

DSC 291: ML Systems Spring 2024

Parallelization

Single-device Optimization

Basics

https://hao-ai-lab.github.io/dsc291-s24/

LLMs

Next Quiz: Thursday (4/11)

• TA to help test IClicker

Two forms worth your attention

- Beginning of quarter survey
 - ?% have filled the survey please fill to earn the 0.5%

In-Class Quiz

Consist of 2 Components:

Attendance check-in on iClicker app 15 minute quiz on Gradescope (UCSD email) Will go over quiz in class after

Need to complete both to get credit

Quiz will open at 5:00PM and close at 5:15PM.

Without checking in on iClicker you cannot get credit!

Try to check-in now

We are using iClicker App for attendance! Try to check-in now

• Check-in to DSC 291 ML Systems c

DSC 291 ML Systems

William Lin Tue 05:00 PM, Thu 05:00 PM DSC291_SP24_D00, Spring 2024

12:30

<

Ν 🔌 😪 🖼 ⊿ 34%

Confirm Course

Institution University of California San Diego

Course Name DSC 291 ML Systems

Course ID DSC291_SP24_D00

Instructor William Lin

Term Spring 2024

Start Date April 01, 2024

End Date September 30, 2024

Meeting Times Tue 05:00 PM,Thu 05:00 PM

Add This Course

Cancel

on	iclicker app
12:33	
	DSC 291 ML Systems
	Attendance
	33.3%
	2 recorded absences

Who originally developed PyTorch?

OpenAl

Recap

- Understand our Workloads: Deep Learning
 - CNNs/RNNs/GNNs/Transformers/MoE
 - The most important operator: matmul
- Dataflow graph

 - Node: operator (e.g., matmul) and its output tensor Edge: dataflowing directions and dependency
- Programming flavors
 - Define-then-run (Symbolic) and Define-and-run (Imperative)
 - Static and dynamic

Today

- Auto-differentiation
- Concurrent ML Systems architecture overview

Recap: how to take derivative

Given $f(\theta)$, what is $\frac{\partial f}{\partial \theta}$?

 $\frac{\partial f}{\partial \theta} = \lim_{\epsilon \to 0} \frac{f(\theta + \epsilon) - f(\theta)}{\epsilon}$

 $f(\theta + \epsilon) - f(\theta - \epsilon)$ 2ϵ

Problem: slow: evaluate f twice to get one gradient Error: approximal and floating point has errors

$$+ o(\epsilon^2)$$

Numerical differentiation: gradient checking

$\hat{g}(\theta) \approx \frac{f(\theta + \epsilon) - f(\theta - \epsilon)}{2\epsilon} + \epsilon$

- 1. Implement your own g(*)
- 2. Substitute θ to get $g(\theta)$
- 3. Compare $\hat{g}(\theta)$ and $g(\theta)$

4. If $\hat{g}(\theta) - g(\theta) > \delta$, your $g(\theta)$ might be wrong!

Symbolic Differentiation

Write down the formula, derive the gradient following rules

 $\frac{\partial (f(\theta) + g(\theta))}{\partial \theta}$ $\frac{\partial(f(\theta)g(\theta))}{\partial g(\theta)} =$ $\partial \theta$

 $\partial(f(g(\theta)))$ $\partial \theta$

$$\frac{(\theta)}{\partial \theta} = \frac{\partial f(\theta)}{\partial \theta} + \frac{\partial g(\theta)}{\partial \theta}$$
$$g(\theta) \frac{\partial f(\theta)}{\partial \theta} + f(\theta) \frac{\partial g(\theta)}{\partial \theta}$$
$$\frac{\partial f(g(\theta))}{\partial \theta} \frac{\partial g(\theta)}{\partial \theta}$$

Map autodiff rules to computational graph

Forward evaluation trace

$$v_{1} = x_{1} = 2$$

$$v_{2} = x_{2} = 5$$

$$v_{3} = \ln v_{1} = \ln 2 = 0.693$$

$$v_{4} = v_{1} \times v_{2} = 10$$

$$v_{5} = \sin v_{2} = \sin 5 = -0.959$$

$$v_{6} = v_{3} + v_{4} = 10.693$$

$$v_{7} = v_{6} - v_{5} = 10.693 + 0.959 = 11.652$$

$$y = v_{7} = 11.652$$

- High-level idea of autodiff:
 - Using chain rules
- There are two ways of autoidff
 - Forward mode autodiff
 - Backward mode autodiff
- Forward mode: Traverse the chain rule from inside to outside
- Backward mode: Traverse the chain rule from outside to inside

Forward Mode Autodiff

Forward evaluation trace

$$v_{1} = x_{1} = 2$$

$$v_{2} = x_{2} = 5$$

$$v_{3} = \ln v_{1} = \ln 2 = 0.693$$

$$v_{4} = v_{1} \times v_{2} = 10$$

$$v_{5} = \sin v_{2} = \sin 5 = -0.959$$

$$v_{6} = v_{3} + v_{4} = 10.693$$

$$v_{7} = v_{6} - v_{5} = 10.693 + 0.959 = 11.652$$

$$y = v_{7} = 11.652$$

- Define $\dot{v}_i = \frac{\partial v_i}{\partial x_i}$
- We then compute each \dot{v}_i following the forward order of the graph

$$\begin{aligned} \dot{v}_1 &= 1 \\ \dot{v}_2 &= 0 \\ \dot{v}_3 &= \dot{v}_1 / v_1 = 0.5 \\ \dot{v}_4 &= \dot{v}_1 v_2 + \dot{v}_2 v_1 = 1 \times 5 + 0 \times 2 = 5 \\ \dot{v}_5 &= \dot{v}_2 \cos v_2 = 0 \times \cos 5 = 0 \\ \dot{v}_6 &= \dot{v}_3 + \dot{v}_4 = 0.5 + 5 = 5.5 \\ \dot{v}_7 &= \dot{v}_6 - \dot{v}_5 = 5.5 - 0 = 5.5 \end{aligned}$$

• Finally:
$$\frac{\partial y}{\partial x_1} = \dot{v}_7 = 5.5$$

Summary: Forward Mode Autodiff

- Start from the input nodes
- Derive gradient all the way to the output nodes
- Discussion: Pros and Cons of FM Autodiff?
 - For $f: \mathbb{R}^n \to \mathbb{R}^k$, we need n forward passes to get the grad w.r.t. each input
 - However, in ML: k = 1 and n is very large

Reverse Mode Autodiff

Forward evaluation trace

$$v_{1} = x_{1} = 2$$

$$v_{2} = x_{2} = 5$$

$$v_{3} = \ln v_{1} = \ln 2 = 0.693$$

$$v_{4} = v_{1} \times v_{2} = 10$$

$$v_{5} = \sin v_{2} = \sin 5 = -0.959$$

$$v_{6} = v_{3} + v_{4} = 10.693$$

$$v_{7} = v_{6} - v_{5} = 10.693 + 0.959 = 11.652$$

$$y = v_{7} = 11.652$$

- Define adjoint $\overline{v_i} = \frac{\partial y}{\partial x_i}$
- We then compute each \bar{v}_i in the reserve topological order of the graph

$$\overline{v_7} = \frac{\partial y}{\partial v_7} = 1$$

$$\overline{v_6} = \overline{v_7} \frac{\partial v_7}{\partial v_6} = \overline{v_7} \times 1 = 1$$

$$\overline{v_5} = \overline{v_7} \frac{\partial v_7}{\partial v_5} = \overline{v_7} \times (-1) = -1$$

$$\overline{v_4} = \overline{v_6} \frac{\partial v_6}{\partial v_4} = \overline{v_6} \times 1 = 1$$

$$\overline{v_3} = \overline{v_6} \frac{\partial v_6}{\partial v_3} = \overline{v_6} \times 1 = 1$$

$$\overline{v_2} = \overline{v_5} \frac{\partial v_5}{\partial v_2} + \overline{v_4} \frac{\partial v_4}{\partial v_2} = \overline{v_5} \times \cos v_2 + \overline{v_4} \times v_1 = -0.284 + 2 = 1.716$$

$$\overline{v_1} = \overline{v_4} \frac{\partial v_4}{\partial v_1} + \overline{v_3} \frac{\partial v_3}{\partial v_1} = \overline{v_4} \times v_2 + \overline{v_3} \frac{1}{v_1} = 5 + \frac{1}{2} = 5.5$$

• Finally: $\frac{\partial y}{\partial x_1} = \bar{v}_1 = 5.5$

Case Study

How to derive the gradient of v_1

$$\overline{v_1} = \frac{\partial y}{\partial v_1} = \frac{\partial f(v_2, v_3)}{\partial v_2} \frac{\partial v_2}{\partial v_1} + \frac{\partial v_3}{\partial v_1} \frac{\partial v_2}{\partial v_1} + \frac{\partial v_3}{\partial v_1} \frac{\partial v_2}{\partial v_1} + \frac{\partial v_3}{\partial v_1} \frac{\partial v_3}{\partial v_1} + \frac{\partial v_3}{\partial v_$$

For a v_i used by multiple consumers:

$$\overline{v_i} = \sum_{j \in next(i)} \overline{v_{i \to j}}$$

 $\frac{\partial f(v_2, v_3)}{\partial v_3} \quad \frac{\partial v_3}{\partial v_1} = \overline{v_2} \frac{\partial v_2}{\partial v_1} + \overline{v_3} \frac{\partial v_3}{\partial v_1}$

, where
$$\overline{v_{i \rightarrow j}} = \overline{v_j} \frac{\partial v_j}{\partial v_i}$$

How to implement reverse Autodiff (aka. BP)

def gradient(out): node_to_grad = {out: [1]} for $k \in inputs(i)$:

```
for i in reverse_topo_order(out):
    \overline{v_i} = \sum_j \overline{v_{i \to j}} = \operatorname{sum}(\operatorname{node\_to\_grad}[i])
            compute \overline{v_{k \to i}} = \overline{v_i} \ \frac{\partial v_i}{\partial v_k}
            append \overline{v_{k \to i}} to node_to_grad[k]
    return adjoint of input \overline{v_{input}}
```

Backward Graph

def gradient(out): node_to_grad = {out: [1]} for i in reverse_topo_order(out): $\overline{v_i} = \sum_j \overline{v_{i \to j}} = \text{sum(node_to_grad[i])}$ for $k \in inputs(i)$: compute $\overline{v_{k \to i}} = \overline{v_i} \ \frac{\partial v_i}{\partial v_k}$ append $\overline{v_{k \to i}}$ to node_to_grad[k] return adjoint of input $\overline{v_{input}}$

How can we construct a computational graph that calculates the adjust value?

Idea: Just Express Grad Computation using Graph

def gradient(out): node_to_grad = {out: [1]} for i in reverse_topo_order(out): $\overline{v_i} = \sum_j \overline{v_{i \to j}} = \operatorname{sum}(\operatorname{node_to_grad}[i])$ for $k \in inputs(i)$: compute $\overline{v_{k \to i}} = \overline{v_i} \frac{\partial v_i}{\partial v_k}$ append $\overline{v_{k \to i}}$ to node_to_grad[k] return adjoint of input $\overline{v_{input}}$

i = 4
node_to_grad: {
4: [
$$\overline{v_4}$$
]
}

Inspect (v_2 , v_4) and (v_3 , v_4)

def gradient(out): node_to_grad = {out: [1]} for *i* in reverse_topo_order(out): $\overline{v_i} = \sum_j \overline{v_{i \to j}} = \text{sum}(\text{node_to_grad}[i])$ for $k \in inputs(i)$: compute $\overline{v_{k \to i}} = \overline{v_i} \frac{\partial v_i}{\partial v_k}$ append $\overline{v_{k \to i}}$ to node_to_grad[k] return adjoint of input $\overline{v_{input}}$

$$i = 4$$

node_to_grad: {
2: $[\overline{v_{2 \rightarrow 4}}]$
3: $[\overline{v_3}]$
4: $[\overline{v_4}]$
}

Inspect (v_2, v_3)

def gradient(out): node_to_grad = {out: [1]} for *i* in reverse_topo_order(out): $\overline{v_i} = \sum_j \overline{v_{i \to j}} = \text{sum}(\text{node_to_grad}[i])$ for $k \in inputs(i)$: compute $\overline{v_{k \to i}} = \overline{v_i} \frac{\partial v_i}{\partial v_k}$ append $\overline{v_{k \to i}}$ to node_to_grad[k] return adjoint of input $\overline{v_{input}}$

$$i = 3$$

node_to_grad: {
2: $[\overline{v_{2 \to 4}}, \overline{v_{2 \to 3}}]$
3: $[\overline{v_3}]$
4: $[\overline{v_4}]$

Inspect v_2

def gradient(out): node_to_grad = {out: [1]} for *i* in reverse_topo_order(out): $\overline{v_i} = \sum_j \overline{v_{i \to j}} = \text{sum}(\text{node_to_grad}[i])$ for $k \in inputs(i)$: compute $\overline{v_{k \to i}} = \overline{v_i} \frac{\partial v_i}{\partial v_k}$ append $\overline{v_{k \to i}}$ to node_to_grad[k] return adjoint of input $\overline{v_{input}}$

$$i = 2$$

node_to_grad: {
2: $[\overline{v_{2\rightarrow 4}}, \overline{v_{2\rightarrow 3}}]$
3: $[\overline{v_3}]$
4: $[\overline{v_4}]$
}

d

Inspect (v_1, v_2)

def gradient(out): node_to_grad = {out: [1]} for *i* in reverse_topo_order(out): $\overline{v_i} = \sum_j \overline{v_{i \to j}} = \text{sum}(\text{node_to_grad}[i])$ for $k \in inputs(i)$: compute $\overline{v_{k \to i}} = \overline{v_i} \frac{\partial v_i}{\partial v_k}$ append $\overline{v_{k \to i}}$ to node_to_grad[k] return adjoint of input $\overline{v_{input}}$

$$\begin{array}{l} i = 2 \\ node_to_grad: \{ \\ 1: [\overline{v_1}] \\ 2: [\overline{v_{2 \to 4}}, \overline{v_{2 \to 3}}] \\ 3: [\overline{v_3}] \\ 4: [\overline{v_4}] \\ \} \end{array}$$

Summary

- Run backward through the forward graph
- Caffe/cuda-convnet

- Construct backward graph
- Used by TensorFlow, PyTorch

Incomplete yet?

What is the missing from the following graph for ML training?

Put in Practice $L = \mathrm{MSE}(w_2 \cdot \mathrm{ReLU}(w_1 x), \, y) \;\;\; heta = \{w_1, w_2\}, \, D = \{(x, y)\}$

1D -> 2D

Forward evaluation trace

$$Z_{ij} = \sum_{k} X_{ik} W_{kj}$$
$$v = f(Z)$$

Forward matrix form

$$Z = XW$$
$$v = f(Z)$$

Define adjoint for tensor values
$$\bar{Z} = \begin{bmatrix} \frac{\partial y}{\partial Z_{1,1}} & \cdots & \frac{\partial y}{\partial Z_{1,n}} \\ \cdots & \cdots & \cdots \\ \frac{\partial y}{\partial Z_{m,1}} & \cdots & \frac{\partial y}{\partial Z_{m,n}} \end{bmatrix}$$

Reverse evaluation in scalar form

$$\overline{X_{i,k}} = \sum_{j} \frac{\partial Z_{i,j}}{\partial X_{i,k}} \overline{Z_{i,j}} = \sum_{j} W_{k,j} \overline{Z_{i,j}}$$

Reverse matrix form

 $\bar{X} = \bar{Z}W^T$

Summary: Backward Mode Autodiff

- Start from the output nodes
- Derive gradient all the way back to the input nodes
- Discussion: Pros and Cons of FM Autodiff?
 - For $f: \mathbb{R}^n \to \mathbb{R}^k$, we need k backward passes to get the grad w.r.t. each input
 - in ML: k = 1 and n is very large
 - How about other areas?

Homework: How to derive gradients for

Softmax cross entropy:

$$L = -\sum t_i \log(y_i), y_i = softmax(\mathbf{x})_i = \frac{e^{x_i}}{\sum e^{x_d}}$$

• Sample $i \sim softmax(\mathbf{x})_i, z = f(i)$

• How to derive
$$\frac{\partial f}{\partial x}$$
?

Today

- Auto-differentiation
- Concurrent ML Systems architecture overview

Now we roughly have the problem

- Our system goals:
 - Fast
 - Scale
 - Memory-efficient
 - Run on diverse hardware
 - Energy-efficient
 - Easy to program/debug/deploy

ML System Overview

Dataflow Graph

- Autodiff
- Graph Optimization
 - Parallelization
- Runtime: schedule / memory
- Operator optimization/compilation

ML System Overview

Dataflow Graph

Autodiff

- Graph Optimization
 - Parallelization
- Runtime: schedule / memory
- Operator optimization/compilation

Graph Optimization

- Goal:
 - Rewrite the original Graph G to G'
 - G' runs faster than G

Dataflow Graph

Autodiff

Graph Optimization

Motivating Example: ResNet

Dataflow Graph

Autodiff

Graph Optimization

Parallelizat

memory

Operato

Z(n,c,h,w) = Y(n,c,h,w) * R(c) + P(c)

$$\sum_{u,v} X(n,d,h+u,w+v) * W(c,d,u,v) + B(n,c,h,w)$$

Motivating Example: ResNet

Why the fusion of conv2d & batchnorm is faster?

lacksquare

Dataflow Graph

Autodiff

Graph Optimization

$$W_2(n, c, h, w) = W(n, c, h, w) * R(c)$$
$$B_2(n, c, h, w) = B(n, c, h, w) * R(c) + P(c)$$

Motivating Example: we can go further

Does each step become faster than previous step? How does it perf on different hardware?

Dataflow Graph

Autodiff

Graph Optimization

Motivating Example 3: attention

Why merged QKV is faster?

lacksquare

Original $Q = matmul(W_q, h)$ $K = matmul(W_k, h)$ $V = matmul(W_v, h)$

Merged QKV

 $QKV = matmul(concat(W_q, W_k, W_v), h)$

Arithmetic Intensity

AI = #ops / #bytes

Arithmetic intensity

```
void add(int n, float* A, float* B, float* C){
  for (int i=0; i < n; i++)
    C[i] = A[i] + B[i];
```

Two loads, one store per math op (arithmetic intensity = 1/3)

- 1. Read A[i]
- 2. Read B[i]
- 3. Add A[i]+B[i]
- 4. Store C[i]

Which program performs better? Program 1

```
void add(int n, float* A, float* B, float* C){
  for (int i=0; i < n; i++)
    C[i] = A[i] + B[i];
void mul(int n, float* A, float* B, float* C) {
  for (int i=0; i < n; i++)
    C[i] = A[i] * B[i];
float* A, *B, *C, *D, *E, *tmp1, *tmp2;
   assume arrays are allocated here
    compute E = D + ((A + B) * C)
add(n, A, B, tmp1);
mul(n, tmp1, C, tmp2);
add(n, tmp2, D,E);
```

Two loads, one store per math op (arithmetic intensity = 1/3)

Two loads, one store per math op (arithmetic intensity = 1/3)

Overall arithmetic intensity = 1/3

Which program performs better? Program 2

float* A, *B, *C, *D, *E, *tmp1, *tmp2; assume arrays are allocated here compute E = D + ((A + B) * C)add(n, A, B, tmp1); mul(n, tmp1, C, tmp2); add(n, tmp2, D,E);

void fused(int n, float* A, float* B, float* C, float* D, float* E) $\{$ for (int i=0; i < n; i++) E[i] = D[i] + (A[i] + B[i]) * C[i];compute E = D + (A + B) * Cfused(n, A, B,C, D,E);

Overall arithmetic intensity = 1/3

Four loads, one store per 3 math ops arithmetic intensity = 3/5

How to perform graph optimization?

- Writing rules / template
- Auto discovery

Dataflow Graph

Autodiff

Graph Optimization

Parallelizat

ntime: sche memorv

Operato

Parallelization

Dataflow Graph

Autodiff

Parallelization

Goal: parallelize the graph compute over multiple devices

Parallelization Problems

- How to partition
- How to communicate
- How to schedule
- Consistency
- How to auto-parallel

Dataflow Graph

Autodiff

Graph Optimi

Parallelization

memory

Operato

Runtime and Scheduling

- Goal: schedule the compute that
 - As fast as possible
 - Overlap communication with compute
 - Subject to memory constraints

Dataflow Graph

Autodiff

Graph Optimi

Parallelizat

Runtime: schedule memory

Operato

Goal: schedule the compute/communication/memory in a way

vith compute

Motivating Example: Schedule

Operator Implementation

- Goal: get the fastest possible implementation of
 - Matmul
 - Conv2d?
 - Etc
- For different hardware: V100, A100, H100, phone, TPU
- For different precision: fp32, fp16, fp8, fp4
- attention

Dataflow Graph

Autodiff

Operator

For different shape: conv2d_3x3, conv2d_5x5, matmul2D, 3D,

