
DSC 291: ML Systems

Spring 2024

1

https://hao-ai-lab.github.io/dsc291-s24/

Basics

Single-device Optimization

LLMs

Parallelization

Enrollment Request

• The instructor team have approved all requests

• It is pending the DSC to decide if they want to enroll you or not

• I have written an email to Julia (DSC manager), waiting for response.

• If you are still in queue (Pending approval)

• Send us (me/Will/Anze) a message to be added as an observer

• Wait for people to drop and you will be automatically enrolled until EoW2

• If you have been rejected by department

• You are likely an undergrad

• Recommendation: send an email to DSC to sincerely express your strong need for

this course

• If our queue is still long by end of week 2 (no one is willing to drop)

• I’ll write a second email to DSC Dean

Two forms worth your attention

• Beginning of quarter survey

• Please fill the survey

• If >=80% of you filled the survey, all of you get 0.5%

• If <80%, all of you do not get 0.5%

• Final presentation team-up spreadsheet:

• https://docs.google.com/spreadsheets/d/1foOkwrumTpuhd6xpNI0QH

x9R31Biu-h0UdTp5wMItsQ/edit#gid=0

• Each team <= 5 people

• We put 14 projects there (more than needed)

• Do some Google search before you put your name

https://docs.google.com/spreadsheets/d/1foOkwrumTpuhd6xpNI0QHx9R31Biu-h0UdTp5wMItsQ/edit#gid=0
https://docs.google.com/spreadsheets/d/1foOkwrumTpuhd6xpNI0QHx9R31Biu-h0UdTp5wMItsQ/edit#gid=0

Today

• Understand our Workloads: Deep Learning

• Dataflow graph representation

• Flavors of different ML frameworks

Background: DL Computation

Input

Backward Propagation

Dog

Forward Propagation

Layer 1 Layer 2 Layer n…

Prediction

Cat

parameter
model

(CNN, GPT, etc.)
data

weight update

(sgd, adam, etc.)

Three important components

Data Model Compute

• images
• Text
• Audio
• Table
• etc.

• cpus

• gpus/tpus/lpus

• M3/FPGA/etc.

• CNNs

• RNNs

• GNNs

• Transformers

• MoEs

Model: three parts

• Model: A parameterized function that describes how do we map inputs to

predictions

• CNNs/RNNs/Tranformers

• Loss function: How “well” are we doing for a given set of parameters

• L2 loss, hinge loss, softmax loss, ranking loss

• Optimization method: A procedure to find a set of parameters that minimizes

the loss

• SGD, Variational inference, Newton methods

parameter
model

(CNN, GPT, etc.)
data

weight update

(sgd, adam, etc.)

How to express these computation?

• Idea: Composable Layers

Input

Backward Propagation

Dog

Forward Propagation

Layer 1 Layer 2 Layer n…

Prediction

Cat

Today

• Understand our Workloads: Deep Learning

• Dataflow graph representation

Understand Our Workload (a.k.a. DL course in 30 mins)

• There are many great models developed in the history

• In this class, we review the most important 5 classes

• Convolutional Neural Networks

• Recurrent neural networks

• Transformers

• Graph neural networks

• Mixture-of-Experts

• If you have trouble following this session, read deep learning book

or learn https://sites.google.com/view/cse251b

CNNs: Applications

CNN: Key components

• Convolve the filter with the image: slide over the image spatially

and compute dot products

Stacking Conv layers

CNN: top3 models

• AlexNet by Alex/Iliya/Hinton

• ResNet by Kaiming etc.

• U-Net by Olaf etc.

CNN more important components

• Conv

• Conv1d, Conv2d, conv3d, etc.

• Matmul (linear) :

• C = A * B

• Softmax

• Elementwise operations:

• ReLU, add, sub

• Other ops

• Pooling, normalization, etc.

After-class Q

How UpConv works?

Recurrent Neural Networks

Recurrent Neural Networks

Recurrent Neural Networks: unrolling the computation

Most Important Components in RNNs

• One can make any basic neural network recurrent

• Matmul

• Elementwise nonlinear

• ReLU, Tanh, sigmoid, etc.

RNN: top3 models

• Bidirectional RNNs

• LSTM

• GRU

Story: Who Invented RNNs?

Two Key Problems of RNNs

• Problem 1: lack of parallelizability.

• Both forward and backward passes have O(sequence length)

unparallelizable operators

• A state cannot be computed before all previous states have been

computed Inhibits training on very long sequence

• Problem 2: forgetting.

Attention: Enable parallelism

• Idea: treat each position’s representation as a query to access

and incorporate information from a set of values

Attention

• Massively parallelizable: number of unparallelizable operations

does not increase sequence length

Transformers

• Transformer = attention + a few MLPs

Most Important Components in attentions?

• Attention, which is composed by a set of

• Matmul

• Softmax

• Normalization

Attention: top3 models

• Bert

• GPT/LLMs

• DiT: diffusion

Graph Neural Networks

• Goal: model graph data

GNN Architecture

Questions

• Any novel component in Graph neural networks?

• Graph neural network vs. recurrent neural networks?

Top-1 GNNs: GCN Graph convolutional Networks

MoE: mixture of experts

• Ideas: More persons voting might be better than one person

dictating

• Method: make each expert focus on predicting the right answer

for a subset of cases

Novel Component in MoE?

• Latest LLMs are mostly MoEs

• Novel Components in MoE:

• Router

• After-class Q:

• Why router makes it hard

Summary of DL class in 30 mins

Matmul is all you need

Today

• Understand our Workloads: Deep Learning

• Dataflow graph representation

• Flavors of different ML frameworks

Static Graph vs. Dynamic Graph

• Goal: we want to express as many as model as possible using one set of

programming interface

• Let’s abstract out all the components we need:

• Model and architecture

• Objective function

• Optimization computation

• dropout (part of model and architecture)

• regularization (part of the objective)

• Data

• Hardare:CPUs/GPUs/TPUs/etc.

Applications <-> System Design

Application

Systems

Data management
(OLTP)

SQL
Query planner

Relational database
Storage

Big data processing
(OLAP)

Spark/mapreduce
Dataflow, lineage
Data warehousing
Column storage

Discussion: how can these ingredients affect the system

design of ML frameworks

• Model and architecture

• Objective function

• Optimization computation

• dropout (part of model and architecture)

• regularization (part of the objective)

• Data

• Hardare:CPUs/GPUs/TPUs/etc.

Computational Dataflow Graph

• Node: represents the computation (operator)

• Edge: represents the data dependency (data flowing direction)

• Node: also represents the output tensor of the operator

• Node: also represents an input constant tensor (if it is not an

compute operator)

x MSE

y

relu matmul

w2

matmul

w1

a x b + 3

Case Study: TensorFlow Program

• In the next few slides, we will do a case study of a deep learning

program using TensorFlow v1 style API (classic Flavor).

• Note that today most deep learning frameworks now use a

different style, but share the same mechanism under the hood

• Think about abstraction and implementation when going through

these examples

One linear NN: Logistic Regression

Whole Program

Loss Function

Auto-diff

SGD Update

Trigger the Execution

What happens behind the Scene

What happens behind the Scene (Cond.)

What happens behind the Scene (Cond.)

What happens behind the Scene (Cond.)

Discussion

• What are the benefits for computational graph abstraction?

• What are possible implementations and optimizations on this

graph?

• What are the cons for computational graph abstraction?

A different flavor: PyTorch

Topic: Symbolic vs. Imperative

• Symbolic vs. imperative programming

• Define-then-run vs. define-and-run

• Define-then-run : write symbols to assemble the networks first,

evaluate later

• define-and-run : immediate evaluation

ImperativeSymbolic

55

Symbolic vs. Imperative

• Symbolic

• Good

• easy to optimize (e.g. distributed, batching, parallelization) for developers

• More efficient

• Bad

• The way of programming might be counter-intuitive

• Hard to debug for user programs

• Less flexible: you need to write symbols before actually doing anything

• Imperative:

• Good

• More flexible: write one line, evaluate one line (that’s why we all like Python)

• Easy to program and easy to debug: because it matches the way we use C++ or python

• Bad

• Less efficient

• More difficult to optimize

56

Symbolic vs. Imperative

• They are also designed differently

• Symbolic v.s. imperative programming

Imperative Symbolic

Just-in-time Compilation

• Ideally, we want define-and-run during ______

• We want define-then-run during _____

• Q: how can we have both without rewriting the program?

@torch.compile()

LSTM LSTM

LSTMLSTM

LSTMLSTM

LSTM

Static Models vs. Dynamic Models

58

conv2d pool conv2dx y
x
x

y
y

S

VP

VD N

NP

NP

D N

The girl picked

the coin

S

John

N VP

V NP

D N

hit the ball John hit the ball

LSTM

LSTM LSTM

LSTM

LSTM LSTM

LSTM

LSTM LSTM

The girl picked the coin

Dataflow graph

59

Static vs. Dynamic Dataflow Graphs

• Static Dataflow graphs

• Define once, execute many times

• Execution: Once defined, all following computation will follow the

defined computation

• Advantages

• No extra effort for batching optimization, because it can be by

nature batched

• It is always easy to handle a static computational dataflow graphs

in all aspects, because of its fixed structure
• Node placement, distributed runtime, memory management, etc.

• Benefit the developers

60

Static vs. Dynamic Dataflow Graphs

• Can we handle dynamic dataflow graphs?

• Difficulty in expressing complex flow-control logic

• Complexity of the computation graph implementation

• Difficulty in debugging

How to Handle Dynamic Dataflow Graph?

• In general two ways:

• Define-and-run: do not requiring contracting the entire graph

before execution

• Constructing High-level symbols to absorb dynamics

Next week

• Autodiff

• ML System overview

63

Now we roughly have the problem

ML Systems

	幻灯片 1: DSC 291: ML Systems Spring 2024
	幻灯片 2: Enrollment Request
	幻灯片 3: Two forms worth your attention
	幻灯片 4: Today
	幻灯片 5: Background: DL Computation
	幻灯片 6: Three important components
	幻灯片 7: Model: three parts
	幻灯片 8: How to express these computation?
	幻灯片 9: Today
	幻灯片 10: Understand Our Workload (a.k.a. DL course in 30 mins)
	幻灯片 11: CNNs: Applications
	幻灯片 12: CNN: Key components
	幻灯片 13: Stacking Conv layers
	幻灯片 14: CNN: top3 models
	幻灯片 15: CNN more important components
	幻灯片 16: After-class Q
	幻灯片 17: Recurrent Neural Networks
	幻灯片 18: Recurrent Neural Networks
	幻灯片 19: Recurrent Neural Networks: unrolling the computation
	幻灯片 20: Most Important Components in RNNs
	幻灯片 21: RNN: top3 models
	幻灯片 22: Story: Who Invented RNNs?
	幻灯片 23: Two Key Problems of RNNs
	幻灯片 24: Attention: Enable parallelism
	幻灯片 25: Attention
	幻灯片 26: Transformers
	幻灯片 27: Most Important Components in attentions?
	幻灯片 28: Attention: top3 models
	幻灯片 29: Graph Neural Networks
	幻灯片 30: GNN Architecture
	幻灯片 31: Questions
	幻灯片 32: Top-1 GNNs: GCN Graph convolutional Networks
	幻灯片 33: MoE: mixture of experts
	幻灯片 34: Novel Component in MoE?
	幻灯片 35: Summary of DL class in 30 mins
	幻灯片 36: Today
	幻灯片 37: Static Graph vs. Dynamic Graph
	幻灯片 38: Applications <-> System Design
	幻灯片 39: Discussion: how can these ingredients affect the system design of ML frameworks
	幻灯片 40: Computational Dataflow Graph
	幻灯片 41: Case Study: TensorFlow Program
	幻灯片 42: One linear NN: Logistic Regression
	幻灯片 43: Whole Program
	幻灯片 44: Loss Function
	幻灯片 45: Auto-diff
	幻灯片 46: SGD Update
	幻灯片 47: Trigger the Execution
	幻灯片 48: What happens behind the Scene
	幻灯片 49: What happens behind the Scene (Cond.)
	幻灯片 50: What happens behind the Scene (Cond.)
	幻灯片 51: What happens behind the Scene (Cond.)
	幻灯片 52: Discussion
	幻灯片 53: A different flavor: PyTorch
	幻灯片 54: Topic: Symbolic vs. Imperative
	幻灯片 55: Symbolic vs. Imperative
	幻灯片 56: Symbolic vs. Imperative
	幻灯片 57: Just-in-time Compilation
	幻灯片 58: Static Models vs. Dynamic Models
	幻灯片 59: Static vs. Dynamic Dataflow Graphs
	幻灯片 60: Static vs. Dynamic Dataflow Graphs
	幻灯片 61: How to Handle Dynamic Dataflow Graph?
	幻灯片 62: Next week
	幻灯片 63: Now we roughly have the problem

