
DSC 291: ML Systems

Spring 2024

1

https://hao-ai-lab.github.io/dsc291-s24/

Basics

Single-device Optimization

LLMs

Parallelization

Logistics

• Next Quiz: Thursday (4/18)

• HW1 will be released by Friday

• 3 weeks to finish

• Readings of week 3:

• Nvidia documentation

Today

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator optimization/compilation

Runtime: schedule / memory

x matmul

w1

GPU and CUDA

• Basic concepts and Architecture

• Concepts

• Execution Model

• Memory

• Programming abstraction

• Case study: Matmul

• Case study: parallel reduction

GPU HW Architecture Overview

Threads, Blocks, Grids

• Kernel: CUDA program executed by many CUDA cores in parallel

• Threads: smallest units to process a chunk of data

• (Warp: a group of threads without communication)

• Blocks: A collection of threads that share memory

• Grid: A collection of blocks that execute the same kernel

Threads

• Recall Threads vs Process. Naming 2 primary differences?

Warp (between threads and blocks)

• Warp: a group of threads executing the same instructions

• Cannot share data

• Lock-step execution

• Finest scheduling granularity by GPUs

Thread Block

• A collection of many threads mapped to a streaming

multiprocessor (SM/SMP)

Grid

• A collection of blocks (SMs) that execute the same kernel

• More SMs, more powerful

• More core/SM, more powerful

• More powerful cores

How many SMs/Threads we have?

• V100 (2018 - Now): 80 SMs, 2048 threads/SM,

• $3/hour/GPU

• A100 (2020 - Now): 108 SMs, 2048 threads/SM,

• $4/hour/GPU

• H100 (2022 - Now): 144 SMs, 2048 threads/SM

• $12/hour/GPU

• B100 and B200 (2025 -): go surveying the number

CUDA

• Introduced in 2007 with NVIDIA Tesla architecture

• C-like languages for programming GPUs

• CUDA’s design matches the grid/block/thread concepts in GPUs

CUDA Programs contain A Hierarchy of Threads

How Many threads/Blocks it runs on?

• How many blocks it runs on?

• How many threads it runs on?

Grid, Block, and Thread

• GridDim: The dimensions of the grid

• blockIdx: The block index within the grid

• blockDim: The dimensions of a block

• threadIdx: The thread index within a block

• What About GridId?

• What about threadDim?

An Example CUDA Program

• “launch a grid of CUDA thread

• blocks” call returns when all threads

have terminated

• __global__ denotes a CUDA kernel

function runs on GPU

• Each thread indexes its data using

blockIdx, blockDim, threadIdx and

execute the computation

Separation CPU and GPU Execution

• Host code: serial execution on CPU

• Device code: SIMD parallel execution

on GPUs

Question

What happens post launching the

kernel?

• Will the CPU program continue

• What if the function has return values?

#Threads is Explicit and Static in Programs

Developers to:

• To provide CPU/GPU code

separation

• Statically declare blockDim, shapes.

• Map data to blocks/threads

Hence it is Important to:

• Check boundary conditions

SIMD Constraints: how to handle control flow?

SIMD requires all ALUs/Core Must proceed in the same pace

• Why?

• Let’s look at a control flow example

Handling Control Flow

Handling Control Flow

Handling Control Flow: Masking

Handling Control Flow

Coherent vs. Divergent

• Coherent execution:

• Same instructions apply to all data

• Divergence Execution:

• On the contrary of coherent

• Should be minimized in CUDA programs

• Is this the case for CPU cores?

GPU and CUDA

• Basic concepts and Architecture

• Concepts

• Execution Model

• Memory

• Programming abstraction

• Case study: Matmul

• Case study: parallel reduction

CUDA Memory Model

CUDA Memory Model

Concepts:

• Host memory: RAM

• Device memory: GPU memory

Q:

• How is host memory managed in OS?

Distinct host and device address spaces:

• CPU code cannot access device

memory

• GPU code cannot access host memory

cudaMemcpy

More concepts: Pinned memory

• A part of host memory

• Optimized for data transfer between CPU/GPU

• Not pagable by OS, a.k.a. locked

• Certain APIs only work on Pinned memory

Memory from a kernel’s perspective

Per thread private memory

(r/w by that thread)

Per block shared memory:

(r/w by all threads of the block)

Global device memory

(r/w by all threads)

Why make it so complex:

• Balance between speed and shared-

memory parallelism

Why So Complex: Example

• CPU implementation:

for i in range(len - 2):

output[i] = (input[i] + input[i+1] + input[i+2]) / 3.0

Q: what is the parallelizable part?

GPU Version 1

• Pattern: every 3 adjacent input elements are reduced as an

output element.

• Every 3-element tuple reduction is independent

• Idea: map each reduction computation to a CUDA core

GPU Version 1

• How many threads In total?

• How blocks?

• What if number of thread requested > total threads in GPUs?

GPU Version 1

Identify a Problem of the above implementation

GPU Version 2

Parallel read by

all threads

Read from the allocated

array `support`

barrier

Q: how many reads we save per block?

Previous: 3 * 128

Now: 130

Synchronization Primitives

• __syncthreads(): wait for all threads in a block to arrive at this point

• cudasycnhronize(): sync between host and device

What happens post launching the

kernel?

• Will the CPU program continue

• What if the function has return values?

CUDA kernel code needs to be compiled (like C/CPP)

Problem: different GPUs have different SMs

• Yet the user asks for a static number of blocks

Scheduling on CUDA

• Core assumption: threadblocks

can be executed in any order (no

dependencies between

threadblocks)

• GPUs maps threadblocks to cores

using a dynamic scheduling policy

threat respects resource

requirements

• Each SM: 96KB of shared memory

• Max warp context: 64

What is a warp?

• A warp is a CUDA implementation

detail on NVIDIA GPUs

• •On modern NVIDIA GPUs, groups of

32 CUDA threads in a thread block

are executed simultaneously using

32-wide SIMD execution

Running a ThreadBlock on an SMP

• Warp: a group of 32 CUDA threads shared an instruction stream

• In our case: we need 4 warps (4 x 32 /warp = 128 threads)

• SMP operation each clock:

• Select up to 4 runnable warps from 64 resident on an SMP

• For each warp, 32 threads to execute the instructions

Deep Dive into CUDA scheduling

• Conv1d spec on 1024 x 1024

• 128 CUDA threads / threadblock

• 1024 blocks

• Each threadblock asks for 130 * 4 = 420 bytes of shared memory

• Given: a GPU with two SMs, specs below

• How is the scheduling looking like?

Deep Dive into CUDA scheduling

• Step 1: host sends CUDA kernel instructions to GPU device

Deep Dive into CUDA scheduling

• Step 2: scheduler maps block 0 to core 0 (reserves execution

contexts for 128 threads and 520 bytes of shared memory)

Deep Dive into CUDA scheduling

• Step 3: scheduler continues to map blocks to execution contexts

Deep Dive into CUDA scheduling

• Step 3: scheduler continues to map blocks to execution contexts

Deep Dive into CUDA scheduling

• Step 3: scheduler continues to map blocks to execution contexts

Deep Dive into CUDA scheduling

• Step 3: scheduler continues to map blocks to execution contexts

• But: cannot schedule a third block on core 0 or core 1. Why?

Deep Dive into CUDA scheduling

• Step 4: thread block 0 completes on core 0

Deep Dive into CUDA scheduling

• Step 5: thread block 4 is scheduled on core 0 (mapped to

execution contexts 0-127)

Deep Dive into CUDA scheduling

• Step 5: thread block 4 is scheduled on core 0 (mapped to

execution contexts 0-127)

Recall: An SMM on a NVIDIA GTX 980 (2014)

• SMM resource:

• # warp context: 64

• # threads: 64 *32 = 2048 total

threads

• 96KB of shared memory

• 16 SMPs

• 1.1GHz clock

• 16 x 4 warps x 32 t/w = 2048 mul-

add ALUs

GTX 980 (2014) -> H100 (2022)

• SMMs remain the same

• Clock speed: 1064 MHz -> 1110 MHz

• Map warps per SMM: 64 -> 64

• Threads per warp: 32 -> 32

• Shared memory per SMM: 96 KB -> 168 KB (A100) -> 256 KB

(H100)

• #SMs: 16 SMMs -> 132 SMMs

• Flops: 4.6 TFLOPs -> 1000 TFLOPs (mainly because of tensor core)

• Q: what is tensorcore – how does it work?

Case study: GPU Matmul

• Starwman solution:

• C = A x B

• Each thread computes one element

Recall register tiling

• Each thread computes a VxV submatrix

To be continued

• Q: apparently we do another layer of tiling at block level.

• Think About How to do it?

	幻灯片 1: DSC 291: ML Systems Spring 2024
	幻灯片 2: Logistics
	幻灯片 3: Today
	幻灯片 4: GPU and CUDA
	幻灯片 5: GPU HW Architecture Overview
	幻灯片 6: Threads, Blocks, Grids
	幻灯片 7: Threads
	幻灯片 8: Warp (between threads and blocks)
	幻灯片 9: Thread Block
	幻灯片 10: Grid
	幻灯片 11: How many SMs/Threads we have?
	幻灯片 12: CUDA
	幻灯片 13: CUDA Programs contain A Hierarchy of Threads
	幻灯片 14: How Many threads/Blocks it runs on?
	幻灯片 15: Grid, Block, and Thread
	幻灯片 16: An Example CUDA Program
	幻灯片 17: Separation CPU and GPU Execution
	幻灯片 18: Question
	幻灯片 19: #Threads is Explicit and Static in Programs
	幻灯片 20: SIMD Constraints: how to handle control flow?
	幻灯片 21: Handling Control Flow
	幻灯片 22: Handling Control Flow
	幻灯片 23: Handling Control Flow: Masking
	幻灯片 24: Handling Control Flow
	幻灯片 25: Coherent vs. Divergent
	幻灯片 26: GPU and CUDA
	幻灯片 27: CUDA Memory Model
	幻灯片 28: CUDA Memory Model
	幻灯片 29: cudaMemcpy
	幻灯片 30: More concepts: Pinned memory
	幻灯片 31: Memory from a kernel’s perspective
	幻灯片 32: Why So Complex: Example
	幻灯片 33: GPU Version 1
	幻灯片 34: GPU Version 1
	幻灯片 35: GPU Version 1
	幻灯片 36: GPU Version 2
	幻灯片 37: Synchronization Primitives
	幻灯片 38: CUDA kernel code needs to be compiled (like C/CPP)
	幻灯片 39: Problem: different GPUs have different SMs
	幻灯片 40: Scheduling on CUDA
	幻灯片 41: What is a warp?
	幻灯片 42: Running a ThreadBlock on an SMP
	幻灯片 43: Deep Dive into CUDA scheduling
	幻灯片 44: Deep Dive into CUDA scheduling
	幻灯片 45: Deep Dive into CUDA scheduling
	幻灯片 46: Deep Dive into CUDA scheduling
	幻灯片 47: Deep Dive into CUDA scheduling
	幻灯片 48: Deep Dive into CUDA scheduling
	幻灯片 49: Deep Dive into CUDA scheduling
	幻灯片 50: Deep Dive into CUDA scheduling
	幻灯片 51: Deep Dive into CUDA scheduling
	幻灯片 52: Deep Dive into CUDA scheduling
	幻灯片 53: Recall: An SMM on a NVIDIA GTX 980 (2014)
	幻灯片 54: GTX 980 (2014) -> H100 (2022)
	幻灯片 55: Case study: GPU Matmul
	幻灯片 56: Recall register tiling
	幻灯片 57: To be continued

