

DSC 291: ML Systems Spring 2024

Parallelization

Single-device Optimization

Basics

https://hao-ai-lab.github.io/dsc291-s24/

LLMs

Enrollment Request

- The instructor team have approved all requests
- It is pending the DSC to decide if they want to enroll you or not
- I have written an email to Julia (DSC manager), waiting for response.
- If you are still in queue (Pending approval)
 - Send us (me/Will/Anze) a message to be added as an observer
- If you have been rejected by department
 - You are likely an undergrad
 - this course
- If our queue is still long by end of week 2 (no one is willing to drop)
 - I'll write a second email to DSC Dean

Wait for people to drop and you will be automatically enrolled until EoW2

Recommendation: send an email to DSC to sincerely express your strong need for

Two forms worth your attention

- Beginning of quarter survey
 - Please fill the survey
 - If >=80% of you filled the survey, all of you get 0.5%
 - If <80%, all of you do not get 0.5%
- Final presentation team-up spreadsheet:
 - <u>https://docs.google.com/spreadsheets/d/1foOkwrumTpuhd6xpNI0QH</u>
 <u>x9R31Biu-h0UdTp5wMltsQ/edit#gid=0</u>
 - Each team <= 5 people
 - We put 14 projects there (more than needed)
 - Do some Google search before you put your name

Today

- Understand our Workloads: Deep Learning
- Dataflow graph representation
 - Flavors of different ML frameworks

Background: DL Computation

Input

 $heta^{(t+1)}$ $f(\theta$

parameter

weight update model data (sgd, adam, etc.) (CNN, GPT, etc.)

Prediction

$$\Theta^{(t)}, \, \nabla_L ig(heta^{(t)}, \, D^{(t)} ig) ig)$$

Three important components

- Text
- Audio
- Table
- etc.

MoEs

Model

Compute

cpus

Transformers

 gpus/tpus/lpus M3/FPGA/etc.

Model: three parts

parameter

weight update (sgd, adam, etc.)

- predictions
 - CNNs/RNNs/Tranformers
- Loss function: How "well" are we doing for a given set of parameters
 - L2 loss, hinge loss, softmax loss, ranking loss
- the loss
 - SGD, Variational inference, Newton methods

Model: A parameterized function that describes how do we map inputs to

Optimization method: A procedure to find a set of parameters that minimizes

How to express these computation?

Idea: Composable Layers

Input

Prediction

Today

- Understand our Workloads: Deep Learning
- Dataflow graph representation

Understand Our Workload (a.k.a. DL course in 30 mins)

- There are many great models developed in the history
- In this class, we review the most important 5 classes
 - Convolutional Neural Networks
 - Recurrent neural networks
 - Transformers
 - Graph neural networks
 - Mixture-of-Experts
- If you have trouble following this session, read deep learning book or learn https://sites.google.com/view/cse251b

CNNs: Applications

Classification

Segmentation

Retrieval

Self-Driving

Detection

Synthesis

CNN: Key components

Convolve the filter with the i and compute dot products

Convolve the filter with the image: slide over the image spatially

Stacking Conv layers

Zeiler and Fergus 2013]

CNN: top3 models

- AlexNet by Alex/Iliya/Hinton
- ResNet by Kaiming etc.
- U-Net by Olaf etc.

CNN more important components

- Conv
 - Conv1d, Conv2d, conv3d, etc.
- Matmul (linear) :
 - C = A * B
 - Softmax
- Elementwise operations:
 - ReLU, add, sub
- Other ops
 - Pooling, normalization, etc.

After-class Q

How UpConv works?

Recurrent Neural Networks

many to many

many to many

Recurrent Neural Networks

Arbitrary number of outputs

Key idea: RNNs have an internal state that is updated as a sequence is processed

Arbitrary number of inputs

Recurrent Neural Networks: unrolling the computation

Most Important Components in RNNs

- One can make any basic neural network recurrent
- Matmul
- Elementwise nonlinear
 - ReLU, Tanh, sigmoid, etc.

RNN: top3 models

- Bidirectional RNNs
- LSTM
- GRU

Story: Who Invented RNNs?

Jürgen Schmidhuber

Jürgen Schmidhuber (born 17 January 1963) is a German computer scientist noted for his work in the field of artificial intelligence, specifically artificial neural networks.

w

Wikipedia https://en.wikipedia.org > wiki > Jürgen_Schmidhuber

Jürgen Schmidhuber - Wikipedia

About featured snippets • Feedback

Two Key Problems of RNNs

- Problem 1: lack of parallelizability.
 - Both forward and backward passes have O(sequence length) unparallelizable operators
 - computed Inhibits training on very long sequence
- Problem 2: forgetting.

A state cannot be computed before all previous states have been

Attention: Enable parallelism

 Idea: treat each position's representation as a query to access and incorporate information from a set of values

Attention

does not increase sequence length

Massively parallelizable: number of unparallelizable operations

We will learn attention and transformers in depth later:

- Self-attention
- Masked attention
- Multi-head attention

Transformers

Transformer = attention + a few MLPs

BERT

Encoder

GPT

Decoder

Most Important Components in attentions?

- Attention, which is composed by a set of
 - Matmul
 - Softmax
 - Normalization

Attention: top3 models

- Bert
- GPT/LLMs
- DiT: diffusion

Fixed forward diffusion process

Generative reverse denoising process

Data

Graph Neural Networks

• Goal: model graph data

Neural Networks

Graph Neural Networks

GNN Architecture

Neighbor Aggregation

Questions

- Any novel component in Graph neural networks?
- Graph neural network vs. recurrent neural networks?

aph neural networks? current neural networks?

Top-1 GNNs: GCN Graph convolutional Networks

MoE: mixture of experts

- Ideas: More persons voting r dictating
- Method: make each expert for a subset of cases

Ideas: More persons voting might be better than one person

Method: make each expert focus on predicting the right answer

Novel Component in MoE?

- Latest LLMs are mostly MoEs
- Novel Components in MoE:
 - Router
- After-class Q:
 - Why router makes it hard

Summary of DL class in 30 mins

Matmul is all you need

Today

- Understand our Workloads: Deep Learning
- Dataflow graph representation
- Flavors of different ML frameworks

Static Graph vs. Dynamic Graph

- programming interface
- Let's abstract out all the components we need:
 - Model and architecture
 - Objective function
 - Optimization computation
 - dropout (part of model and architecture)
 - regularization (part of the objective)
 - Data
 - Hardare: CPUs/GPUs/TPUs/etc.

Goal: we want to express as many as model as possible using one set of

Applications <-> System Design

Application

Data management (OLTP)

SQL Query planner Relational database Storage Big data processing (OLAP)

Spark/mapreduce Dataflow, lineage Data warehousing Column storage

Discussion: how can these ingredients affect the system design of ML frameworks

- Model and architecture
- Objective function
- Optimization computation
 - dropout (part of model and architecture)
 - regularization (part of the objective)
- Data
- Hardare: CPUs/GPUs/TPUs/etc.

Computational Dataflow Graph

- Node: represents the computation (operator)
- Edge: represents the data dependency (data flowing direction)
- Node: also represents the output tensor of the operator
- Node: also represents an input constant tensor (if it is not an compute operator)

 $L = MSE(w_2 \cdot ReLU(w_1x), y)$

Case Study: TensorFlow Program

- In the next few slides, we will do a case study of a deep learning program using TensorFlow v1 style API (classic Flavor).
- Note that today most deep learning frameworks now use a different style, but share the same mechanism under the hood
- Think about abstraction and implementation when going through these examples

One linear NN: Logistic Regression

Whole Program

```
import tinyflow as tf
from tinyflow.datasets import get_mnist
#_Create_the_model_
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
y = tf.nn.softmax(tf.matmul(x, W))
# Define loss and optimizer
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
# Update rule
learning_rate = 0.5
W_grad = tf.gradients(cross_entropy, [W])[0]
train_step = tf.assign(W, W - learning_rate * W_grad)
# Training Loop
sess = tf.Session()
sess.run(tf.initialize_all_variables())
mnist = get_mnist(flatten=True, onehot=True)
for i in range(1000):
   batch_xs, batch_ys = mnist.train.next_batch(100)
   sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})
```


Loss Function

```
import tinyflow as tf
from tinyflow.datasets import get_mnist
# Create the model
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
y = tf.nn.softmax(tf.matmul(x, W))
# Define loss and optimizer
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
learning_rate = 0.5
W_grad = tf.gradients(cross_entropy, [W])[0]
train_step = tf.assign(W, W - learning_rate * W_grad)
# Training Loop
sess = tf.Session()
sess.run(tf.initialize_all_variables())
mnist = get_mnist(flatten=True, onehot=True)
for i in range(1000):
   batch_xs, batch_ys = mnist.train.next_batch(100)
   sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})
```


Auto-diff

```
import tinyflow as tf
from tinyflow.datasets import get_mnist
# Create the model
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
y = tf.nn.softmax(tf.matmul(x, W))
# Define loss and optimizer
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
# Update rule
learning_rate = 0.5
W_grad = tf.gradients(cross_entropy, [W])[0]
train_step = tf.assign(W, W - learning_rate * W_grad)
# Training Loop
sess = tf.Session()
sess.run(tf.initialize_all_variables())
mnist = get_mnist(flatten=True, onehot=True)
for i in range(1000):
   batch_xs, batch_ys = mnist.train.next_batch(100)
   sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})
```


Automatic Differentiation: Next incoming topic

SGD Update

```
import tinyflow as tf
 from tinyflow.datasets import get_mnist
 # Create the model
 x = tf.placeholder(tf.float32, [None, 784])
 W = tf.Variable(tf.zeros([784, 10]))
 y = tf.nn.softmax(tf.matmul(x, W))
 # Define loss and optimizer
 y_ = tf.placeholder(tf.float32, [None, 10])
 cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
 # Update rule
 learning_rate = 0.5
 W_grad = tf.gradients(cross_entropy, [W])[0]
train_step = tf.assign(W, W - learning_rate * W_grad)
- # Training-Loop-
 sess = tf.Session()
 sess.run(tf.initialize_all_variables())
 mnist = get_mnist(flatten=True, onehot=True)
 for i in range(1000):
    batch_xs, batch_ys = mnist.train.next_batch(100)
    sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})
```


Trigger the Execution

```
import tinyflow as tf
from tinyflow.datasets import get_mnist
# Create the model
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
y = tf.nn.softmax(tf.matmul(x, W))
# Define loss and optimizer
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
# Update rule
learning_rate = 0.5
W_grad = tf.gradients(cross_entropy, [W])[0]
train_step = tf.assign(W, W - learning_rate * W_grad)
# Training Loop
sess = tf.Session()
sess.run(tf.initialize_all_variables())
mnist = get_mnist(flatten=True, onehot=True)
for i in range(1000):
   batch_xs, batch_ys = mnist.train.next_batch(100)
   sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})
```


What happens behind the Scene

- x = tf.placeholder(tf.float32, [None, 784])
- W = tf.Variable(tf.zeros([784, 10]))
- y = tf.nn.softmax(tf.matmul(x, W))

What happens behind the Scene (Cond.)

y_ = tf.placeholder(tf.float32, [None, 10])

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))

What happens behind the Scene (Cond.)

W_grad = tf.gradients(cross_entropy, [W])[0]

What happens behind the Scene (Cond.)

sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})

Discussion

- graph?
- What are the cons for computational graph abstraction?

learning_rate

 What are the benefits for computational graph abstraction? What are possible implementations and optimizations on this

A different flavor: PyTorch

x = torch.Tensor([3])
y = torch.Tensor([2])
z = x - y

loss = square(z)

loss.backward()

print(x.grad)

y.grad's path is omitted

Topic: Symbolic vs. Imperative

- Symbolic vs. imperative programming
- Define-then-run vs. define-and-run
- Define-then-run : write symbols to assemble the networks first, evaluate later
- define-and-run : immediate evaluation

```
# Create the model
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
y = tf.nn.softmax(tf.matmul(x, W))
# Define loss and optimizer
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
```

Symbolic

x = torch.Tensor([3])y = torch.Tensor([2]) Z = X - Yloss = square(z)loss.backward() print(x.grad)

Imperative

Symbolic vs. Imperative

- Symbolic
 - Good \bullet
 - easy to optimize (e.g. distributed, batching, parallelization) for developers
 - More efficient
 - Bad \bullet
 - The way of programming might be counter-intuitive
 - Hard to debug for user programs
 - Less flexible: you need to write symbols before actually doing anything
- Imperative:
 - Good \bullet
 - More flexible: write one line, evaluate one line (that's why we all like Python)
 - Bad
 - Less efficient
 - More difficult to optimize

Easy to program and easy to debug: because it matches the way we use C++ or python

Symbolic vs. Imperative

- They are also designed differently
 - Symbolic v.s. imperative programming

Caffe

PYTÖRCH

Imperative

Just-in-time Compilation

- Ideally, we want define-and-run during ______
- We want define-then-run during
- - z = x y

 - print(x.grad)

Q: how can we have both without rewriting the program?

```
@torch.compile()
x = torch.Tensor([3])
y = torch.Tensor([2])
loss = square(z)
loss.backward()
```


Static vs. Dynamic Dataflow Graphs

- Static Dataflow graphs
 - Define once, execute many times
 - Execution: Once defined, all following computation will follow the defined computation
 - Advantages
 - No extra effort for batching optimization, because it can be by nature batched
 - It is always easy to handle a static computational dataflow graphs in all aspects, because of its fixed structure Node placement, distributed runtime, memory management, etc.
 - Benefit the developers

Static vs. Dynamic Dataflow Graphs

- Can we handle dynamic dataflow graphs?
 - Difficulty in expressing complex flow-control logic
 - Complexity of the computation graph implementation
 - Difficulty in debugging

How to Handle Dynamic Dataflow Graph?

- In general two ways:
 - before execution
 - Constructing High-level symbols to absorb dynamics

Define-and-run: do not requiring contracting the entire graph

Next week

- Autodiff
- ML System overview

Now we roughly have the problem

ML Systems