

DSC 291: ML Systems Spring 2024

Parallelization

Single-device Optimization

Basics

https://hao-ai-lab.github.io/dsc291-s24/

LLMs

In-Class Quiz

Consist of 2 Components:

- Attendance check-in on iClicker app
- 15 minute quiz on Gradescope (UCSD email)
 - Will go over quiz in class after

Need to complete both to get credit

- Quiz will open at 5:00PM and close at 5:15PM.
- Without checking in on iClicker you cannot get credit!

Try to check-in now

We are using iClicker App for attendance! Try to check-in now

• Check-in to DSC 291 ML Systems c

DSC 291 ML Systems

William Lin Tue 05:00 PM, Thu 05:00 PM DSC291_SP24_D00, Spring 2024

12:30

<

Ν 🔌 😪 🖼 ⊿ 34%

Confirm Course

Institution University of California San Diego

Course Name DSC 291 ML Systems

Course ID DSC291_SP24_D00

Instructor William Lin

Term Spring 2024

Start Date April 01, 2024

End Date September 30, 2024

Meeting Times Tue 05:00 PM,Thu 05:00 PM

Add This Course

Cancel

on	iclicker app
12:33	
	DSC 291 ML Systems
	Attendance
	33.3%
	2 recorded absences

Recap

Dataflow Graph

Autodiff

- Graph Optimization
 - Parallelization
- Runtime: schedule / memory
- Operator optimization/compilation

Today

Dataflow Graph

Autodiff

- Graph Optimization
 - Parallelization
- Runtime: schedule / memory
- Operator optimization/compilation

Next 2 - 3 lectures

- Fundamentals: why/how we can make operator fast
- Case study 1: Matmul
- GPU architecture
- CUDA programming
- Case study 2: Matmul
- Roofline model

Big Goal: Maximize Arithmetic Intensity

max AI = #ops / #bytes

Example: Program 2 performs better (graph-level)

float* A, *B, *C, *D, *E, *tmp1, *tmp2; assume arrays are allocated here compute E = D + ((A + B) * C)add(n, A, B, tmp1); mul(n, tmp1, C, tmp2); add(n, tmp2, D,E);

void fused(int n, float* A, float* B, float* C, float* D, float* E) { for (int i=0; i < n; i++) E[i] = D[i] + (A[i] + B[i]) * C[i];compute E = D + (A + B) * Cfused(n, A, B,C, D,E);

Overall arithmetic intensity = 1/3

Four loads, one store per 3 math ops arithmetic intensity = 3/5

General Op-level Techniques (on CPUs)

- Vectorization
- Data layout
- Parallelization
- Matmul-specific tricks
 - Tiling

Using vectorized operations: array add

Float A[256], B[256], C[256] For (int i = 0; i < 256; ++i) { C[i] = A[i] + B[i]}

unvectorized

Why vectorized is faster than unvectorized?

for (int i = 0; i < 64; ++i) {</pre> float4 a = load_float4(A + i*4); float4 b = load_float4(B + i*4); float4 c = add_float4(a, b); store_float4(C + i* 4, c);

vectorized

Data Layout: make read/write faster

- How to store a matrix in memory
 - Data in memory are stored sequentially (no tensor awareness)
- Row Major: A[i, j] = A.data[i*A.shape[1] + j]• Column major: A[i, j] = A.data[j*A.shape[0] + i]

Row-major order

Column-major order

Be aware of your data layout

a		a	a		a		a		a
[0]	• • •	[0]	[1]	• • •	[1]	• • •	[M-1]	•••	[M-1]
[0]		[N-1]	[0]		[N-1]		[0]		[N-1]

How to improve the above program?

Data Layout and Strides

- Row Major: A[i, j] = A.data[i*A.shape[1] + j]
- Column major: A[i, j] = A.data[j*A.shape[0] + i]

• Strides format: A[i, j] = A.data[offset + i*A.strides[0] + j * A.strides[1]]

Strides in High dimension

Offset: the offset of the tensor relative to the underlying storage

Strides: strides[i] indicates how many "elements" need to be skipped in memory to move "one unit" in the iii-th dimension of the tensor

A_internal[[0] [1] [2] des[n-1]

Strides format

- What we have when:
 - A.strides[0] = 1,
 - A.strides[1] = A.shape[0]?
- What we have when:
 - A.strides[0] = A.shape[1]
 - A.strides[1] = 1,
- Strides offers more flexibility

Questions

following row Major, write down its strides?

torch.arang	e(<mark>0</mark> ,
<pre>print(t)</pre>	
<pre># tensor([[</pre>	[[0,
#	[4,
#	[8,
#	[[12,
#	[16,
#	[20,

print(t.stride()) # (24, 12, 4, 1)

If a tensor of shape [1, 2, 3, 4] is stored contiguous in memory

24).reshape(1, 2, 3, 4) , 1, 2, 3], , 5, 6, 7], 9, 10, 11]], , 13, 14, 15], 17, 18, 19], 21, 22, 23]]])

Why we bother saving "strides" when saving tensors

- (recall "tensor.view" in pytorch)
 - Slice
 - Transpose (or reshape)
 - Broadcast

 Strides can separate the underlying storage and the view of the tensor -> Enable zero-copy of some very frequently used ops

How to do Slice with strides

- Change the offset by +1
- Reduce the shape to [3, 2]
- Note: zero copy

0	1	2	3	4
5	6	7	8	9
10	11	12	13	14
15	16	17	18	19

Transpose

- How to do Transpose?
- Note: it is zero copy
- Note: What are the underlying Storage looking like?

✓ Python

1	<pre>print(t.st</pre>	ride	e())		
2	# (24, 12,	4,	1)		
3					
4	<pre>print(t.pe</pre>	rmut	e((1	L, 2	2
5	# True				
6					
7	<pre>print(t.pe</pre>	rmut	:e((1	L, 2	,
8	# (12, 4,	1, 2	24)		
9					
10	print_inte	rnal	l(t.p	perm	ut
11	# tensor([0,	1,	2,	-
12	#	4,	5,	6,	7
13	#	8,	9, 1	10,	1
14	#	12,	13,	14,	
15	#	16,	17,	18,	_
16	#	20,	21,	22,	4

```
3, ∂)).is_contiguous())
3, 0)).stride())
te((1, 2, 3, 0)))
3,
7,
1,
15,
19,
23])
```

Broadcast

• Question: how to do broadcast?

✓ Python

```
1 print(t.broadcast_to((2, 2, 3, 4)).is_contiguous())
 2 # False
 3
 4 print(t.broadcast_to((2, 2, 3, 4)).shape)
 5 # torch.Size([2, 2, 3, 4])
 6
 7 print(t.stride())
 8 # (24, 12, 4, 1)
 9
10 print(t.broadcast_to((2, 2, 3, 4)).stride())
11 # (0, 12, 4, 1)
12
13 print_internal(t.broadcast_to((2, 2, 3, 4)))
14 # tensor([0, 1, 2, 3,
           4, 5, 6, 7,
15 #
            8, 9, 10, 11,
16 #
17 #
           12, 13, 14, 15,
18 #
             16, 17, 18, 19,
19 #
             20, 21, 22, 23])
```

Problems of Strides

- Memory Access may become not continuous
 - Many vectorized ops requires continuous storage
 - What's the underlying storage after slice?

0	1	2	3	4
5	6	7	8	9
10	11	12	13	14
15	16	17	18	19

ne not continuous vires continuous storage rage after slice?

TORCH.TENSOR.CONTIGUOUS

Tensor.contiguous(*memory_format=torch.contiguous_format*) → Tensor

Returns a contiguous in memory tensor containing the same data as self tensor. If self tensor is already in the specified memory format, this function returns the self tensor.

Parameters

memory_format (torch.memory_format, optional) – the desired memory format of returned Tensor. Default: torch.contiguous_format.

Parallelization

How to parallelize the loop?

for (int i = 0; i < 64; ++i) {
 float4 a = load_float4(A + i*4);
 float4 b = load_float4(B + i*4);
 float4 c = add_float4(a, b);
 store_float4(C + i* 4, c);</pre>

```
#pragma omp parallel for
for (int i = 0; i < 64; ++i) {
    float4 a = load_float4(A + i*4);
    float4 b = load_float4(B + i*4);
    float4 c = add_float4(a, b);
    store_float4(C * 4, c);
```

Vectorized & parallelized

Summary

- Vectorization
 - reduce seek time
- Data layout / strides
 - Convenient
 - Zero copy
- Parallelization

Next

- Fundamentals: why/how we can make operator fast
- Case study: Matmul
- GPU architecture and programming
- Roofline model

Matmul in Code

Compute C = dot(A, B.T)

float A[n][n], B[n][n], C[n][n];

for (int i = 0; i < n; ++i) for (int j = 0; j < n; ++j) {</pre> C[i][j] = 0;for (int k = 0; k < n; ++k) { C[i][j] += A[i][k] * B[j][k];

- What is the time complexity of 2D matmul?
- O(n^3)

- What is the best complexity we can achieve?
- O(n^2.371552)

Matmul Complexity

We also care about I/O Because:

- But registers are expensive and small

Ideally: we want everything to be local to processors (In registers)

Source: Latency numbers every programmer should know

7ns 14x L1 cache

200ns 20x L2 cache, 200x L1 cache

Simplify It a bit

CPU ALU Registers

Memory

Review Matmul loop

dram float A[n][n], B[n][n], C[n][n]; for (int i = 0; i < n; ++i) {</pre> for (int j = 0; j < n; ++j) {</pre> register float c = 0; for (int k = 0; k < n; ++k) { register float a = A[i][k]; register float b = B[j][k]; c += a * b; C[i][j] = c;}

n^3 Read a n^3 Read b n^{3} Write c

#reigsters needed: 1 + 1 + 1 = 3

Read cost: $2 * n^3 * speed(dram -> register)$

Register Tiled Matrix Multiplication

```
dram float A[n/v1][n/v3][v1][v3];
dram float B[n/v2][n/v3][v2][v3];
dram float C[n/v1][n/v2][v1][v2];
```

```
for (int i = 0; i < n/v1; ++i) {
    for (int j = 0; j < n/v2; ++j) {
        register float c[v1][v2] = 0;
        for (int k = 0; k < n/v3; ++k) {
            register float a[v1][v3] = A[i][k];
            register float b[v2][v3] = B[j][k];
            c += dot(a, b.T);
        }
        C[i][j] = c;
    }
}</pre>
```


Register Tiled Matrix Multiplication

dram float A[n/v1][n/v3][v1][v3];
dram float B[n/v2][n/v3][v2][v3];
dram float C[n/v1][n/v2][v1][v2];

Read a N^3 / v_2 Read b N^3 / v_1 Write c N^3 / v_3

#reigsters needed: V1*v3 + v2*v3 + v1*v2

Read cost: $(n^3/v^2 + n^3 / v^1 + n^3 / v^3) * speed(dram - > register)$

Register Tiled Matrix Multiplication

- Q: is the load cost related to v3?
- Q: How to set v1 / v2?
 - What are the constraints?
- Q: Why essentially can tiling reduce read cost?

N^3 / v_2 Read a N^{3} / v_{1} Read b N^{3} / v_{3} Write c

#reigsters needed: V1*v3 + v2*v3 + v1*v2

Read cost: $(n^{3}/v^{2} + n^{3}/v^{1} + n^{3}/v^{3}) * speed(dram - 1) + n^{3}/v^{3}$ > register)

Make it more complicated: Consider L1 cache

Registers L1 Cache

CPU ALU

Memory

Cache-aware tiling dram float A[n/b1][b1][n]; dram float B[n/b2][b2][n]; dram float C[n/b1][n/b2][b1][b2]; for (int i = 0; i < n/b1; ++i) {</pre> l1cache float a[b1][n] = A[i]; for (int j = 0; j < n/b2; ++j) {</pre> **l1cache** b[b2][n] = B[j]; C[i][j] = dot(a, b.T);

Sub-procedure, can apply register tiling here

We can further tile [b1][n] / [b2][n] using at the L1-> register level
What's the required condition?

Cache-aware tiling

dram float A[n/b1][b1][n]; dram float B[n/b2][b2][n]; dram float C[n/b1][n/b2][b1][b2]; for (int i = 0; i < n/b1; ++i) {</pre> l1cache float a[b1][n] = A[i]; for (int j = 0; j < n/b2; ++j) {</pre> **l1cache** b[b2][n] = B[j]; C[i][j] = dot(a, b.T);

- Data movement path:
- 1.Dram
- 2.Dram -> 11 cache (cache tiling) 3.L1cache -> register (reg tiling)

Cache-aware tiling

dram float A[n/b1][b1][n]; dram float B[n/b2][b2][n]; dram float C[n/b1][n/b2][b1][b2]; for (int i = 0; i < n/b1; ++i) { l1cache float a[b1][n] = A[i]; for (int j = 0; j < n/b2; ++j) { l1cache b[b2][n] = B[j]; C[i][j] = dot(a, b.T); } }

- s.t.
 b1 * n + b2 * n < L1 cache size
 b1 % v1 == 0
 b2 % v2 == 0
- Vs. previous untiled version?
- A's dram -> |1 time cost: n / b1 * n * b1 = n^2 B's dram -> |1 time cost: n / b1 * n / b2 * b2 * n = n^2 / b1

Putting Things Together

dram float A[n/b1][b1/v1][n][v1]; dram float B[n/b2][b2/v2][n][v2];

```
for (int i = 0; i < n/b1; ++i) {</pre>
   l1cache float a[b1/v1][n][v1] = A[i];
   for (int j = 0; j < n/b2; ++j) {</pre>
     l1cache b[b2/v2][n][v2] = B[j];
     for (int x = 0; x < b1/v1; ++x)
       for (int y = 0; y < b2/v2; ++y) {
         register float c[v1][v2] = 0;
         for (int k = 0; k < n; ++k) {
            register float ar[v1] = a[x][k][:];
            register float br[v2] = b[y][k][:];
                     C += dot(ar, br.T)
```

- We set
$$v3 = 1$$

Outside: cache tiling Inside: register tiling

Cost: 11 -> cache: • n/b1 * n/b2 * b1/v1 * b2 $/v2*n*v1 = n^3/v2$ n^3 / v1 dram -> 11 • $n^2 + n^3 / b^1$

In practice

- On CPUs: We have disk -> dram -> L2 -> L1 -> Register
- How to choose v1, v2, b1, b2, c1, c2?
- - L2 -> L1
 - L1 -> register
- S.t. sizes of L2, L1, registers
- On GPUs:
 - We have dram -> HBM -> sram -> L1 -> L1 -> register?

While we are reading from dram -> L2, can we concurrently read:

Why tiling works: **reuse** loading

float A[n][n]; float B[n][n]; float C[n][n];

C[i][j] = sum(A[i][k] * B[j][k], axis=k)

Access of A is independent of the dimension of j

Tile the j dimension by v1enables resue of A for v1 times

One of the Most Complicated Case

• Q: How to tile?

for n in range(0, N): Stencil computation loops. for coin range(0, CO): for h in range(0, H): Reduction loop. for w in range(0, W): for ci in range(0, CI): for kh in range(0, KH): 5) for parallelization. for kw in range(0, KW): $C[n,co,h,w] += A[n,co,h+kh,w+kw] \times B[kh,kw,co,ci]$

Reduction loops. But usually too small (<=

Next 2 - 3 lectures

- Fundamentals: why/how we can make operator fast
- Case study: Matmul
- GPU architecture and programming
- Roofline model

Recap CPU parallelization

- We can parallelize this loop using CPU threads
- We can parallelize this using many concurrent cores

```
#pragma omp parallel for
```

for (int i = 0; i < 64; ++i) { float4 a = load_float4(A + i*4); float4 b = load_float4(B + i*4); float4 c = add_float4(a, b); store float4(C * 4, c);

Vectorized & parallelized

Single-Instruction Multiple-Data

Example for SIMD in data science:

Intel[®] Architecture currently has SIMD operations of vector length 4, 8, 16

Chip Design Trajectory: SIMD

That's why you see trends: 70nm -> 60nm -> 50nm -> \dots -> what is the best now? Problem: this is not substantiable; there are also power/heat issues when you put more ALUs in

If we're able to reduce to size of ALU while keeping its power

Idea: How about we use a lot of weak/specialized cores

Core L1 Cache	Con trol	Core L1 Cache	Co tro		
Core L1 Cache	Con trol	Core L1 Cache	Co tro		
L2 Cache		L2 Cache			
L3 Cache					
DRAM					
	CP	U			

Hardware Accelerators: GPUs

- Graphics Processing Unit (GPU): Tailored for matrix/tensor ops Basic idea: Use tons of ALUs (but weak and more specialized); massive data parallelism (SIMD on steroids); now H100 offers ~980 TFLOPS for
- FP16!
- Popularized by NVIDIA in early 2000s for video games, graphics, and multimedia; now ubiquitous in DL
- CUDA released in 2007; later wrapper APIs on top: CuDNN, CuSparse, CuDF (RapidsAI), NCCL, etc.

Other Hardware Accelerators

- General Trajectory:
 - Use more specialized core
 - Reduce precision
 - Mixing specialized and general-purpose cores
- E.g.
 - Tensor Processing Unit (TPU)
 - used for AlphaGo
- E.g.
 - B200 (projected release 2025): fp4 / fp8 Tensorcore
- E.g.
 - M3 max: mixing tensorcore and normal core

An "application-specific integrated circuit" (ASIC) created by Google in mid 2010s;

GPU and CUDA

- Basic concepts and Architecture
- Programming abstraction
- Case study: Matmul

GPU Overview

Threads, Blocks, Grids

- Threads: smallest units to process a chunk of data
- Blocks: A group of threads that share memory
- Grid: A collection of blocks that execute the same kernel

How many SMs/Threads we have?

- V100 (2018 Now): 80 SMs, 2048 threads/SM
- A100 (2020 Now): 108 SMs, 2048 threads/SM
- H100 (2022 Now): 144 SMs, 2048 threads/SM
- B100 (2025): go surveying the numbers

CUDA

Introduced in 2007 with NVIDIA Tesla architecture

C-like languages for programming GPUs

CUDA's design matches the grid/block/thread concepts in GPUs

CUDA Programs contain A Hierarchy of Threads

const int Nx = 12;const int Ny = 6;

dim3 threadsPerBlock(4, 3, 1); dim3 numBlocks(Nx/threadsPerBlock.x, Ny/threadsPerBlock.y, 1);

// assume A, B, C are allocated Nx x Ny float arrays

// this call will trigger execution of 72 CUDA threads: // 6 thread blocks of 12 threads each matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

Run on CPU

How Many threads/Blocks it runs on?

const int Nx = 12; const int Ny = 6;

// assume A, B, C are allocated Nx x Ny float arrays

// this call will trigger execution of 72 CUDA threads:
// 6 thread blocks of 12 threads each
matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

Grid, Block, and Thread

- GridDim: The dimensions of the grid
- blockldx: The block index within the grid
- blockDim: The dimensions of a block
- threadIdx: The thread index within a block
- What About GridId?
- What about threadDim?

ne grid

An Example CUDA Program

```
const int Nx = 12;
const int Ny = 6;
dim3 threadsPerBlock(4, 3, 1);
dim3 numBlocks(Nx/threadsPerBlock.x,
               Ny/threadsPerBlock.y, 1);
// assume A, B, C are allocated Nx x Ny float arrays
// this call will cause execution of 72 threads
// 6 blocks of 12 threads each
matrixAddDoubleB<<<<numBlocks, threadsPerBlock>>>(A, B, C);
```

```
__device__ float doubleValue(float x)
   return 2 * x;
// kernel definition
__global__ void matrixAddDoubleB(float A[Ny][Nx],
                                 float B[Ny][Nx],
                                 float C[Ny][Nx])
   int i = blockIdx.x * blockDim.x + threadIdx.x;
   int j = blockIdx.y * blockDim.y + threadIdx.y;
   C[j][i] = A[j][i] + doubleValue(B[j][i]);
}
```


Separation CPU and GPU Execution

```
const int Nx = 12;
const int Ny = 6;
dim3 threadsPerBlock(4, 3, 1);
dim3 numBlocks(Nx/threadsPerBlock.x,
               Ny/threadsPerBlock.y, 1);
// assume A, B, C are allocated Nx x Ny float arrays
// this call will cause execution of 72 threads
// 6 blocks of 12 threads each
matrixAddDoubleB<<<<numBlocks, threadsPerBlock>>>(A, B, C);
```

```
__device__ float doubleValue(float x)
   return 2 * x;
// kernel definition
__global__ void matrixAddDoubleB(float A[Ny][Nx],
                                 float B[Ny][Nx],
                                 float C[Ny][Nx])
   int i = blockIdx.x * blockDim.x + threadIdx.x;
   int j = blockIdx.y * blockDim.y + threadIdx.y;
   C[j][i] = A[j][i] + doubleValue(B[j][i]);
}
```


#Threads is Explicit and Static in Programs

const int Nx = 11; // not a multiple of threadsPerBlk.x const int Ny = 5; // not a multiple of threadsPerBlk.y dim3 threadsPerBlk(4, 3, 1); dim3 numBlocks(3, 2, 1); // assume A, B, C are allocated Nx x Ny float arrays // this call will trigger execution of 72 CUDA threads: // 6 thread blocks of 12 threads each matrixAdd<<<numBlocks, threadsPerBlk>>>(A, B, C);

```
// kernel definition
__global__ void matrixAdd(float A[Ny][Nx],
                          float B[Ny][Nx],
                          float C[Ny][Nx])
  int i = blockIdx.x * blockDim.x + threadIdx.x;
  int j = blockIdx.y * blockDim.y + threadIdx.y;
  // quard against out of bounds array access
  if (i < Nx && j < Ny)
      C[j][i] = A[j][i] + B[j][i];
```

Developers to:

- To provide CPU/GPU code separation
- Statically declare blockDim, shapes.
- Map data to blocks/threads
- Check boundary conditions

SIMD Constraints: how to handle control flow?

SIMD requires all ALUs/Core Must proceed in the same pace

oat A[N])

x * blockDim.x + threadIdx.x;

)f);