
DSC 291: ML Systems

Spring 2024

1

https://hao-ai-lab.github.io/dsc291-s24/

Basics

Single-device Optimization

LLMs

Parallelization

Next Quiz: Thursday (4/11)

• TA to help test IClicker

Two forms worth your attention

• Beginning of quarter survey

• ?% have filled the survey – please fill to earn the 0.5%

In-Class Quiz

Consist of 2 Components:

- Attendance check-in on iClicker app

- 15 minute quiz on Gradescope (UCSD email)

- Will go over quiz in class after

Need to complete both to get credit

Quiz will open at 5:00PM and close at 5:15PM.

Without checking in on iClicker you cannot get

credit!
Try to check-in now

We are using iClicker App for attendance!

● Check-in to DSC 291 ML Systems on iclicker app

Try to check-in now

Who originally developed PyTorch?

Recap

• Understand our Workloads: Deep Learning

• CNNs/RNNs/GNNs/Transformers/MoE

• The most important operator: matmul

• Dataflow graph

• Node: operator (e.g., matmul) and its output tensor

• Edge: dataflowing directions and dependency

• Programming flavors

• Define-then-run (Symbolic) and Define-and-run (Imperative)

• Static and dynamic

Today

• Auto-differentiation

• Concurrent ML Systems architecture overview

Recap: how to take derivative

Given 𝑓 𝜃 , what is
𝜕𝑓

𝜕𝜃
？

𝜕𝑓

𝜕𝜃
= lim

𝜖→0

𝑓 𝜃 + 𝜖 − 𝑓(𝜃)

𝜖

≈
𝑓 𝜃 + 𝜖 − 𝑓 𝜃 − 𝜖

2𝜖
+ 𝑜(𝜖2)

Problem:

slow: evaluate f twice to get

one gradient

Error: approximal and

floating point has errors

Numerical differentiation: gradient checking

Ƹ𝑔(𝜃) ≈
𝑓 𝜃 + 𝜖 − 𝑓 𝜃 − 𝜖

2𝜖
+ 𝑜(𝜖2)

1. Implement your own g(∗)
2. Substitute 𝜃 to get g 𝜃
3. Compare Ƹ𝑔(𝜃) and g 𝜃
4. If Ƹ𝑔 𝜃 − g 𝜃 > 𝛿, your g 𝜃 might be wrong!

Symbolic Differentiation

Write down the formula, derive the gradient following rules

𝜕(𝑓 𝜃 +𝑔 𝜃)

𝜕𝜃
=
𝜕𝑓 𝜃

𝜕𝜃
+
𝜕𝑔 𝜃

𝜕𝜃

𝜕(𝑓 𝜃 𝑔 𝜃)

𝜕𝜃
= 𝑔 𝜃

𝜕𝑓 𝜃

𝜕𝜃
+𝑓 𝜃

𝜕𝑔 𝜃

𝜕𝜃

𝜕(𝑓(𝑔 𝜃)

𝜕𝜃
=
𝜕𝑓 𝑔(𝜃)

𝜕𝑔(𝜃)

𝜕𝑔 𝜃

𝜕𝜃

Map autodiff rules to computational graph

• High-level idea of autodiff:

• Using chain rules

• There are two ways of autoidff

• Forward mode autodiff

• Backward mode autodiff

• Forward mode: Traverse the

chain rule from inside to outside

• Backward mode: Traverse the

chain rule from outside to inside

Forward Mode Autodiff

• Define ሶ𝑣𝑖 =
𝜕v𝑖

𝜕𝑥𝑖

•We then compute each ሶ𝑣𝑖 following

the forward order of the graph

• Finally:
𝜕𝑦

𝜕𝑥1
= ሶ𝑣7 = 5.5

Summary: Forward Mode Autodiff

• Start from the input nodes

• Derive gradient all the way to the output nodes

• Discussion: Pros and Cons of FM Autodiff?

• For 𝑓: 𝑅𝑛 → 𝑅𝑘, we need 𝑛 forward passes to get the grad w.r.t.

each input

• However, in ML: 𝑘 = 1 and 𝑛 is very large

Reverse Mode Autodiff

• Define adjoint ഥ𝑣𝑖 =
𝜕𝑦

𝜕𝑥𝑖

• We then compute each ҧ𝑣𝑖 in the

reserve topological order of the graph

• Finally:
𝜕𝑦

𝜕𝑥1
= ҧ𝑣1 = 5.5

Case Study

How to derive the gradient of 𝑣1

For a 𝑣𝑖 used by multiple consumers:

, where

How to implement reverse Autodiff (aka. BP)

Backward Graph

• How can we construct a computational graph that calculates the adjust value?

Idea: Just Express Grad Computation using Graph

Inspect (𝑣2, 𝑣4) and (𝑣3, 𝑣4)

Inspect (𝑣2, 𝑣3)

Inspect 𝑣2

Inspect (𝑣1, 𝑣2)

Summary

• Run backward through the forward graph

• Caffe/cuda-convnet

• Construct backward graph

• Used by TensorFlow, PyTorch

Incomplete yet?

•What is the missing from the following graph for ML training?

26

Forward Backward Weight update

Put in Practice

27

Practice: node are operators now

Operator / its output tensor Data flowing direction

Forward

x MSE

y

relu matmul

w2

matmul

w1

+Backward

x MSE

y

relu matmul

w2

matmul

w1

matmul

matmul

MSE’

matmul

relu’

+Weight update

x MSE

y

relu matmul

w2

matmul

w1

matmul

matmul

MSE’

matmul

relu’

sub sub

1D -> 2D

Summary: Backward Mode Autodiff

• Start from the output nodes

• Derive gradient all the way back to the input nodes

• Discussion: Pros and Cons of FM Autodiff?

• For 𝑓: 𝑅𝑛 → 𝑅𝑘, we need 𝑘 backward passes to get the grad

w.r.t. each input

• in ML: 𝑘 = 1 and 𝑛 is very large

• How about other areas?

Homework: How to derive gradients for

• Softmax cross entropy:

𝐿 = −∑𝑡𝑖 log 𝑦𝑖 , 𝑦𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝒙 𝑖 =
𝑒𝑥𝑖

∑𝑒𝑥𝑑

• Sample 𝑖 ~𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝒙 𝑖 , 𝑧 = 𝑓 𝑖

• How to derive
𝜕𝑓

𝜕𝑥
?

Today

• Auto-differentiation

• Concurrent ML Systems architecture overview

33

Now we roughly have the problem

•Our system goals:

• Fast

• Scale

•Memory-efficient

• Run on diverse hardware

• Energy-efficient

• Easy to program/debug/deploy

ML System Overview

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator optimization/compilation

Runtime: schedule / memory

ML System Overview

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator optimization/compilation

Runtime: schedule / memory

Graph Optimization

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule /

memory

•Goal:

• Rewrite the original Graph G to G’

•G’ runs faster than G

Motivating Example: ResNet

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule /

memory

Motivating Example: ResNet

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule /

memory

• Why the fusion of conv2d & batchnorm is faster?

Motivating Example: we can go further

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule /

memory

• Does each step become faster than previous step?
• How does it perf on different hardware?

Motivating Example 3: attention

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule /

memory

• Why merged QKV is faster?

Arithmetic Intensity

AI = #ops / #bytes

42

Arithmetic intensity

void add(int n, float* A, float* B, float* C) {

for (int i=0; i<n; i++)

C[i] = A[i] + B[i];

}

Two loads, one store per math op

(arithmetic intensity = 1/3)

1. Read A[i]

2. Read B[i]

3. Add A[i]+B[i]

4. Store C[i]

43

Which program performs better? Program 1

void add(int n, float* A, float* B, float* C) {

for (int i=0; i<n; i++)

C[i] = A[i] + B[i];

}

void mul(int n, float* A, float* B, float* C) {

for (int i=0; i<n; i++)

C[i] = A[i] * B[i];

}

float* A, *B, *C, *D, *E, *tmp1, *tmp2;

// assume arrays are allocated here

// compute E = D + ((A + B) * C)

add(n, A, B, tmp1);

mul(n, tmp1, C, tmp2);

add(n, tmp2, D, E);

Two loads, one store per math op

(arithmetic intensity = 1/3)

Two loads, one store per math op

(arithmetic intensity = 1/3)

Overall arithmetic intensity = 1/3

44

Which program performs better? Program 2

float* A, *B, *C, *D, *E, *tmp1, *tmp2;

// assume arrays are allocated here

// compute E = D + ((A + B) * C)

add(n, A, B, tmp1);

mul(n, tmp1, C, tmp2);

add(n, tmp2, D, E);

void fused(int n, float* A, float* B, float* C, float* D,

 float* E) {

for (int i=0; i<n; i++)

E[i] = D[i] + (A[i] + B[i]) * C[i];

}

// compute E = D + (A + B) * C

fused(n, A, B, C, D, E);

Overall arithmetic intensity = 1/3

Four loads, one store per 3 math ops

arithmetic intensity = 3/5

How to perform graph optimization?

•Writing rules / template

• Auto discovery

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule /

memory

Parallelization

•Goal: parallelize the graph compute over multiple devices

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule /

memory

node node

node node

Fast connections

Slow connections

How to partition the computational graph

on the device cluster?

x MSE

y

relu matmul

w2

matmul

w1

subsub

matmul

matmul

MSE’

matmul

relu’

46

Parallelization Problems

• How to partition

• How to communicate

• How to schedule

• Consistency

• How to auto-parallel

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule /

memory

Runtime and Scheduling

•Goal: schedule the compute/communication/memory in a way

that

• As fast as possible

•Overlap communication with compute

• Subject to memory constraints

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule /

memory

Motivating Example: Schedule

Operator Implementation

•Goal: get the fastest possible implementation of

•Matmul

• Conv2d?

• Etc

• For different hardware: V100, A100, H100, phone, TPU

• For different precision: fp32, fp16, fp8, fp4

• For different shape: conv2d_3x3, conv2d_5x5, matmul2D, 3D,

attention

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator

Runtime: schedule /

memory

	幻灯片 1: DSC 291: ML Systems Spring 2024
	幻灯片 2: Next Quiz: Thursday (4/11)
	幻灯片 3: Two forms worth your attention
	幻灯片 4: In-Class Quiz
	幻灯片 5: We are using iClicker App for attendance!
	幻灯片 6: Who originally developed PyTorch?
	幻灯片 7: Recap
	幻灯片 8: Today
	幻灯片 9: Recap: how to take derivative
	幻灯片 10: Numerical differentiation: gradient checking
	幻灯片 11: Symbolic Differentiation
	幻灯片 12: Map autodiff rules to computational graph
	幻灯片 13: Forward Mode Autodiff
	幻灯片 14: Summary: Forward Mode Autodiff
	幻灯片 15: Reverse Mode Autodiff
	幻灯片 16: Case Study
	幻灯片 17: How to implement reverse Autodiff (aka. BP)
	幻灯片 18: Backward Graph
	幻灯片 19: Idea: Just Express Grad Computation using Graph
	幻灯片 20: Inspect (v 下标 2,设备控制 4 v 下标 4) and (v 下标 3,设备控制 4 v 下标 4)
	幻灯片 21: Inspect (v 下标 2,设备控制 4 v 下标 3)
	幻灯片 22: Inspect v 下标 2
	幻灯片 23: Inspect (v 下标 1,设备控制 4 v 下标 2)
	幻灯片 24: Summary
	幻灯片 25: Incomplete yet?
	幻灯片 26: Put in Practice
	幻灯片 27: Practice: node are operators now
	幻灯片 28: 1D -> 2D
	幻灯片 29: Summary: Backward Mode Autodiff
	幻灯片 31: Homework: How to derive gradients for
	幻灯片 32: Today
	幻灯片 33: Now we roughly have the problem
	幻灯片 34: ML System Overview
	幻灯片 35: ML System Overview
	幻灯片 36: Graph Optimization
	幻灯片 37: Motivating Example: ResNet
	幻灯片 38: Motivating Example: ResNet
	幻灯片 39: Motivating Example: we can go further
	幻灯片 40: Motivating Example 3: attention
	幻灯片 41: Arithmetic Intensity
	幻灯片 42: Arithmetic intensity
	幻灯片 43: Which program performs better? Program 1
	幻灯片 44: Which program performs better? Program 2
	幻灯片 45: How to perform graph optimization?
	幻灯片 46: Parallelization
	幻灯片 47: Parallelization Problems
	幻灯片 48: Runtime and Scheduling
	幻灯片 49: Motivating Example: Schedule
	幻灯片 50: Operator Implementation

