
DSC 291: ML Systems

Spring 2024

1

https://hao-ai-lab.github.io/dsc291-s24/

Basics

Single-device Optimization

LLMs

Parallelization

GPU and CUDA

• Basic concepts and Architecture

• Concepts

• Execution Model

• Memory

• Programming abstraction

• Case study: Matmul

Case study: GPU Matmul

• Strawman solution:

• C = A x B

• Each thread computes one element

High-level Opt Idea: Recall Memory Hierarchy

Recall register tiling -> thread tiling

• Each thread computes a VxV submatrix

Recall Cache-aware tiling -> block-level tiling

• Use block shared mem

• A block computes a L x L submatrix

• Then a thread computes a V x V

submatrix and reuses the matrices in

shared block memory

Memory overhead?

• Global memory access per threadblock

• 2LN

• Number of threadblocks:

• N^2 / L^2

• Total global memory access:

• 2N^3 / L

• Shared memory access per thread:

• 2VN

• Number of threads

• N^2 / V^2

• Total shared memory access:

• 2N^3 / V

Core Problems Here

• How to choose L/V? Tradeoffs:

• #threads

• #registers

• Amount of shared memory

More GPU Optimizations

• Global memory continuous read

• Shared memory bank conflict

• Pipelining

• Tensor core

• Etc.

Next Topic:

Basics

Single-device Optimization

LLMs

Parallelization

Orange are parts of ML Compilation

Dataflow Graph

Autodiff

Graph Optimization

Parallelization

Operator optimization/compilation

Runtime: schedule / memory

Agenda on this part

• ML Compilation Overview

• Compiler

• Graph optimization

• Memory Optimization

• Activation checkpointing

• Quantization and Mixed precision

• Two Guest Talks covering details in compilation, JIT, graph fusion, and

beyond:

• Meta PyTorch lead developer: Jason Ansel

• Google JAX/XLA lead developer: Jinliang Wei

ML Compilation Overview

In Reality

Goals

There are many equivalent ways to run the same model execution.

The common theme of MLC is optimization in different forms:

• Minimize memory usage

• Maximize execution efficiency

• Scaling to heterogeneous devices

• Minimize developer overhead

ML Compilation Goals

Compiler

ML Compilation Goals

Compiler

What is a Traditional Compiler?

Compiler

Human

Code (e.g., cpp)

Machine

code

Dataflow Graph

Transformed Dataflow Graph

Efficient Kernel code

Machine code

Problems:

• Op-level: How to make operator fast on different hardware?

• Tiling Based on register/cache/shared mem sizes

• Use target device-specific accelerations

• Generate the operator implementations automatically

• Graph-level: graph transformations to make it faster

• Programming-level:

• How to transform an imperative code (by developers) into a

compile-able code?

Compilation Process Today

IR and transformers

Op-level optimizations

CodeGen

Lowering

IR: Intermediate representation

• What is the difference between this IR and the dataflow graph?

Notable Compilers

There are many different IRs by different compilers

• XLA: Accelerated Linear Algebra

• HLO

• TVM: tensor virtual machine

• IRModule (we used this on in class)

• Torch.compile: PyTorch

• Modular: Chris Lattner’s startup

User Code transformations

• What are potential challenges of user code parsing?

Example Compile flow: high-level transformations

• We’ll talk about some techniques here next week

Example Compile flow: lowering to loop IR

Example Compile flow: Loop transformers

Example Compilation: CodeGen

Eventually, we transform a user code into some binary artifacts

	幻灯片 1: DSC 291: ML Systems Spring 2024
	幻灯片 2: GPU and CUDA
	幻灯片 3: Case study: GPU Matmul
	幻灯片 4: High-level Opt Idea: Recall Memory Hierarchy
	幻灯片 5: Recall register tiling -> thread tiling
	幻灯片 6: Recall Cache-aware tiling -> block-level tiling
	幻灯片 7: Memory overhead?
	幻灯片 8: Core Problems Here
	幻灯片 10: More GPU Optimizations
	幻灯片 11: Next Topic:
	幻灯片 12: Orange are parts of ML Compilation
	幻灯片 13: Agenda on this part
	幻灯片 14: ML Compilation Overview
	幻灯片 15: In Reality
	幻灯片 16: Goals
	幻灯片 17: ML Compilation Goals
	幻灯片 18: ML Compilation Goals
	幻灯片 19: What is a Traditional Compiler?
	幻灯片 20: Problems:
	幻灯片 21: Compilation Process Today
	幻灯片 22: IR: Intermediate representation
	幻灯片 23: Notable Compilers
	幻灯片 24: User Code transformations
	幻灯片 25: Example Compile flow: high-level transformations
	幻灯片 26: Example Compile flow: lowering to loop IR
	幻灯片 27: Example Compile flow: Loop transformers
	幻灯片 28: Example Compilation: CodeGen

