 71.2 57.5 42.3 26.5 6.96

PIQA 82.3 79.9 75.4 72.0 64.3

SQuAD 64.9 62.6 50.0 39.2 27.5

latency 20 s 7.6s 2.7s 1.1s 0.3s

A100s 10 1 1 1 1

* Language Models are Few-Shot Learners. Arxiv. 2005.14165

Comparing multiple GPT-3 models*

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Speculative Decoding

1. Use a small speculative model (SSM) to predict the LLM’s output

• SSM runs much faster than LLM

39

Speculation

Small Speculative

Model

[Accelerating LLM

requires machine] learning systems

learning systems design

0 1 2

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Speculative Decoding

1. Use a small speculative model (SSM) to predict the LLM’s output

• SSM runs much faster than LLM

2. Use the LLM to verify the SSM’s prediction

40

Small Speculative

Model

[Accelerating LLM

requires machine] learning systems

learning systems design

0 1 2

Large Language Model

LLM is novel learning systems optimization principles

[Accelerate LLM requires machine] learning systems design

Speculation Verification

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Verifying Speculative Decoding Results

41

Large Language Model

[Accelerate LLM requires machine] learning systems design

Generate 3 new tokens in one LLM decoding step

SSM Predictions

LLM Outputs:

Input Prompt

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Verifying Speculative Decoding Results

42

Key takeaway:

• LLM inference is bottlenecked by accessing model weights

• using LLM to decode multiple tokens to improve GPU utilization

Large Language Model

[Accelerate LLM requires machine] learning systems design

LLM Outputs:

SSM PredictionsInput Prompt

43

A few questions

1. Can speculative decoding guarantee speedup and why?

2. When will speculative decoding bring speedup and when not?

3. Choice of draft model

44

Verification Algorithm

• Greedy Decoding: we already covered

• How about non-greedy decoding?

• How about verifying multiple candidates

Can we overcome autoregressive decoding?

• Self-speculative decoding

• Token-tree verification

• Medusa/Eagle: multi-head prediction

• Jacobi decoding

• Lookahead decoding

Rethink Autoregressive Decoding

Autoregressive Decoding (Greedy): decoding m tokens

Rethink Autoregressive Decoding

One alternative: Jacobi Decoding

Jacobi Decoding Illustrated

What are the trade-offs in Jacobi decoding?

Where We Are: LLMs

• Transformers and Attentions

• LLM Training Optimizations

• Flash attention

• 3D parallelism

• LLM Inference and Serving

• Continuous batching

• Paged attention

• Speculative decoding

• Scaling Laws

• Long context

Recall A few Important Problems (will be HW3)

• How to estimate the number of parameters of an LLM?

• How to estimate the flops needed to train an LLM?

• How to estimate the memory needed to train a transformer?

Motivation of Scaling Laws

• We have locked on transformers-based LLMs

• Assuming you know the answers of the previous 3 Qs

• Given a model architecture with #params, we know #flops,

amount of memory given a model size

• We want to know:

• how large a model should we train…

• How many data should we use…

• To achieve a given performance…

• Subject to a compute budget?

How do we do that in traditional ML: data scaling law

• Can we do this for

transformers LLMs?

Model Scaling Laws

• Problem: How can we efficiently design huge LLMs?

• LSTMs vs transformers

• Adam vs SGD

• Problem: how should we allocate our limited resources:

• Train models longer vs train bigger models?

• Collect more data vs get more GPUs?

Transformers vs LSTMs

• Q: Are transformers better than LSTMs?

• Brute force way: spend tens of millions to train a LSTM GPT-3

• Scaling law way:

Number of Layers

• Does depth or width make a huge difference?

• 1 vs 2 layers makes a huge difference. • More layers have

diminishing returns below 107 params

The Scaling law way

• Approach:

• Train a few smaller models

• Establish a scaling law (LSTM vs. transformers)

• Select optimal hyperparam based on the scaling law prediction.

• Rationale

• The effect of hyperparameters on big LMs can be predicted before

training!

• Optimizer choice

• Model Depth

• Arechitecture choice

Back to our problem:

• how large a model should we train…

• How many data should we use…

• To achieve a given performance…

• Subject to a compute budget?

• Approach: model size data joint scaling

Model size data joint scaling

• Do we need more data or bigger models?

• Clearly, lots of data is wasted on small models

• Joint data-model scaling laws describe ho the two relate

Compute Trade-offs

• Q: what about other resources? Compute vs. performance?

• For a fixed compute budget…

• Big models that’s undertrained vs small model that’s well

trained?

• Solving the following optimization?

Approach: empirical scaling law

Final Remarks

• Scaling law: the physics behind LLMs

• Scaling law also represents a research approach transition:

• Stats and theoretical analysis -> empirical laws

• Exploration of different model architectures -> Scaling

transformers

• ML systems become essential

Recall A few Important Problems (will be HW3)

• How to estimate the number of parameters of an LLM?

• How to estimate the flops needed to train an LLM?

• How to estimate the memory needed to train a transformer?

• We will give you a scaling law and compute budget

• Task: design your optimal LLM

	幻灯片 1: DSC 291: ML Systems Spring 2024
	幻灯片 2: Course Evaluation
	幻灯片 3: Where We Are: LLMs
	幻灯片 4: Inference process of LLMs
	幻灯片 5: KV Cache
	幻灯片 6: KV Cache
	幻灯片 7: KV Cache
	幻灯片 8: Key insight
	幻灯片 9: Key insight
	幻灯片 10: Memory waste in KV Cache
	幻灯片 11: Memory waste in KV Cache
	幻灯片 12: vLLM: Efficient memory management for LLM inference
	幻灯片 13: Token block
	幻灯片 14: Token block
	幻灯片 15: Paged Attention
	幻灯片 16: Logical & physical token blocks
	幻灯片 17: Logical & physical token blocks
	幻灯片 18: Logical & physical token blocks
	幻灯片 19: Logical & physical token blocks
	幻灯片 20: Logical & physical token blocks
	幻灯片 21: Logical & physical token blocks
	幻灯片 22: Logical & physical token blocks
	幻灯片 23: Serving multiple requests
	幻灯片 24: Memory efficiency of vLLM
	幻灯片 25: Dynamic block mapping enables sharing
	幻灯片 26: Sharing token blocks
	幻灯片 27: Sharing token blocks
	幻灯片 28: Sharing token blocks
	幻灯片 29: Sharing token blocks
	幻灯片 30: Sharing token blocks
	幻灯片 31: Can We Apply FlashAttention to LLM Inference?
	幻灯片 32: Summary: Autoregressive Decoding
	幻灯片 33: Serving vs. Inference
	幻灯片 34: Inference process of LLMs
	幻灯片 35: The Problem is harder than Thought
	幻灯片 36: Why we cannot do better
	幻灯片 37: Why we cannot do better: bottleneck
	幻灯片 38: Tradeoffs between Different Language Models
	幻灯片 39: Speculative Decoding
	幻灯片 40: Speculative Decoding
	幻灯片 41: Verifying Speculative Decoding Results
	幻灯片 42: Verifying Speculative Decoding Results
	幻灯片 43: A few questions
	幻灯片 44: Verification Algorithm
	幻灯片 45: Can we overcome autoregressive decoding?
	幻灯片 46: Rethink Autoregressive Decoding
	幻灯片 47: Rethink Autoregressive Decoding
	幻灯片 48: One alternative: Jacobi Decoding
	幻灯片 49: Jacobi Decoding Illustrated
	幻灯片 50: What are the trade-offs in Jacobi decoding?
	幻灯片 51: Where We Are: LLMs
	幻灯片 52: Recall A few Important Problems (will be HW3)
	幻灯片 53: Motivation of Scaling Laws
	幻灯片 54: How do we do that in traditional ML: data scaling law
	幻灯片 55: Model Scaling Laws
	幻灯片 56: Transformers vs LSTMs
	幻灯片 57: Number of Layers
	幻灯片 58: The Scaling law way
	幻灯片 59: Back to our problem:
	幻灯片 60: Model size data joint scaling
	幻灯片 61: Compute Trade-offs
	幻灯片 62: Approach: empirical scaling law
	幻灯片 63: Final Remarks
	幻灯片 64: Recall A few Important Problems (will be HW3)

