
DSC 291: ML Systems

Spring 2024

1

https://hao-ai-lab.github.io/dsc291-s24/

Basics

Single-device Optimization

LLMs

Parallelization

In-Class Quiz

Consist of 2 Components:

- Attendance check-in on iClicker app

- 15 minute quiz on Gradescope (UCSD email)

- Will go over quiz in class after

Need to complete both to get credit

Quiz will open at 5:00PM and close at 5:15PM.

Without checking in on iClicker you cannot get

credit! Try to check-in now

We are using iClicker App for attendance!

● Check-in to DSC 291 ML Systems on iclicker app

Try to check-in now

Recap

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator optimization/compilation

Runtime: schedule / memory

Today

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator optimization/compilation

Runtime: schedule / memory

x matmul

w1

Next 2 – 3 lectures

• Fundamentals: why/how we can make operator fast

• Case study 1: Matmul

• GPU architecture

• CUDA programming

• Case study 2: Matmul

• Roofline model

Big Goal: Maximize Arithmetic Intensity

max AI = #ops / #bytes

8

Example: Program 2 performs better (graph-level)

float* A, *B, *C, *D, *E, *tmp1, *tmp2;

// assume arrays are allocated here

// compute E = D + ((A + B) * C)

add(n, A, B, tmp1);

mul(n, tmp1, C, tmp2);

add(n, tmp2, D, E);

void fused(int n, float* A, float* B, float* C, float* D,

 float* E) {

for (int i=0; i<n; i++)

E[i] = D[i] + (A[i] + B[i]) * C[i];

}

// compute E = D + (A + B) * C

fused(n, A, B, C, D, E);

Overall arithmetic intensity = 1/3

Four loads, one store per 3 math ops

arithmetic intensity = 3/5

General Op-level Techniques (on CPUs)

• Vectorization

• Data layout

• Parallelization

• Matmul-specific tricks

• Tiling

Using vectorized operations: array add

Float A[256], B[256], C[256]

For (int i = 0; i < 256; ++i) {

C[i] = A[i] + B[i]

}

Why vectorized is faster than unvectorized?

unvectorized vectorized

Data Layout: make read/write faster

• How to store a matrix in memory

• Data in memory are stored sequentially (no tensor awareness)

• Row Major: A[i, j] = A.data[i*A.shape[1] + j]

• Column major: A[i, j] = A.data[j*A.shape[0] + i]

Be aware of your data layout

int sum_array_rows(int a[M][N])

{

 int i, j, sum = 0;

 for (j = 0; j < N; j++)

 for (i = 0; i < M; i++)

 sum += a[i][j];

 return sum;

}

Assuming row-major
array

• • •

a

[0]

[0]

a

[0]

[N-1]

• • •

a

[1]

[0]

a

[1]

[N-1]

• • •

a

[M-1]

[0]

a

[M-1]

[N-1]

• • •

How to improve the above program?

Data Layout and Strides

• Row Major: A[i, j] = A.data[i*A.shape[1] + j]

• Column major: A[i, j] = A.data[j*A.shape[0] + i]

• Strides format: A[i, j] = A.data[offset + i*A.strides[0] + j * A.strides[1]]

Strides in High dimension

Offset: the offset of the tensor relative to the underlying storage

Strides: strides[i] indicates how many “elements” need to be skipped in memory

to move “one unit” in the iii-th dimension of the tensor

Strides format

• What we have when:

• A.strides[0] = 1,

• A.strides[1] = A.shape[0]?

• What we have when:

• A.strides[0] = A.shape[1]

• A.strides[1] = 1,

• Strides offers more flexibility

Questions

• If a tensor of shape [1, 2, 3, 4] is stored contiguous in memory

following row Major, write down its strides?

Why we bother saving “strides” when saving tensors

• Strides can separate the underlying storage and the view of the

tensor -> Enable zero-copy of some very frequently used ops

(recall “tensor.view” in pytorch)

• Slice

• Transpose (or reshape)

• Broadcast

How to do Slice with strides

• Change the offset by +1

• Reduce the shape to [3, 2]

• Note: zero copy

Transpose

• How to do Transpose?

• Note: it is zero copy

• Note: What are the underlying Storage looking like?

Broadcast

• Question: how to do broadcast?

Problems of Strides

• Memory Access may become not continuous

• Many vectorized ops requires continuous storage

• What’s the underlying storage after slice?

Parallelization

• How to parallelize the loop?

vectorized Vectorized &
parallelized

Summary

• Vectorization

• reduce seek time

• Data layout / strides

• Convenient

• Zero copy

• Parallelization

Next

• Fundamentals: why/how we can make operator fast

• Case study: Matmul

• GPU architecture and programming

• Roofline model

Matmul in Code

• What is the time complexity

of 2D matmul?

• O(n^3)

• What is the best complexity

we can achieve?

• O(n^2.371552)

Matmul Complexity

We also care about I/O Because:

• Ideally: we want everything to be local to processors (In registers)

• But registers are expensive and small

Simplify It a bit

CPU ALU

Registers

Memory

Review Matmul loop

Read a

Read b

Write c

n^3

n^3
n^3

#reigsters needed:
1 + 1 + 1 =3

Read cost:
2 * n^3 * speed(dram -> register)

Register Tiled Matrix Multiplication

Register Tiled Matrix Multiplication

Read a

Read b

Write c

N^3 / v_2

N^3 / v_1

N^3 / v_3

#reigsters needed:
V1*v3 + v2*v3 + v1*v2

Read cost:
(n^3/v2 + n^3 / v1 + n^3 / v3) * speed(dram -
> register)

Register Tiled Matrix Multiplication

• Q: is the load cost related to v3?

• Q: How to set v1 / v2?

• What are the constraints?

• Q: Why essentially can tiling reduce

read cost?

Read a

Read b

Write c

N^3 / v_2

N^3 / v_1

N^3 / v_3

#reigsters needed:
V1*v3 + v2*v3 + v1*v2

Read cost:
(n^3/v2 + n^3 / v1 + n^3 / v3) * speed(dram -
> register)

Make it more complicated: Consider L1 cache

CPU ALU

Registers

Memory

L1 Cache

Cache-aware tiling • We can further tile [b1][n] / [b2][n] using at

the L1-> register level

• What’s the required condition?

Cache-aware tiling

Data movement path:

1.Dram

2.Dram -> l1cache (cache tiling)

3.L1cache -> register (reg tiling)

Cache-aware tiling

A’s dram -> l1 time cost:

n / b1 * n * b1 = n^2

B’s dram -> l1 time cost:

n / b1 * n / b2 * b2 * n = n^2 / b1

Vs. previous untiled version?

s.t.

• b1 * n + b2 * n < L1 cache size

• b1 % v1 == 0

• b2 % v2 == 0

Putting Things Together
We set v3 = 1

Outside: cache tiling

Inside: register tiling

Cost:

l1 -> cache:
• n / b1 * n / b2 * b1 / v1 * b2

/ v2 * n * v1 = n^3 / v2

• n^3 / v1

dram -> l1
• n^2 + n^3 / b1

In practice

• On CPUs: We have disk -> dram -> L2 -> L1 -> Register

• How to choose v1, v2, b1, b2, c1, c2?

• While we are reading from dram -> L2, can we concurrently read:

• L2 -> L1

• L1 -> register

• S.t. sizes of L2, L1, registers

• On GPUs:

• We have dram -> HBM -> sram -> L1 -> L1 -> register?

Why tiling works: reuse loading

Access of A is independent of

the dimension of j

Tile the j dimension by v1

enables resue of A for v1 times

One of the Most Complicated Case

• Q: How to tile?

for n in range(0, N):

for co in range(0, CO):

for h in range(0, H):

for w in range(0, W):

for ci in range(0, CI):

for kh in range(0, KH):

for kw in range(0, KW):

C[n,co,h,w] += A[n,co,h+kh,w+kw] x B[kh,kw,co,ci]

Simple spatial loops.

Reduction loop.

Stencil computation loops.

Reduction loops. But usually too small (<=

5) for parallelization.

Next 2 – 3 lectures

• Fundamentals: why/how we can make operator fast

• Case study: Matmul

• GPU architecture and programming

• Roofline model

Recap CPU parallelization

• We can parallelize this loop using CPU threads

• We can parallelize this using many concurrent cores

Vectorized &
parallelized

43

Single-Instruction Multiple-Data

Example for SIMD in data science:

Chip Design Trajectory: SIMD

Control

Caches

ALU ALU

ALU ALU
Control

Caches

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

If we’re able to reduce to size
of ALU while keeping its power

That’s why you see trends: 70nm -> 60nm -> 50nm -> … -> what is the best now?

Problem: this is not substantiable; there are also power/heat issues when you put

more ALUs in

Idea: How about we use a lot of weak/specialized cores

46

Hardware Accelerators: GPUs

• Graphics Processing Unit (GPU): Tailored for matrix/tensor ops

• Basic idea: Use tons of ALUs (but weak and more specialized); massive

data parallelism (SIMD on steroids); now H100 offers ~980 TFLOPS for

FP16!

• Popularized by NVIDIA in early 2000s for video games, graphics, and

multimedia; now ubiquitous in DL

• CUDA released in 2007; later wrapper APIs on top: CuDNN, CuSparse,

CuDF (RapidsAI), NCCL, etc.

47

Other Hardware Accelerators
Other Hardware Accelerators

• General Trajectory:

• Use more specialized core

• Reduce precision

• Mixing specialized and general-purpose cores

• E.g.

• Tensor Processing Unit (TPU)

• An “application-specific integrated circuit” (ASIC) created by Google in mid 2010s;

used for AlphaGo

• E.g.

• B200 (projected release 2025): fp4 / fp8 Tensorcore

• E.g.

• M3 max: mixing tensorcore and normal core

GPU and CUDA

• Basic concepts and Architecture

• Programming abstraction

• Case study: Matmul

GPU Overview

Threads, Blocks, Grids

• Threads: smallest units to

process a chunk of data

• Blocks: A group of threads that

share memory

• Grid: A collection of blocks that

execute the same kernel

How many SMs/Threads we have?

• V100 (2018 - Now): 80 SMs, 2048 threads/SM

• A100 (2020 - Now): 108 SMs, 2048 threads/SM

• H100 (2022 - Now): 144 SMs, 2048 threads/SM

• B100 (2025 -): go surveying the numbers

CUDA

• Introduced in 2007 with NVIDIA Tesla architecture

• C-like languages for programming GPUs

• CUDA’s design matches the grid/block/thread concepts in GPUs

CUDA Programs contain A Hierarchy of Threads

How Many threads/Blocks it runs on?

Grid, Block, and Thread

• GridDim: The dimensions of the grid

• blockIdx: The block index within the grid

• blockDim: The dimensions of a block

• threadIdx: The thread index within a block

• What About GridId?

• What about threadDim?

An Example CUDA Program

• “launch a grid of CUDA thread

• blocks” Call returns when all threads

have terminated

• __global__ denotes a CUDA kernel

function runs on GPU

• Each thread indexes its data using

blockIdx, blockDim, threadIdx and

execute the compute

Separation CPU and GPU Execution

• Host code: serial execution on CPU

• Device code: SIMD parallel execution

on GPUs

#Threads is Explicit and Static in Programs

Developers to:

• To provide CPU/GPU code

separation

• Statically declare blockDim, shapes.

• Map data to blocks/threads

• Check boundary conditions

SIMD Constraints: how to handle control flow?

SIMD requires all ALUs/Core Must proceed in the same pace

	幻灯片 1: DSC 291: ML Systems Spring 2024
	幻灯片 2: In-Class Quiz
	幻灯片 3: We are using iClicker App for attendance!
	幻灯片 4: Recap
	幻灯片 5: Today
	幻灯片 6: Next 2 – 3 lectures
	幻灯片 7: Big Goal: Maximize Arithmetic Intensity
	幻灯片 8: Example: Program 2 performs better (graph-level)
	幻灯片 9: General Op-level Techniques (on CPUs)
	幻灯片 10: Using vectorized operations: array add
	幻灯片 11: Data Layout: make read/write faster
	幻灯片 12: Be aware of your data layout
	幻灯片 13: Data Layout and Strides
	幻灯片 14: Strides in High dimension
	幻灯片 15: Strides format
	幻灯片 16: Questions
	幻灯片 17: Why we bother saving “strides” when saving tensors
	幻灯片 18: How to do Slice with strides
	幻灯片 19: Transpose
	幻灯片 20: Broadcast
	幻灯片 21: Problems of Strides
	幻灯片 22: Parallelization
	幻灯片 23: Summary
	幻灯片 24: Next
	幻灯片 25: Matmul in Code
	幻灯片 26: Matmul Complexity
	幻灯片 27: We also care about I/O Because:
	幻灯片 28: Simplify It a bit
	幻灯片 29: Review Matmul loop
	幻灯片 30: Register Tiled Matrix Multiplication
	幻灯片 31: Register Tiled Matrix Multiplication
	幻灯片 32: Register Tiled Matrix Multiplication
	幻灯片 33: Make it more complicated: Consider L1 cache
	幻灯片 34: Cache-aware tiling
	幻灯片 35: Cache-aware tiling
	幻灯片 36: Cache-aware tiling
	幻灯片 37: Putting Things Together
	幻灯片 38: In practice
	幻灯片 39: Why tiling works: reuse loading
	幻灯片 40: One of the Most Complicated Case
	幻灯片 41: Next 2 – 3 lectures
	幻灯片 42: Recap CPU parallelization
	幻灯片 43: Single-Instruction Multiple-Data
	幻灯片 44: Chip Design Trajectory: SIMD
	幻灯片 45: Idea: How about we use a lot of weak/specialized cores
	幻灯片 46: Hardware Accelerators: GPUs
	幻灯片 47: Other Hardware Accelerators
	幻灯片 48: GPU and CUDA
	幻灯片 49: GPU Overview
	幻灯片 50: Threads, Blocks, Grids
	幻灯片 51: How many SMs/Threads we have?
	幻灯片 52: CUDA
	幻灯片 53: CUDA Programs contain A Hierarchy of Threads
	幻灯片 54: How Many threads/Blocks it runs on?
	幻灯片 55: Grid, Block, and Thread
	幻灯片 56: An Example CUDA Program
	幻灯片 57: Separation CPU and GPU Execution
	幻灯片 58: #Threads is Explicit and Static in Programs
	幻灯片 59: SIMD Constraints: how to handle control flow?

