

DSC 291: ML Systems Spring 2024

Parallelization

Single-device Optimization

Basics

https://hao-ai-lab.github.io/dsc291-s24/

LLMs

Logistics

- Next Quiz: Thursday (4/18)
- HW1 will be released by Friday
 - 3 weeks to finish
- Readings of week 3:
 - Nvidia documentation

Today

Dataflow Graph

Autodiff

- Graph Optimization
 - Parallelization
- Runtime: schedule / memory
- Operator optimization/compilation

GPU and CUDA

- Basic concepts and Architecture
 - Concepts
 - Execution Model
 - Memory
- Programming abstraction
- Case study: Matmul
- Case study: parallel reduction

GPU HW Architecture Overview

Threads, Blocks, Grids

- Kernel: CUDA program executed by many CUDA cores in parallel
- Threads: smallest units to process a chunk of data
- (Warp: a group of threads without communication)
- Blocks: A collection of threads that share memory
- Grid: A collection of blocks that execute the same kernel

Threads

• Recall Threads vs Process. Naming 2 primary differences?

CUDA CORE

Warp (between threads and blocks)

- Warp: a group of threads executing the same instructions
 - Cannot share data
 - Lock-step execution
 - Finest scheduling granularity by GPUs

Thread Block

A collection of many threads mapped to a streaming multiprocessor (SM/SMP)

Grid

A collection of blocks (SMs) that execute the same kernel

- More SMs, more powerful
- More core/SM, more powerful
- More powerful cores

How many SMs/Threads we have?

- V100 (2018 Now): 80 SMs, 2048 threads/SM,
 - \$3/hour/GPU
- A100 (2020 Now): 108 SMs, 2048 threads/SM,
 - \$4/hour/GPU
- H100 (2022 Now): 144 SMs, 2048 threads/SM
- \$12/hour/GPU

• B100 and B200 (2025 -): go surveying the number

CUDA

Introduced in 2007 with NVIDIA Tesla architecture

C-like languages for programming GPUs

CUDA's design matches the grid/block/thread concepts in GPUs

CUDA Programs contain A Hierarchy of Threads

- dim3 threadsPerBlock(4, 3, 1); dim3 numBlocks(Nx/threadsPerBlock.x, Ny/threadsPerBlock.y, 1);
- // assume A, B, C are allocated Nx x Ny float arrays

matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

Run on CPU

How Many threads/Blocks it runs on?

- How many blocks it runs on?
- How many threads it runs on?

// assume A, B, C are allocated Nx x Ny float arrays

matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

Grid, Block, and Thread

- GridDim: The dimensions of the grid
- blockldx: The block index within the grid
- blockDim: The dimensions of a block
- threadIdx: The thread index within a block
- What About GridId?
- What about threadDim?

ne grid

An Example CUDA Program

```
const int Nx = 12;
const int Ny = 6;
dim3 threadsPerBlock(4, 3, 1);
dim3 numBlocks(Nx/threadsPerBlock.x,
               Ny/threadsPerBlock.y, 1);
// assume A, B, C are allocated Nx x Ny float arrays
// this call will cause execution of 72 threads
// 6 blocks of 12 threads each
matrixAddDoubleB<<<<numBlocks, threadsPerBlock>>>(A, B, C);
```

```
__device__ float doubleValue(float x)
   return 2 * x;
// kernel definition
__global__ void matrixAddDoubleB(float A[Ny][Nx],
                                 float B[Ny][Nx],
                                 float C[Ny][Nx])
   int i = blockIdx.x * blockDim.x + threadIdx.x;
   int j = blockIdx.y * blockDim.y + threadIdx.y;
   C[j][i] = A[j][i] + doubleValue(B[j][i]);
}
```


Separation CPU and GPU Execution

```
const int Nx = 12;
const int Ny = 6;
dim3 threadsPerBlock(4, 3, 1);
dim3 numBlocks(Nx/threadsPerBlock.x,
               Ny/threadsPerBlock.y, 1);
// assume A, B, C are allocated Nx x Ny float arrays
// this call will cause execution of 72 threads
// 6 blocks of 12 threads each
matrixAddDoubleB<<<<numBlocks, threadsPerBlock>>>(A, B, C);
```

```
__device__ float doubleValue(float x)
   return 2 * x;
// kernel definition
__global__ void matrixAddDoubleB(float A[Ny][Nx],
                                 float B[Ny][Nx],
                                 float C[Ny][Nx])
   int i = blockIdx.x * blockDim.x + threadIdx.x;
   int j = blockIdx.y * blockDim.y + threadIdx.y;
   C[j][i] = A[j][i] + doubleValue(B[j][i]);
}
```


Question

```
const int Nx = 12;
const int Ny = 6;
dim3 threadsPerBlock(4, 3, 1);
dim3 numBlocks(Nx/threadsPerBlock.x,
               Ny/threadsPerBlock.y, 1);
// assume A, B, C are allocated Nx x Ny float arrays
// this call will cause execution of 72 threads
// 6 blocks of 12 threads each
matrixAddDoubleB<<<<numBlocks, threadsPerBlock>>>(A, B, C);
```

```
__device__ float doubleValue(float x)
   return 2 * x;
// kernel definition
__global__ void matrixAddDoubleB(float A[Ny][Nx],
                                 float B[Ny][Nx],
                                 float C[Ny][Nx])
   int i = blockIdx.x * blockDim.x + threadIdx.x;
   int j = blockIdx.y * blockDim.y + threadIdx.y;
   C[j][i] = A[j][i] + doubleValue(B[j][i]);
}
```

What happens post launching the kernel?

- Will the CPU program continue
- What if the function has return values? lacksquare

#Threads is Explicit and Static in Programs

const int Nx = 11; // not a multiple of threadsPerBlk.x const int Ny = 5; // not a multiple of threadsPerBlk.y dim3 threadsPerBlk(4, 3, 1); dim3 numBlocks(3, 2, 1); // assume A, B, C are allocated Nx x Ny float arrays // this call will trigger execution of 72 CUDA threads: // 6 thread blocks of 12 threads each matrixAdd<<<numBlocks, threadsPerBlk>>>(A, B, C);

```
// kernel definition
__global__ void matrixAdd(float A[Ny][Nx],
                          float B[Ny][Nx],
                          float C[Ny][Nx])
  int i = blockIdx.x * blockDim.x + threadIdx.x;
  int j = blockIdx.y * blockDim.y + threadIdx.y;
  // quard against out of bounds array access
  if (i < Nx && j < Ny)
      C[j][i] = A[j][i] + B[j][i];
```

Developers to:

- To provide CPU/GPU code separation
- Statically declare blockDim, shapes.
- Map data to blocks/threads

Hence it is Important to:

Check boundary conditions

SIMD Constraints: how to handle control flow?

- Why?
- Let's look at a control flow example

SIMD requires all ALUs/Core Must proceed in the same pace

oat A[N]) x * blockDim.x + threadIdx.x;)f);

Handling Control Flow


```
// kernel definition
__global__ void f(float A[N])
{
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    float x = A[i];
    if (x > 0) {
        x = 2.0f * x;
    } else {
            x = exp(x, 5.0f);
        }
        A[i] = x;
}
```

Handling Control Flow


```
// kernel definition
__global__ void f(float A[N])
{
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    float x = A[i];
    if (x > 0) {
        x = 2.0f * x;
    } else {
            x = exp(x, 5.0f);
        }
        A[i] = x;
}
```

Handling Control Flow: Masking


```
// kernel definition
__global__ void f(float A[N])
{
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    float x = A[i];
    if (x > 0) {
        x = 2.0f * x;
    } else {
        x = exp(x, 5.0f);
    }
    A[i] = x;
}
```

Handling Control Flow


```
// kernel definition
__global__ void f(float A[N])
{
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    float x = A[i];
    if (x > 0) {
        x = 2.0f * x;
    } else {
        x = exp(x, 5.0f);
    }
    A[i] = x;
}
```

Coherent vs. Divergent

- Coherent execution:
 - Same instructions apply to all data
- Divergence Execution:
 - On the contrary of coherent
 - Should be minimized in CUDA programs
 - Is this the case for CPU cores?

GPU and CUDA

- Basic concepts and Architecture
 - Concepts
 - Execution Model

Memory

- Programming abstraction
- Case study: Matmul
- Case study: parallel reduction

CUDA Memory Model

CUDA Memory Model

Host (serial execution on CPU)

Host memory address space

CUDA Device (SIMD execution on GPU)

Device memory address space

Concepts:

memory

- Host memory: RAM
- Device memory: GPU memory
- Q:
- How is host memory managed in OS?

CPU code cannot access device

cudaMemcpy

Host (serial execution on CPU)

Host memory address space

CUDA Device (SIMD execution on GPU)

Device memory address space

```
float* A = new float[N];
// populate host address space pointer A
for (int i=0 i<N; i++)</pre>
  A[i] = (float)i;
int bytes = sizeof(float) * N
                    // allocate buffer in
float* deviceA;
cudaMalloc(&deviceA, bytes); // device address space
// populate deviceA
cudaMemcpy(deviceA, A, bytes, cudaMemcpyHostToDevice);
// note: deviceA[i] is an invalid operation here (cannot
// manipulate contents of deviceA directly from host.
// Only from device code.)
```


More concepts: Pinned memory

- A part of host memory
- Optimized for data transfer between CPU/GPU
- Not pagable by OS, a.k.a. locked
- Certain APIs only work on Pinned memory

Memory from a kernel's perspective

Global device memory (r/w by all threads)

Why make it so complex:

 Balance between speed and sharedmemory parallelism

Why So Complex: Example

• CPU implementation: for i in range(len - 2): output[i] = (input[i] + input[i+1] + input[i+2]) / 3.0Q: what is the parallelizable part?

4]	input[5]	input[6]	input[7]	input[8]	input[9]
----	----------	----------	----------	----------	----------

[3] output[4] output[5] output	[6] output[7]
--------------------------------	---------------

- Pattern: every 3 adjacent in output element.
- Every 3-element tuple reduction is independent
- Idea: map each reduction computation to a CUDA core

• Pattern: every 3 adjacent input elements are reduced as an

ction is independent computation to a CUDA core

```
int N = 1024 * 1024
// property initialize contents of devInput here ...
convolve<<<N/THREADS_PER_BLK, THREADS_PER_BLK>>>(N, devInput, devOutput);
#define THREADS_PER_BLK 128
__global__ void convolve(int N, float* input, float* output) {
   float result = 0.0f; // thread-local variable
   for (int i=0; i<3; i++)
     result += input[index + i];
   output[index] = result / 3.f;
```

- How many threads in total?
- How blocks?
- What if number of thread requested > total threads in GPUs?

int N = 1024 * 1024// property initialize contents of devInput here ... convolve<<<N/THREADS_PER_BLK, THREADS_PER_BLK>>>(N, devInput, devOutput); #define THREADS_PER_BLK 128 __global__ void convolve(int N, float* input, float* output) { float result = 0.0f; // thread-local variable for (int i=0; i<3; i++) result += input[index + i]; output[index] = result / 3.f; }

Identify a Problem of the above implementation

int N = 1024 * 1024

// property initialize contents of devInput here ...

convolve<<<N/THREADS_PER_BLK, THREADS_PER_BLK>>>(N, devInput, devOutput);

#define THREADS_PER_BLK 128

__global__ void convolve(int N, float* input, float* output) {

__shared__ float support[THREADS_PER_BLK+2]; support[threadIdx.x] = input[index]; if (threadIdx.x < 2) {

__syncthreads();

float result = 0.0f; // thread-local variable for (int i=0; i<3; i++) result += support[threadIdx.x + i]; output[index] = result / 3.f;

Synchronization Primitives

cudasycnhronize(): sync between host and device

```
const int Nx = 12;
const int Ny = 6;
dim3 threadsPerBlock(4, 3, 1);
dim3 numBlocks(Nx/threadsPerBlock.x,
               Ny/threadsPerBlock.y, 1);
// assume A, B, C are allocated Nx x Ny float arrays
// this call will cause execution of 72 threads
// 6 blocks of 12 threads each
matrixAddDoubleB<<<<numBlocks, threadsPerBlock>>>(A, B, C);
```

__syncthreads(): wait for all threads in a block to arrive at this point


```
int N = 1024 * 1024
cudaMalloc(&devInput, sizeof(float) * (N+2) );
cudaMalloc(&devOutput, sizeof(float) * N);
```

// property initialize contents of devInput here ...

```
convolve<<<N/THREADS_PER_BLK, THREADS_PER_BLK>>>(N, devInput, devOutput); -
```

```
#define THREADS_PER_BLK 128
__global__ void convolve(int N, float* input, float* output) {
   int index = blockIdx.x * blockDim.x + threadIdx.x;
   __shared__ float support[THREADS_PER_BLK+2];
   support[threadIdx.x] = input[index];
   if (threadIdx.x < 2) {
      support[THREADS_PER_BLK + threadIdx.x] = input[index+THREADS_PER_BLK];
   __syncthreads();
   float result = 0.0f; // thread-local variable
   for (int i=0; i<3; i++)</pre>
     result += support[threadIdx.x + i];
   output[index] = result / 3.f;
```


Problem: different GPUs have different SMs

• Yet the user asks for a static number of blocks

Mid-range GPU (6 cores)

High-end GPU (16 cores)

Scheduling on CUDA

- Core assumption: threadblocks

 can be executed in any order (no
 dependencies between
 threadblocks)
- GPUs maps threadblocks to cores
 using a dynamic scheduling policy
 threat respects resource
 requirements
- Each SM: 96KB of shared memory
- Max warp context: 64

Grid of 8K convolve thread blocks (specified by kernel launch) Block requirements:

- 128 threads
- 520 bytes of shared memory
- 1024 bytes of local memory

What is a warp?

- A warp is a CUDA implementation detail on NVIDIA GPUs
- On modern NVIDIA GPUs, groups of 32 CUDA threads in a thread block are executed simultaneously using 32-wide SIMD execution

Running a ThreadBlock on an SMP

- Warp: a group of 32 CUDA threads shared an instruction stream
 - In our case: we need 4 warps $(4 \times 32 / \text{warp} = 128 \text{ threads})$
- SMP operation each clock:
 - Select up to 4 runnable warps from 64 resident on an SMP
 - For each warp, 32 threads to execute the instructions

- Convld spec on 1024 x 1024
 - 128 CUDA threads / threadblock
 - 1024 blocks
 - Each threadblock asks for 130 * 4 = 420 bytes of shared memory
- Given: a GPU with two SMs, specs below
- How is the scheduling looking like?

Fetch/Decode			
Execution context storage for 384 CUDA threads (12 warps)	"Shared" mei storage (1.5		

Step 1: host sends CUDA kernel instructions to GPU device

EXECUTE: convolve ARGS: N, input_array, output_array NUM_BLOCKS: 1000

GPU Work Scheduler

EXECUTE: convolve ARGS: NUM_BLOCKS: 1000

Step 2: scheduler maps block 0 to core 0 (reserves execution

contexts for 128 threads and 520 bytes of shared memory)

GPU Work Scheduler

EXECUTE: convolve ARGS: N, input_array, output_array NUM_BLOCKS: 1000

Step 3: scheduler continues to map blocks to execution contexts

GPU Work Scheduler

EXECUTE: convolve ARGS: N, input_array, output_array NUM_BLOCKS: 1000

Step 3: scheduler continues to map blocks to execution contexts

GPU Work Scheduler

EXECUTE: convolve ARGS: NUM_BLOCKS: 1000

Step 3: scheduler continues to map blocks to execution contexts

GPU Work Scheduler

EXECUTE: convolve ARGS: NUM_BLOCKS: 1000

Step 3: scheduler continues to map blocks to execution contexts

• But: cannot schedule a third block on core 0 or core 1. Why?

GPU Work Scheduler

• Step 4: thread block 0 completes on core 0

EXECUTE: convolve ARGS: NUM_BLOCKS: 1000

GPU Work Scheduler

Fetch/Decode		
Block 1 (contexts 0-127) Block 3 (contexts 128-255)	Block 1: support (520 bytes @ 0x0) Block 3: support	
Execution context storage for 384 CUDA threads	(520 bytes @ 0x520) "Shared" memory storage (1.5 KB)	

execution contexts 0-127)

EXECUTE: convolve ARGS: N, input_array, output_array NUM_BLOCKS: 1000

Step 5: thread block 4 is scheduled on core 0 (mapped to

GPU Work Scheduler

execution contexts 0-127)

EXECUTE: convolve ARGS: N, input_array, output_array NUM_BLOCKS: 1000

Step 5: thread block 4 is scheduled on core 0 (mapped to

GPU Work Scheduler

Recall: An SMM on a NVIDIA GTX 980 (2014)

- SMM resource:
 - # warp context: 64
 - # threads: 64 * 32 = 2048 total threads
 - 96KB of shared memory
 - 16 SMPs
 - 1.1GHz clock
 - 16×4 warps $\times 32 t/w = 2048$ muladd ALUs

GTX 980 (2014) -> H100 (2022)

- SMMs remain the same
 - Clock speed: 1064 MHz -> 1110 MHz
 - Map warps per SMM: $64 \rightarrow 64$
 - Threads per warp: $32 \rightarrow 32$
 - Shared memory per SMM: 96 KB -> 168 KB (A100) -> 256 KB (H100)
- #SMs: 16 SMMs -> 132 SMMs
- - Q: what is tensorcore how does it work?

Flops: 4.6 TFLOPs -> 1000 TFLOPs (mainly because of tensor core)

Case study: GPU Matmul

• Starwman solution:

•
$$C = A \times B$$

Each thread computes one element

```
int N = 1024;
dim3 threadsPerBlock(32, 32, 1);
dim3 numBlocks(N/32, N/32, 1);
```

matmul<<<numBlocks, threadsPerBlock>>>(A, B, C);

```
__global__ void mm(float A[N][N], float B[N][N], float C[N][N]) {
  int x = blockIdx.x * blockDim.x + threadIdx.x;
  int y = blockIdx.y * blockDim.y + threadIdx.y;
  result = 0;
  for (int k = 0; k < N; ++k) {
    result += A[x][k] * B[k][y];</pre>
  C[x][y] = result;
```


Global memory access per thread: 2*N Number of threads: N^2 Total global memory access: $2N^3$

Recall register tiling

Each thread computes a VxV submatrix

```
__global__ void mm(float A[N][N], float B[N][N], float C[N][N]) {
 int ybase = blockIdx.y * blockDim.y + threadIdx.y;
 int xbase = blockIdx.x * blockDim.x + threadIdx.x;
 float c[V][V] = {0};
 float a[V], b[V];
 for (int k = 0; k < N; ++k) {
   a[:] = A[xbase*V : xbase*V + V, k];
   b[:] = B[k, ybase*V : ybase*V + V];
   for (int y = 0; y < V; ++y) {
     for (int x = 0; x < V; ++x) {
       c[x][y] += a[x] * b[y];
 C[xbase * V : xbase*V + V, ybase*V : ybase*V + V] = c[:];
```


To be continued

- Q: apparently we do another layer of tiling at block level.
- Think About How to do it?