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https://hao-ai-lab.github.io/dsc291-s24/

Basics

Single-device Optimization

LLMs

Parallelization



In-Class Quiz

Consist of 2 Components:

- Attendance check-in on iClicker app

- 15 minute quiz on Gradescope (UCSD email)

- Will go over quiz in class after

Need to complete both to get credit

Quiz will open at 5:00PM and close at 5:15PM.

Without checking in on iClicker you cannot get 

credit! Try to check-in now



We are using iClicker App for attendance!

● Check-in to DSC 291 ML Systems on iclicker app

Try to check-in now



Recap

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator optimization/compilation

Runtime: schedule / memory



Today

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator optimization/compilation

Runtime: schedule / memory

x matmul

w1



Next 2 – 3 lectures

• Fundamentals: why/how we can make operator fast

• Case study 1: Matmul

• GPU architecture

• CUDA programming

• Case study 2: Matmul

• Roofline model



Big Goal: Maximize Arithmetic Intensity

max AI = #ops / #bytes
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Example: Program 2 performs better (graph-level)

float* A, *B, *C, *D, *E, *tmp1, *tmp2; 

// assume arrays are allocated here 

// compute E = D + ((A + B) * C) 

add(n, A, B, tmp1); 

mul(n, tmp1, C, tmp2); 

add(n, tmp2, D, E);

void fused(int n, float* A, float* B, float* C, float* D,

 float* E) { 

for (int i=0; i<n; i++) 

E[i] = D[i] + (A[i] + B[i]) * C[i]; 

} 

// compute E = D + (A + B) * C 

fused(n, A,  B, C, D, E);

Overall arithmetic intensity = 1/3

Four loads, one store per 3 math ops 

arithmetic intensity = 3/5



General Op-level Techniques (on CPUs)

• Vectorization

• Data layout

• Parallelization

• Matmul-specific tricks

• Tiling 



Using vectorized operations: array add

Float A[256], B[256], C[256]

For (int i = 0; i < 256; ++i) {

C[i] = A[i] + B[i]

}

Why vectorized is faster than unvectorized?

unvectorized vectorized



Data Layout: make read/write faster

• How to store a matrix in memory

• Data in memory are stored sequentially (no tensor awareness)

• Row Major: A[i, j] = A.data[i*A.shape[1] + j]

• Column major: A[i, j] = A.data[j*A.shape[0] + i]



Be aware of your data layout

int sum_array_rows(int a[M][N])

{

    int i, j, sum = 0;

    for (j = 0; j < N; j++)

        for (i = 0; i < M; i++)

            sum += a[i][j];

    return sum;

}

Assuming row-major
array

• • •

a

[0]

[0]

a

[0]
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• • •

a
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• • •
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[M-1]

[0]

a

[M-1]

[N-1]

• •  •

How to improve the above program?



Data Layout and Strides

• Row Major: A[i, j] = A.data[i*A.shape[1] + j]

• Column major: A[i, j] = A.data[j*A.shape[0] + i]

• Strides format: A[i, j] = A.data[offset + i*A.strides[0] + j * A.strides[1]]



Strides in High dimension

Offset: the offset of the tensor relative to the underlying storage 

Strides: strides[i] indicates how many “elements” need to be skipped in memory 

to move “one unit” in the iii-th dimension of the tensor 



Strides format

• What we have when:

• A.strides[0] = 1,

• A.strides[1] = A.shape[0]?

• What we have when:

• A.strides[0] = A.shape[1]

• A.strides[1] = 1, 

• Strides offers more flexibility



Questions

• If a tensor of shape [1, 2, 3, 4] is stored contiguous in memory 

following row Major, write down its strides?



Why we bother saving “strides” when saving tensors

• Strides can separate the underlying storage and the view of the 

tensor  -> Enable zero-copy of some very frequently used ops 

(recall “tensor.view” in pytorch)

• Slice

• Transpose (or reshape)

• Broadcast



How to do Slice with strides

• Change the offset by +1

• Reduce the shape to [3, 2]

• Note: zero copy



Transpose

• How to do Transpose? 

• Note: it is zero copy

• Note: What are the underlying Storage looking like?



Broadcast

• Question: how to do broadcast?



Problems of Strides

• Memory Access may become not continuous

• Many vectorized ops requires  continuous storage 

• What’s the underlying storage after slice?



Parallelization

• How to parallelize the loop?

vectorized Vectorized & 
parallelized



Summary

• Vectorization

• reduce seek time

• Data layout / strides

• Convenient

• Zero copy 

• Parallelization



Next

• Fundamentals: why/how we can make operator fast

• Case study: Matmul

• GPU architecture and programming

• Roofline model



Matmul in Code

• What is the time complexity 

of 2D matmul?

• O(n^3)

• What is the best complexity 

we can achieve? 

• O(n^2.371552)



Matmul Complexity



We also care about I/O Because:

• Ideally: we want everything to be local to processors (In registers)

• But registers are expensive and small



Simplify It a bit

CPU ALU

Registers

Memory



Review Matmul loop

Read a 

Read b

Write c

n^3

n^3
n^3

#reigsters needed:
1 + 1 + 1 =3 

Read cost:
2 * n^3 * speed(dram -> register) 



Register Tiled Matrix Multiplication



Register Tiled Matrix Multiplication

Read a 

Read b

Write c

N^3 / v_2

N^3 / v_1

N^3 / v_3

#reigsters needed:
V1*v3 + v2*v3 + v1*v2

Read cost:
(n^3/v2 + n^3 / v1 + n^3 / v3) * speed(dram -
> register) 



Register Tiled Matrix Multiplication

• Q: is the load cost related to v3?

• Q: How to set v1 / v2?

• What are the constraints?

• Q: Why essentially can tiling reduce 

read cost?

Read a 

Read b

Write c

N^3 / v_2

N^3 / v_1

N^3 / v_3

#reigsters needed:
V1*v3 + v2*v3 + v1*v2

Read cost:
(n^3/v2 + n^3 / v1 + n^3 / v3) * speed(dram -
> register) 



Make it more complicated: Consider L1 cache

CPU ALU

Registers

Memory

L1 Cache



Cache-aware tiling • We can further tile [b1][n] / [b2][n] using at 

the L1-> register level

• What’s the required condition?



Cache-aware tiling

Data movement path:

1.Dram

2.Dram -> l1cache (cache tiling)

3.L1cache -> register  (reg tiling)



Cache-aware tiling

A’s dram -> l1 time cost:

n / b1 * n * b1 = n^2

B’s dram -> l1 time cost: 

n / b1 * n / b2 * b2 * n = n^2 / b1

Vs. previous untiled version?

s.t.

• b1 * n + b2 * n < L1 cache size

• b1 % v1 == 0

• b2 % v2 == 0



Putting Things Together
We set v3 = 1

Outside: cache tiling

Inside: register tiling

Cost:

l1 -> cache:
• n / b1 * n / b2 * b1 / v1 * b2 

/ v2 * n * v1 = n^3 / v2

• n^3 / v1

dram -> l1
• n^2 + n^3 / b1



In practice 

• On CPUs: We have disk -> dram -> L2 -> L1 -> Register

• How to choose v1, v2, b1, b2, c1, c2?

• While we are reading from dram -> L2, can we concurrently read:

• L2 -> L1

• L1 -> register

• S.t. sizes of L2, L1, registers

• On GPUs:

• We have dram -> HBM -> sram -> L1 -> L1 -> register?



Why tiling works: reuse loading

Access of A is independent of 

the dimension of j

Tile the j dimension by v1 

enables resue of A for v1 times



One of the Most Complicated Case

• Q: How to tile?

for n in range(0, N):

for co in range(0, CO):

for h in range(0, H):

for w in range(0, W):

for ci in range(0, CI):

for kh in range(0, KH):

for kw in range(0, KW):

C[n,co,h,w] += A[n,co,h+kh,w+kw] x B[kh,kw,co,ci]  

Simple spatial loops. 

Reduction loop. 

Stencil computation loops. 

Reduction loops. But usually too small (<= 

5) for parallelization.



Next 2 – 3 lectures

• Fundamentals: why/how we can make operator fast

• Case study: Matmul

• GPU architecture and programming

• Roofline model



Recap CPU parallelization

• We can parallelize this loop using CPU threads

• We can parallelize this using many concurrent cores

Vectorized & 
parallelized
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Single-Instruction Multiple-Data

Example for SIMD in data science:



Chip Design Trajectory: SIMD

Control

Caches

ALU ALU

ALU ALU
Control

Caches

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

If we’re able to reduce to size 
of ALU while keeping its power

That’s why you see trends: 70nm -> 60nm -> 50nm -> … -> what is the best now?

Problem: this is not substantiable; there are also power/heat issues when you put 

more ALUs in 



Idea: How about we use a lot of weak/specialized cores



46

Hardware Accelerators: GPUs

• Graphics Processing Unit (GPU): Tailored for matrix/tensor ops

• Basic idea: Use tons of ALUs (but weak and more specialized); massive 

data parallelism (SIMD on steroids); now H100 offers ~980 TFLOPS for 

FP16!

• Popularized by NVIDIA in early 2000s for video games, graphics, and 

multimedia; now ubiquitous in DL

• CUDA released in 2007; later wrapper APIs on top: CuDNN, CuSparse, 

CuDF (RapidsAI), NCCL, etc.
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Other Hardware Accelerators
Other Hardware Accelerators

• General Trajectory:

• Use more specialized core

• Reduce precision

• Mixing specialized and general-purpose cores

• E.g.

• Tensor Processing Unit (TPU)

• An “application-specific integrated circuit” (ASIC) created by Google in mid 2010s; 

used for AlphaGo

• E.g.

• B200 (projected release 2025): fp4 / fp8 Tensorcore

• E.g.

• M3 max: mixing tensorcore and normal core



GPU and CUDA

• Basic concepts and Architecture

• Programming abstraction

• Case study: Matmul



GPU Overview



Threads, Blocks, Grids

• Threads: smallest units to 

process a chunk of data

• Blocks: A group of threads that 

share memory

• Grid: A collection of blocks that 

execute the same kernel



How many SMs/Threads we have?

• V100 (2018 - Now): 80 SMs, 2048 threads/SM

• A100 (2020 - Now): 108 SMs, 2048 threads/SM

• H100 (2022 - Now): 144 SMs, 2048 threads/SM

• B100 (2025 - ): go surveying the numbers



CUDA

• Introduced in 2007 with NVIDIA Tesla architecture

• C-like languages for programming GPUs

• CUDA’s design matches the grid/block/thread concepts in GPUs



CUDA Programs contain A Hierarchy of Threads



How Many threads/Blocks it runs on?



Grid, Block, and Thread

• GridDim: The dimensions of the grid

• blockIdx: The block index within the grid

• blockDim: The dimensions of a block 

• threadIdx: The thread index within a block

• What About GridId?

• What about threadDim?



An Example CUDA Program

• “launch a grid of CUDA thread

• blocks” Call returns when all threads 

have terminated

• __global__ denotes a CUDA kernel 

function runs on GPU

• Each thread indexes its data using 

blockIdx, blockDim, threadIdx and 

execute the compute



Separation CPU and GPU Execution

• Host code: serial execution on CPU

• Device code: SIMD parallel execution 

on GPUs



#Threads is Explicit and Static in Programs

Developers to:

• To provide CPU/GPU code 

separation

• Statically declare blockDim, shapes.

• Map data to blocks/threads

• Check boundary conditions



SIMD Constraints: how to handle control flow?

SIMD requires all ALUs/Core Must proceed in the same pace
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