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https://hao-ai-lab.github.io/dsc291-s24/

Basics

Single-device Optimization

LLMs

Parallelization



Next Quiz: Thursday (4/11)

• TA to help test IClicker



Two forms worth your attention

• Beginning of quarter survey

• ?% have filled the survey – please fill to earn the 0.5%



In-Class Quiz

Consist of 2 Components:

- Attendance check-in on iClicker app

- 15 minute quiz on Gradescope (UCSD email)

- Will go over quiz in class after

Need to complete both to get credit

Quiz will open at 5:00PM and close at 5:15PM.

Without checking in on iClicker you cannot get 

credit!
Try to check-in now



We are using iClicker App for attendance!

● Check-in to DSC 291 ML Systems on iclicker app

Try to check-in now



Who originally developed PyTorch?



Recap

• Understand our Workloads: Deep Learning

• CNNs/RNNs/GNNs/Transformers/MoE

• The most important operator: matmul

• Dataflow graph

• Node: operator (e.g., matmul) and its output tensor

• Edge: dataflowing directions and dependency

• Programming flavors

• Define-then-run (Symbolic) and Define-and-run (Imperative)

• Static and dynamic



Today

• Auto-differentiation 

• Concurrent ML Systems architecture overview



Recap: how to take derivative

Given 𝑓 𝜃 , what is 
𝜕𝑓

𝜕𝜃
？

𝜕𝑓

𝜕𝜃
= lim

𝜖→0

𝑓 𝜃 + 𝜖 − 𝑓(𝜃)

𝜖

≈
𝑓 𝜃 + 𝜖 − 𝑓 𝜃 − 𝜖

2𝜖
+ 𝑜(𝜖2)

Problem:

slow: evaluate f twice to get 

one gradient

Error: approximal and 

floating point has errors



Numerical differentiation: gradient checking

Ƹ𝑔(𝜃) ≈
𝑓 𝜃 + 𝜖 − 𝑓 𝜃 − 𝜖

2𝜖
+ 𝑜(𝜖2)

1. Implement your own g(∗)
2. Substitute 𝜃 to get g 𝜃
3. Compare Ƹ𝑔(𝜃) and g 𝜃
4. If Ƹ𝑔 𝜃 − g 𝜃 > 𝛿, your g 𝜃 might be wrong!



Symbolic Differentiation

Write down the formula, derive the gradient following rules

𝜕(𝑓 𝜃 +𝑔 𝜃 )

𝜕𝜃
=
𝜕𝑓 𝜃

𝜕𝜃
+
𝜕𝑔 𝜃

𝜕𝜃

𝜕(𝑓 𝜃 𝑔 𝜃 )

𝜕𝜃
= 𝑔 𝜃

𝜕𝑓 𝜃

𝜕𝜃
+𝑓 𝜃

𝜕𝑔 𝜃

𝜕𝜃

𝜕(𝑓(𝑔 𝜃 )

𝜕𝜃
=
𝜕𝑓 𝑔(𝜃)

𝜕𝑔(𝜃)

𝜕𝑔 𝜃

𝜕𝜃



Map autodiff rules to computational graph

• High-level idea of autodiff:

• Using chain rules

• There are two ways of autoidff

• Forward mode autodiff

• Backward mode autodiff

• Forward mode: Traverse the 

chain rule from inside to outside

• Backward mode: Traverse the 

chain rule from outside to inside



Forward Mode Autodiff

• Define ሶ𝑣𝑖 =
𝜕v𝑖

𝜕𝑥𝑖

•We then compute each ሶ𝑣𝑖 following 

the forward order of the graph 

• Finally: 
𝜕𝑦

𝜕𝑥1
= ሶ𝑣7 = 5.5



Summary: Forward Mode Autodiff

• Start from the input nodes

• Derive gradient all the way to the output nodes

• Discussion: Pros and Cons of FM Autodiff?

• For 𝑓: 𝑅𝑛 → 𝑅𝑘, we need 𝑛 forward passes to get the grad w.r.t.

each input

• However, in ML: 𝑘 = 1 and 𝑛 is very large 



Reverse Mode Autodiff

• Define adjoint ഥ𝑣𝑖 =
𝜕𝑦

𝜕𝑥𝑖

• We then compute each ҧ𝑣𝑖 in the 

reserve topological order of the graph

• Finally: 
𝜕𝑦

𝜕𝑥1
= ҧ𝑣1 = 5.5



Case Study

How to derive the gradient of 𝑣1

For a 𝑣𝑖 used by multiple consumers:

, where 



How to implement reverse Autodiff (aka. BP)



Backward Graph

• How can we construct a computational graph that calculates the adjust value? 



Idea: Just Express Grad Computation using Graph



Inspect (𝑣2, 𝑣4) and (𝑣3, 𝑣4) 



Inspect (𝑣2, 𝑣3)



Inspect 𝑣2



Inspect (𝑣1, 𝑣2) 



Summary

• Run backward through the forward graph

• Caffe/cuda-convnet

• Construct backward graph

• Used by TensorFlow, PyTorch



Incomplete yet? 

•What is the missing from the following graph for ML training?



26

Forward Backward Weight update

Put in Practice
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Practice: node are operators now

Operator / its output tensor Data flowing direction

Forward

x MSE

y

relu matmul

w2

matmul

w1

+Backward

x MSE

y

relu matmul

w2

matmul

w1

matmul

matmul

MSE’

matmul

relu’

+Weight update

x MSE

y

relu matmul

w2

matmul

w1

matmul

matmul

MSE’

matmul

relu’

sub sub



1D -> 2D



Summary: Backward Mode Autodiff

• Start from the output nodes

• Derive gradient all the way back to the input nodes

• Discussion: Pros and Cons of FM Autodiff?

• For 𝑓: 𝑅𝑛 → 𝑅𝑘, we need 𝑘 backward passes to get the grad 

w.r.t. each input

• in ML: 𝑘 = 1 and 𝑛 is very large 

• How about other areas?



Homework: How to derive gradients for

• Softmax cross entropy:

𝐿 = −∑𝑡𝑖 log 𝑦𝑖 , 𝑦𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝒙 𝑖 =
𝑒𝑥𝑖

∑𝑒𝑥𝑑

• Sample 𝑖 ~𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝒙 𝑖 , 𝑧 = 𝑓 𝑖

• How to derive 
𝜕𝑓

𝜕𝑥
?



Today

• Auto-differentiation 

• Concurrent ML Systems architecture overview
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Now we roughly have the problem

•Our system goals:

• Fast

• Scale

•Memory-efficient

• Run on diverse hardware

• Energy-efficient

• Easy to program/debug/deploy



ML System Overview

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator optimization/compilation

Runtime: schedule / memory



ML System Overview

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator optimization/compilation

Runtime: schedule / memory



Graph Optimization

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule / 

memory

•Goal:

• Rewrite the original Graph G to G’

•G’ runs faster than G



Motivating Example: ResNet

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule / 

memory



Motivating Example: ResNet

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule / 

memory

• Why the fusion of conv2d & batchnorm is faster?



Motivating Example: we can go further

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule / 

memory

• Does each step become faster than previous step?
• How does it perf on different hardware?



Motivating Example 3: attention

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule / 

memory

• Why merged QKV is faster?



Arithmetic Intensity

AI = #ops / #bytes
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Arithmetic intensity

void add(int n, float* A, float* B, float* C) { 

for (int i=0; i<n; i++) 

C[i] = A[i] + B[i]; 

} 

Two loads, one store per math op 

(arithmetic intensity = 1/3)

1. Read A[i] 

2. Read B[i]

3. Add A[i]+B[i]

4. Store C[i]
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Which program performs better? Program 1

void add(int n, float* A, float* B, float* C) { 

for (int i=0; i<n; i++) 

C[i] = A[i] + B[i]; 

} 

void mul(int n, float* A, float* B, float* C) { 

for (int i=0; i<n; i++) 

C[i] = A[i] * B[i]; 

} 

float* A, *B, *C, *D, *E, *tmp1, *tmp2; 

// assume arrays are allocated here 

// compute E = D + ((A + B) * C) 

add(n, A, B, tmp1); 

mul(n, tmp1, C, tmp2); 

add(n, tmp2, D, E);

Two loads, one store per math op 

(arithmetic intensity = 1/3)

Two loads, one store per math op 

(arithmetic intensity = 1/3)

Overall arithmetic intensity = 1/3
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Which program performs better? Program 2

float* A, *B, *C, *D, *E, *tmp1, *tmp2; 

// assume arrays are allocated here 

// compute E = D + ((A + B) * C) 

add(n, A, B, tmp1); 

mul(n, tmp1, C, tmp2); 

add(n, tmp2, D, E);

void fused(int n, float* A, float* B, float* C, float* D,

 float* E) { 

for (int i=0; i<n; i++) 

E[i] = D[i] + (A[i] + B[i]) * C[i]; 

} 

// compute E = D + (A + B) * C 

fused(n, A,  B, C, D, E);

Overall arithmetic intensity = 1/3

Four loads, one store per 3 math ops 

arithmetic intensity = 3/5



How to perform graph optimization?

•Writing rules / template

• Auto discovery

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule / 

memory



Parallelization

•Goal: parallelize the graph compute over multiple devices

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule / 

memory

node node

node node

Fast connections

Slow connections

How to partition the computational graph 

on the device cluster?

x MSE

y

relu matmul

w2

matmul

w1

subsub

matmul

matmul

MSE’

matmul

relu’
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Parallelization Problems

• How to partition

• How to communicate

• How to schedule

• Consistency

• How to auto-parallel

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule / 

memory



Runtime and Scheduling

•Goal: schedule the compute/communication/memory in a way

that

• As fast as possible

•Overlap communication with compute

• Subject to memory constraints

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule / 

memory



Motivating Example: Schedule



Operator Implementation

•Goal: get the fastest possible implementation of

•Matmul

• Conv2d?

• Etc

• For different hardware: V100, A100, H100, phone, TPU

• For different precision: fp32, fp16, fp8, fp4

• For different shape: conv2d_3x3, conv2d_5x5, matmul2D, 3D,

attention

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule / 

memory
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