

DSC 291: ML Systems Spring 2024

Parallelization

Single-device Optimization

Basics

https://hao-ai-lab.github.io/dsc291-s24/

LLMs

GPU and CUDA

- Basic concepts and Architecture
 - Concepts
 - Execution Model
 - Memory
- Programming abstraction
- Case study: Matmul

Case study: GPU Matmul

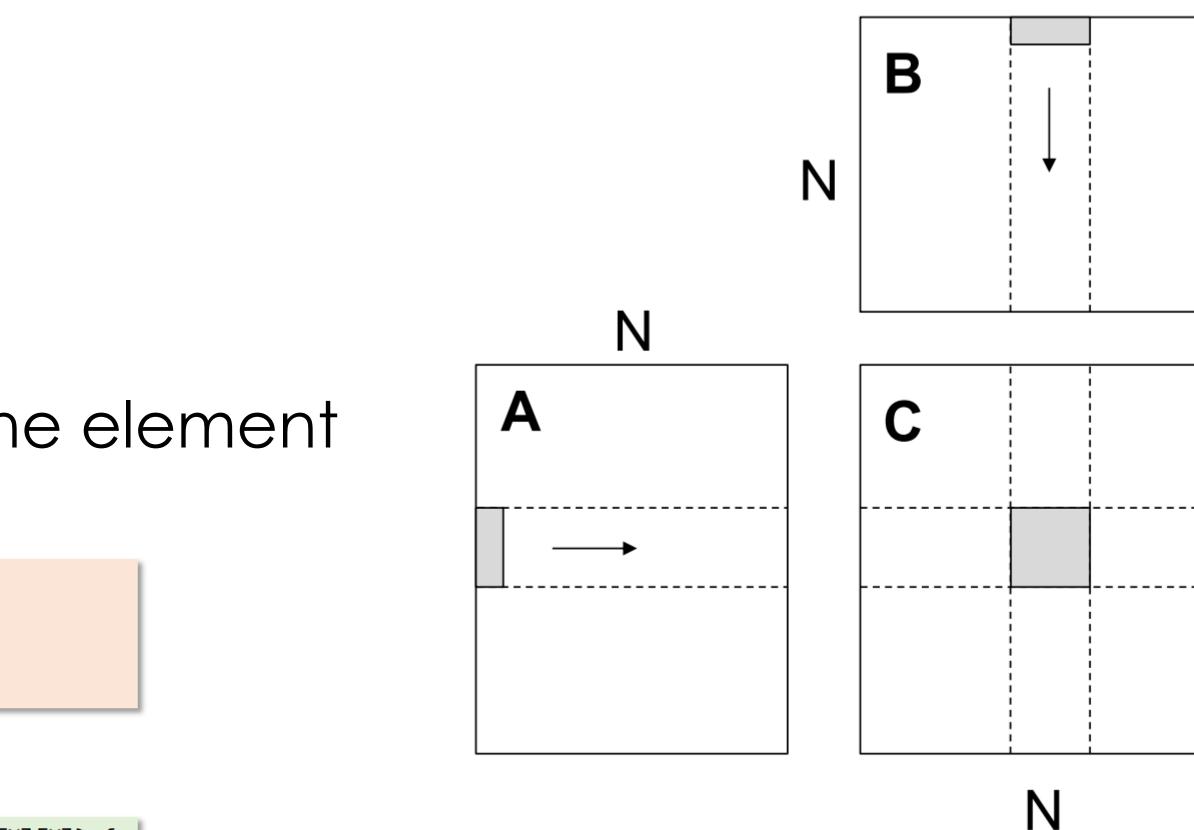
• Strawman solution:

•
$$C = A \times B$$

Each thread computes one element

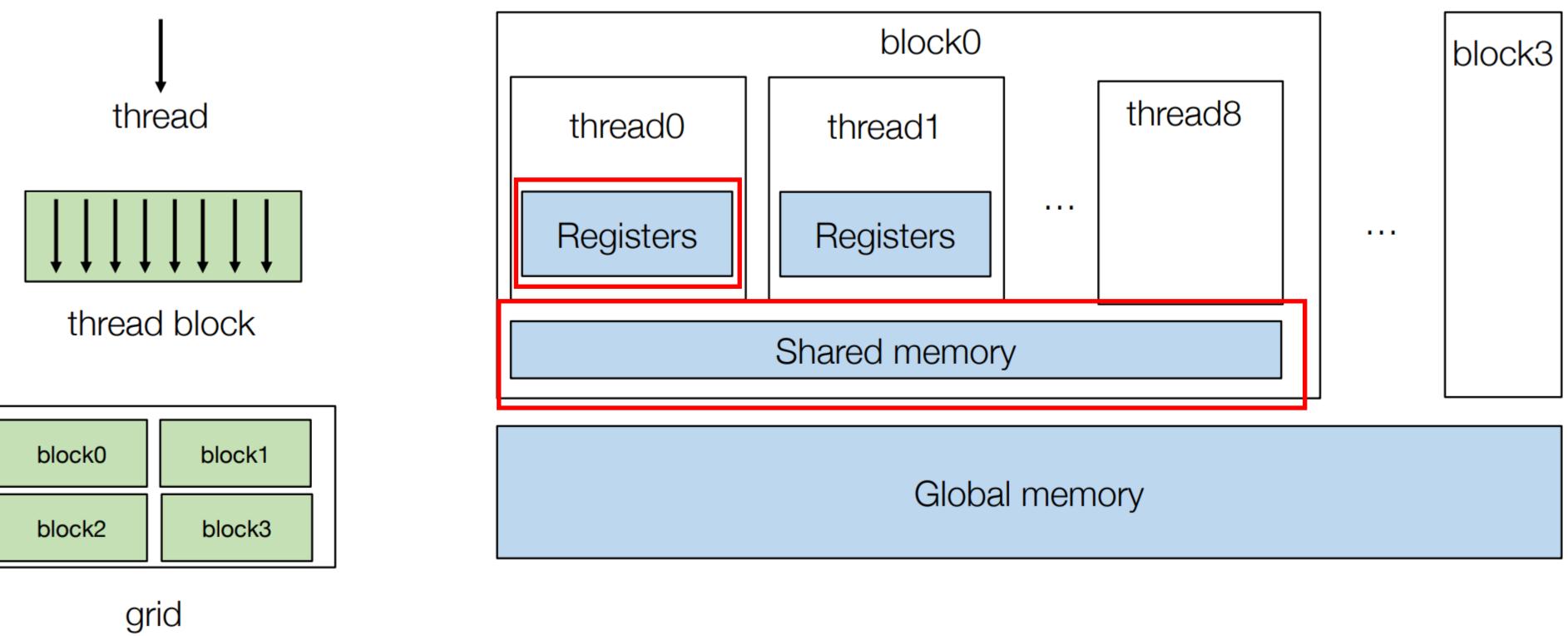
```
int N = 1024;
dim3 threadsPerBlock(32, 32, 1);
dim3 numBlocks(N/32, N/32, 1);
```

matmul<<<numBlocks, threadsPerBlock>>>(A, B, C);



[N][N]) {

High-level Opt Idea: Recall Memory Hierarchy

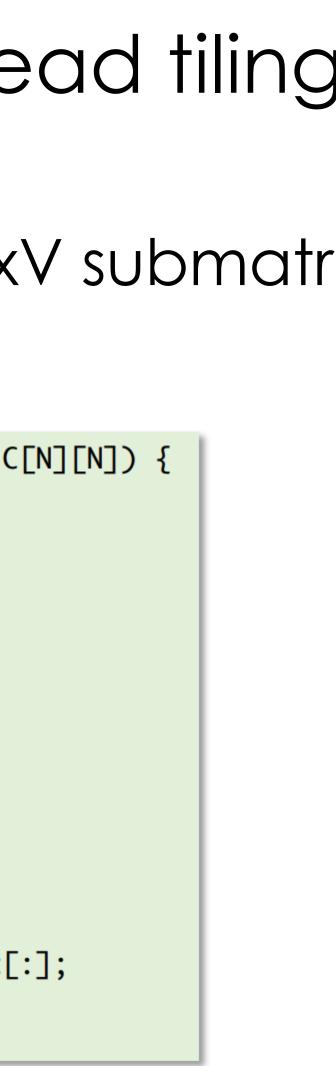


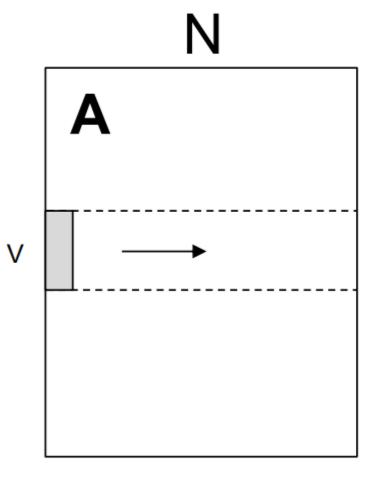
Recall register tiling -> thread tiling

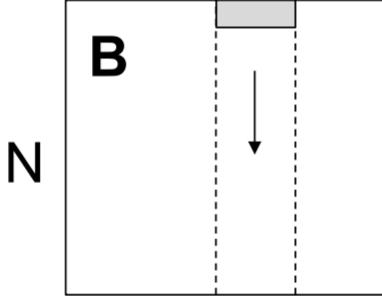
Each thread computes a VxV submatrix

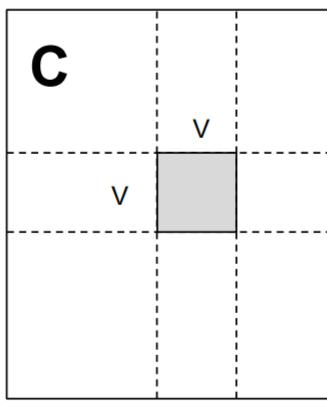
```
__global__ void mm(float A[N][N], float B[N][N], float C[N][N]) {
    int ybase = blockIdx.y * blockDim.y + threadIdx.y;
    int xbase = blockIdx.x * blockDim.x + threadIdx.x;

    float c[V][V] = {0};
    float a[V], b[V];
    tor (int K = 0; K < N; ++k) {
        a[:] = A[xbase*V : xbase*V + V, k];
        b[:] = B[k, ybase*V : ybase*V + V];
        for (int y = 0; y < V; ++y) {
            for (int x = 0; x < V; ++x) {
                c[x][y] += a[x] * b[y];
            }
        }
        C[xbase * V : xbase*V + V, ybase*V : ybase*V + V] = c[:];
    }
}</pre>
```





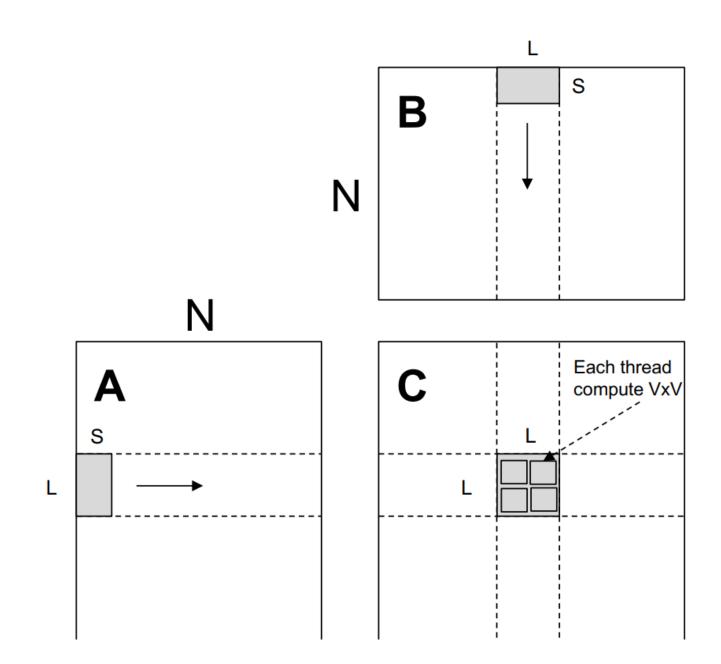




Ν

Recall Cache-aware tiling -> block-level tiling

- Use block shared mem
- A block computes a L x L submatrix
- Then a thread computes a V x V submatrix and reuses the matrices in shared block memory



```
__global__ void mm(float A[N][N], float B[N][N], float C[N][N]) {
  __shared__ float sA[S][L], sB[S][L];
 float c[V][V] = \{0\};
 float a[V], b[V];
 int yblock = blockIdx.y;
 int xblock = blockIdx.x;
 for (int ko = 0; ko < N; ko += S) {
   ___syncthreads();
   // needs to be implemented by thread cooperative fetching
   sA[:, :] = A[k : k + S, yblock * L : yblock * L + L];
   sB[:, :] = B[k : k + S, xblock * L : xblock * L + L];
   __syncthreads();
   for (int ki = 0; ki < S; ++ ki) {
     a[:] = sA[ki, threadIdx.y * V : threadIdx.y * V + V];
     b[:] = sA[ki, threadIdx.x * V : threadIdx.x * V + V];
     for (int y = 0; y < V; ++y) {
       for (int x = 0; x < V; ++x) {
         c[y][x] += a[y] * b[x];
 int ybase = blockIdx.y * blockDim.y + threadIdx.y;
 int xbase = blockIdx.x * blockDim.x + threadIdx.x;
 C[ybase * V : ybase*V + V, xbase*V : xbase*V + V] = c[:];
```


Memory overhead?

- Global memory access per threadblock
 - 2LN
- Number of threadblocks:
 - N^2 / L^2
- Total global memory access:
 - 2N^3 / L
- Shared memory access per thread:
 - 2VN
- Number of threads
 - N^2 / V^2
- Total shared memory access:
 - 2N^3 / V

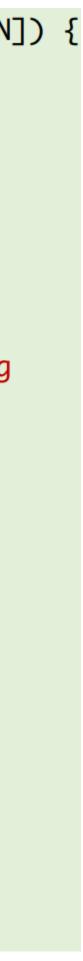
```
__global__ void mm(float A[N][N], float B[N][N], float C[N][N]) {
  __shared__ float sA[S][L], sB[S][L];
 float c[V][V] = \{0\};
 float a[V], b[V];
 int yblock = blockIdx.y;
 int xblock = blockIdx.x;
 for (int ko = 0; ko < N; ko += S) {
    __syncthreads();
   // needs to be implemented by thread cooperative fetching
   sA[:, :] = A[k : k + S, yblock * L : yblock * L + L];
    sB[:, :] = B[k : k + S, xblock * L : xblock * L + L];
    __syncthreads();
   for (int ki = 0; ki < S; ++ ki) {
      a[:] = sA[ki, threadIdx.y * V : threadIdx.y * V + V];
     b[:] = sA[ki, threadIdx.x * V : threadIdx.x * V + V];
      for (int y = 0; y < V; ++y) {
        for (int x = 0; x < V; ++x) {
         c[y][x] += a[y] * b[x];
 int ybase = blockIdx.y * blockDim.y + threadIdx.y;
  int xbase = blockIdx.x * blockDim.x + threadIdx.x;
 C[ybase * V : ybase*V + V, xbase*V : xbase*V + V] = c[:];
```


Core Problems Here

- How to choose L/V? Tradeoffs:
 - #threads
 - #registers
 - Amount of shared memory



```
__global__ void mm(float A[N][N], float B[N][N], float C[N][N]) {
  __shared__ float sA[S][L], sB[S][L];
 float c[V][V] = \{0\};
 float a[V], b[V];
 int yblock = blockIdx.y;
 int xblock = blockIdx.x;
 for (int ko = 0; ko < N; ko += S) {
   __syncthreads();
   // needs to be implemented by thread cooperative fetching
   sA[:, :] = A[k : k + S, yblock * L : yblock * L + L];
    sB[:, :] = B[k : k + S, xblock * L : xblock * L + L];
    __syncthreads();
   for (int ki = 0; ki < S; ++ ki) {
     a[:] = sA[ki, threadIdx.y * V : threadIdx.y * V + V];
      b[:] = sA[ki, threadIdx.x * V : threadIdx.x * V + V];
      for (int y = 0; y < V; ++y) {
        for (int x = 0; x < V; ++x) {
         c[y][x] += a[y] * b[x];
 int ybase = blockIdx.y * blockDim.y + threadIdx.y;
 int xbase = blockIdx.x * blockDim.x + threadIdx.x;
 C[ybase * V : ybase*V + V, xbase*V : xbase*V + V] = c[:];
```



More GPU Optimizations

- Global memory continuous read
- Shared memory bank conflict
- Pipelining
- Tensor core
- Etc.

read ct

Next Topic:

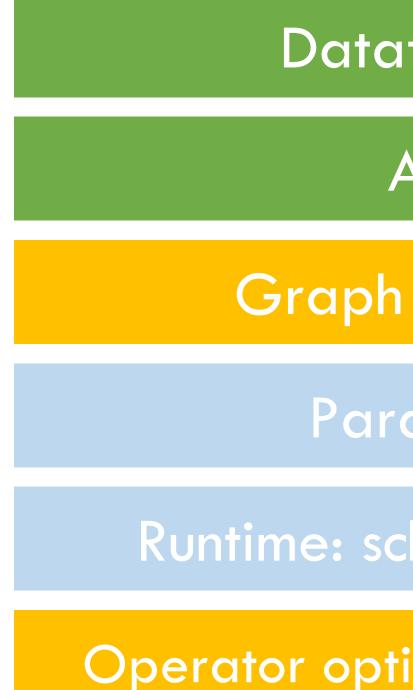
Single-device Optimization

LLMs

Parallelization

Basics

Orange are parts of ML Compilation



Dataflow Graph

Autodiff

Graph Optimization

Parallelization

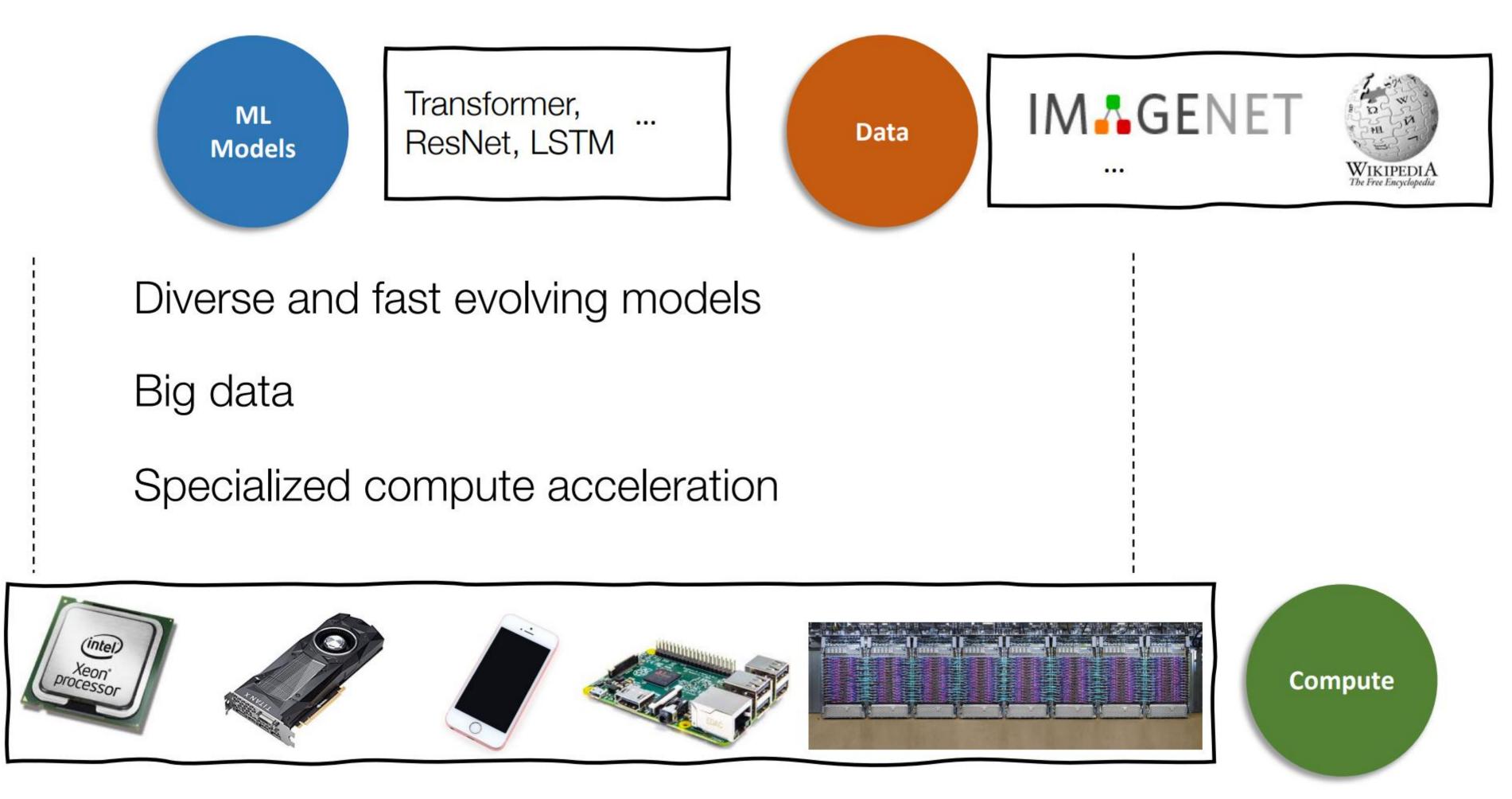
Runtime: schedule / memory

Operator optimization/compilation

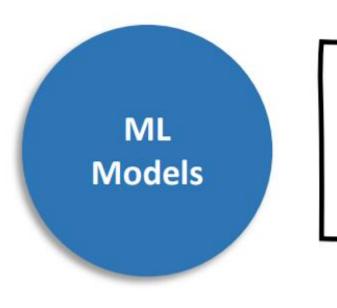
Agenda on this part

- ML Compilation Overview
 - Compiler
 - Graph optimization
- Memory Optimization
 - Activation checkpointing
 - Quantization and Mixed precision
- Two Guest Talks covering details in compilation, JIT, graph fusion, and beyond:
 - Meta PyTorch lead developer: Jason Ansel
 - Google JAX/XLA lead developer: Jinliang Wei

ML Compilation Overview



In Reality



MKL-DNN

cuDNN

Transformer, ... ResNet, LSTM

ARM-Compute

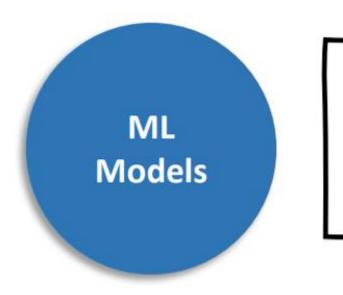
TPU Backends

Goals

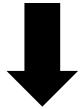
- Minimize memory usage
- Maximize execution efficiency
- Scaling to heterogeneous devices
- Minimize developer overhead

There are many equivalent ways to run the same model execution. The common theme of MLC is optimization in different forms:

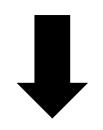
ML Compilation Goals

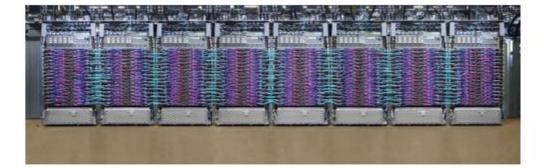


Transformer, ... ResNet, LSTM

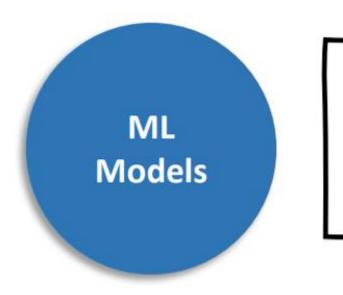


Compiler

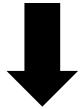




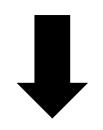
ML Compilation Goals

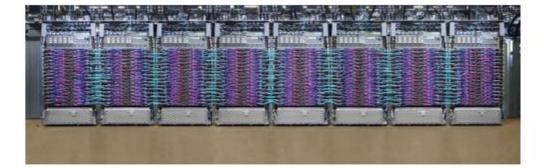


Transformer, ... ResNet, LSTM

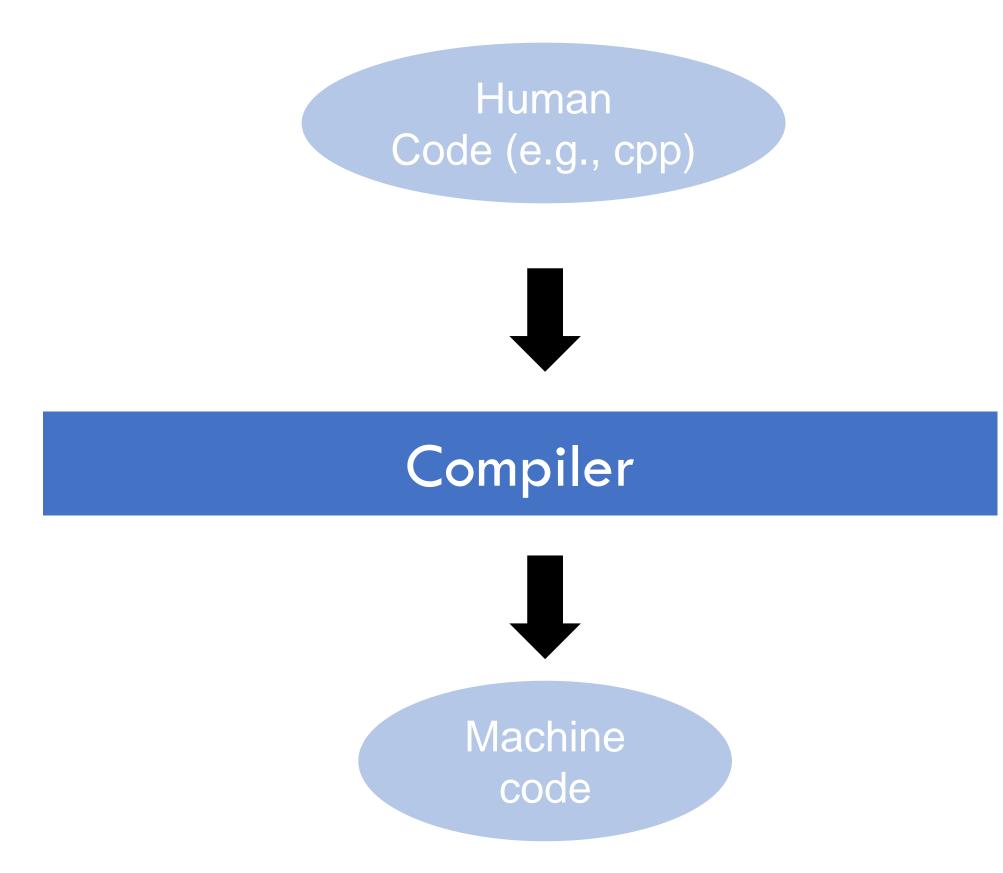


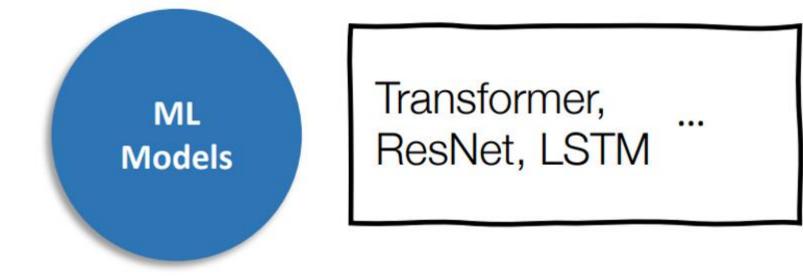
Compiler





What is a Traditional Compiler?



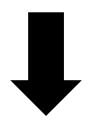


Dataflow Graph

Transformed Dataflow Graph

Efficient Kernel code

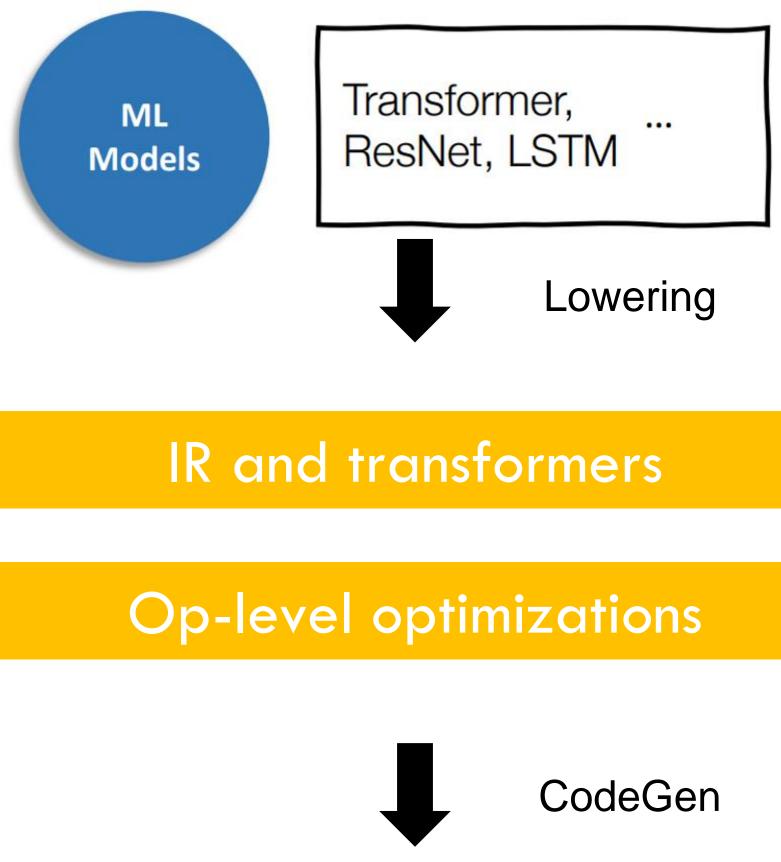
Machine code



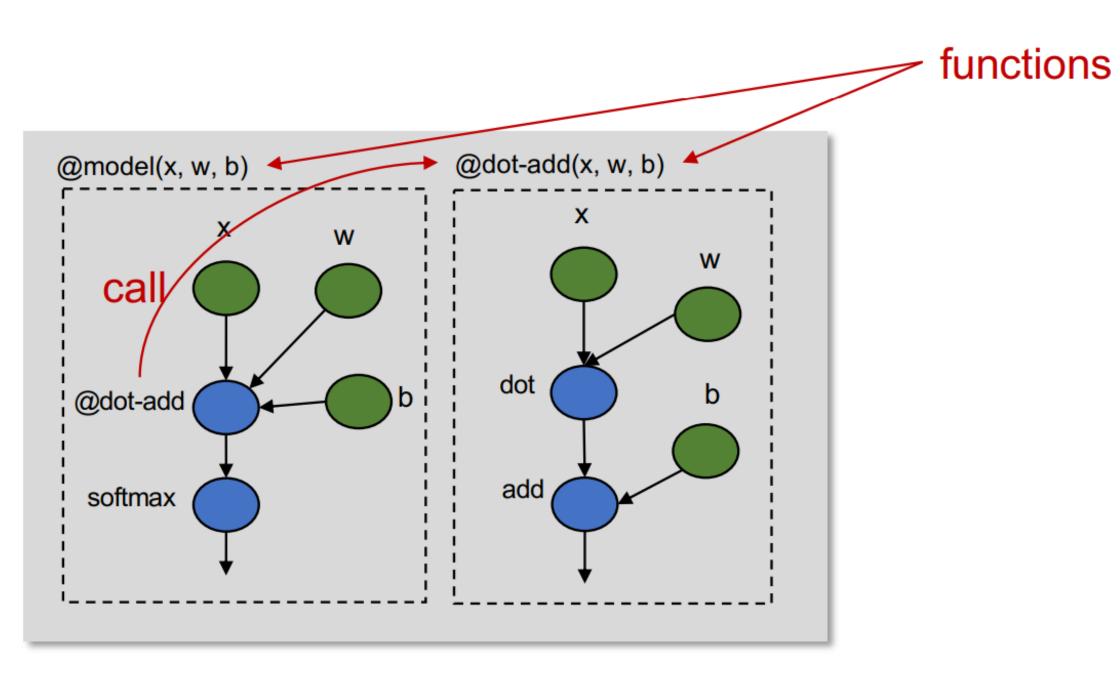
Problems:

- Op-level: How to make operator fast on different hardware?
 - Tiling Based on register/cache/shared mem sizes
 - Use target device-specific accelerations
 - Generate the operator implementations automatically
- Graph-level: graph transformations to make it faster
- Programming-level:
 - How to transform an imperative code (by developers) into a compile-able code?

Compilation Process Today



IR: Intermediate representation



IRModule: a collection if interdependent functions

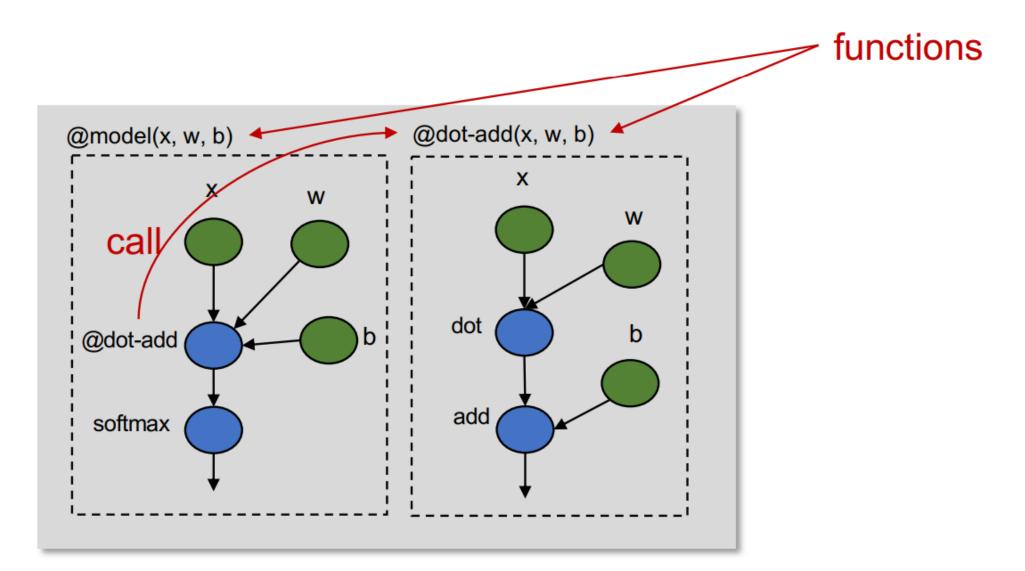
What is the difference between this IR and the dataflow graph?

Notable Compilers

- There are many different IRs by different compilers
- XLA: Accelerated Linear Algebra
 - HLO
- TVM: tensor virtual machine
 - IRModule (we used this on in class)
- Torch.compile: PyTorch
- Modular: Chris Lattner's startup

User Code transformations

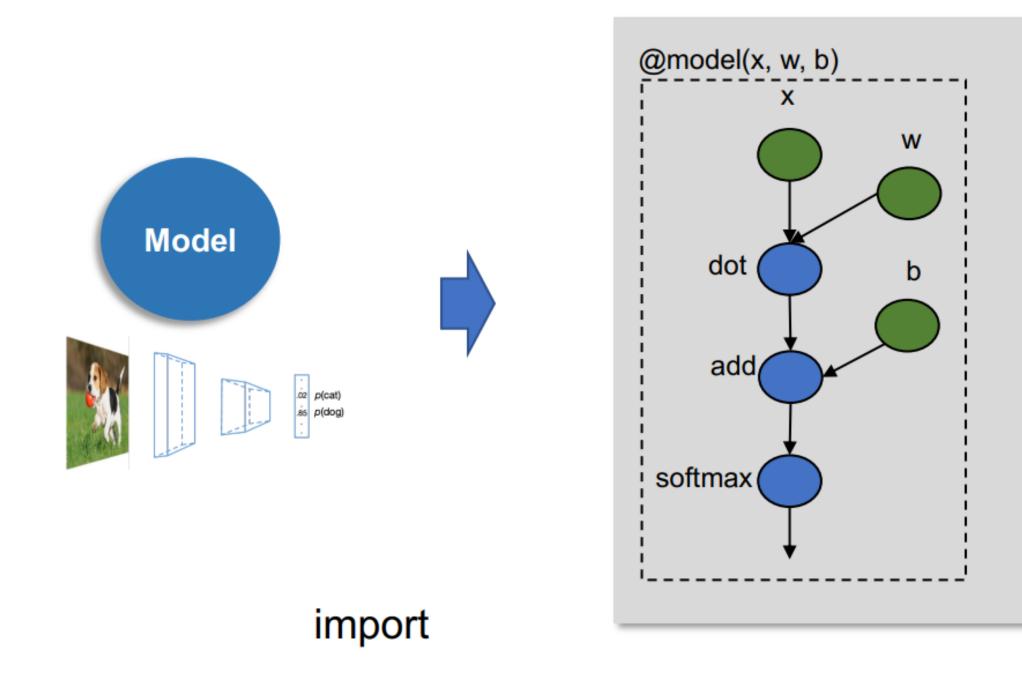
What are potential challenges of user code parsing?

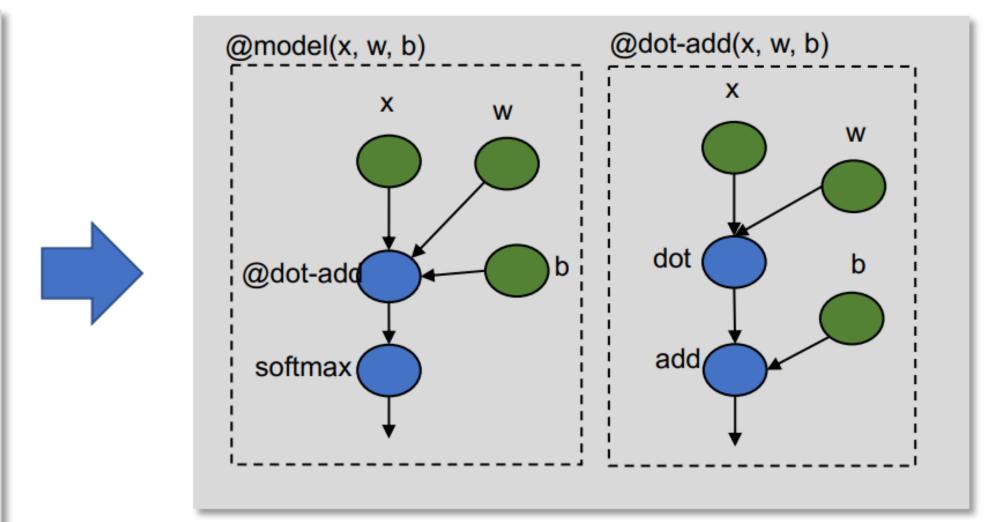


IRModule: a collection if interdependent functions

Example Compile flow: high-level transformations

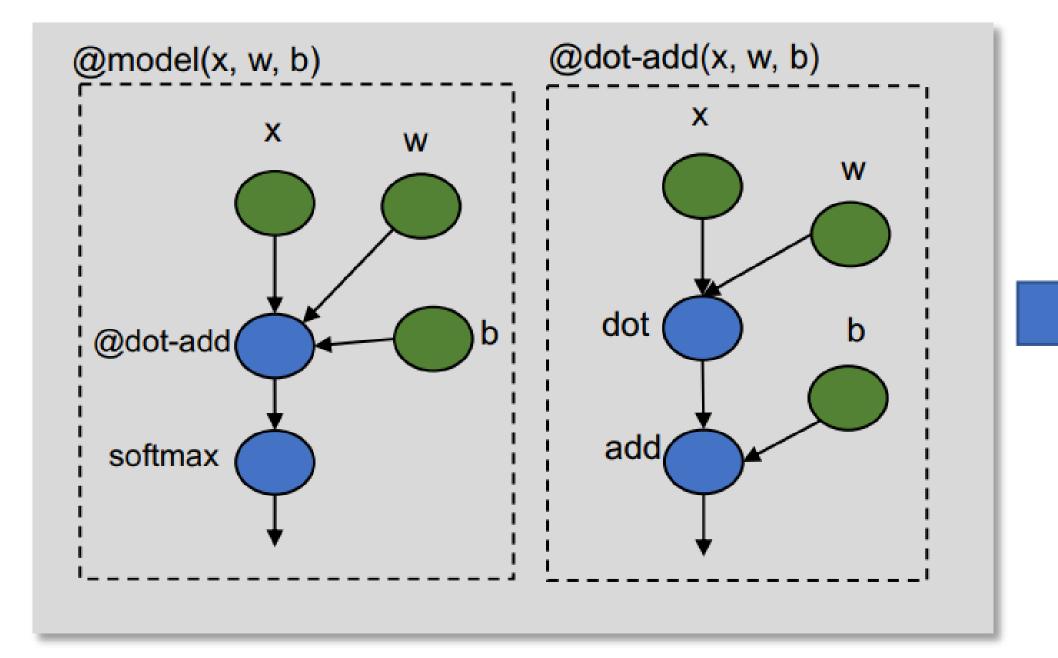
• We'll talk about some techniques here next week

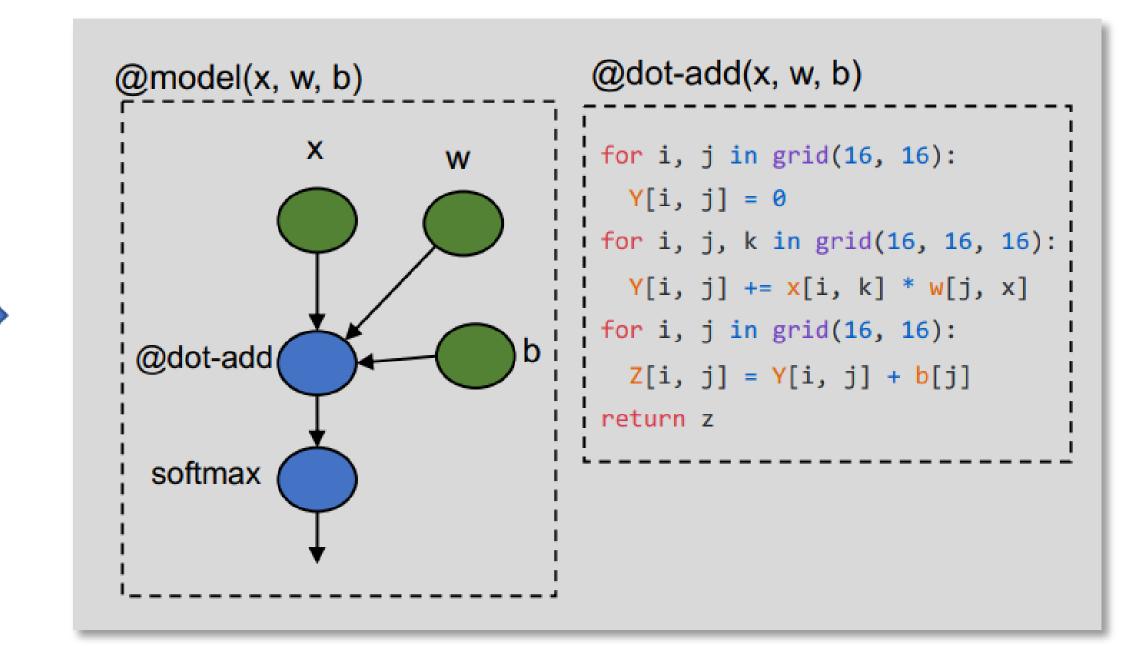




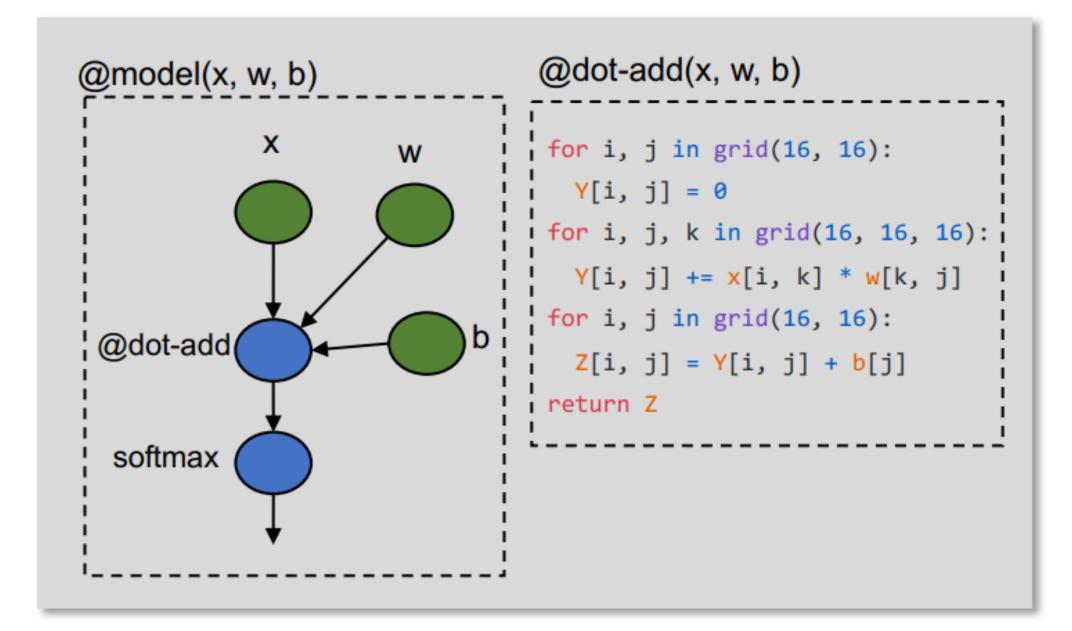
High-level transformations

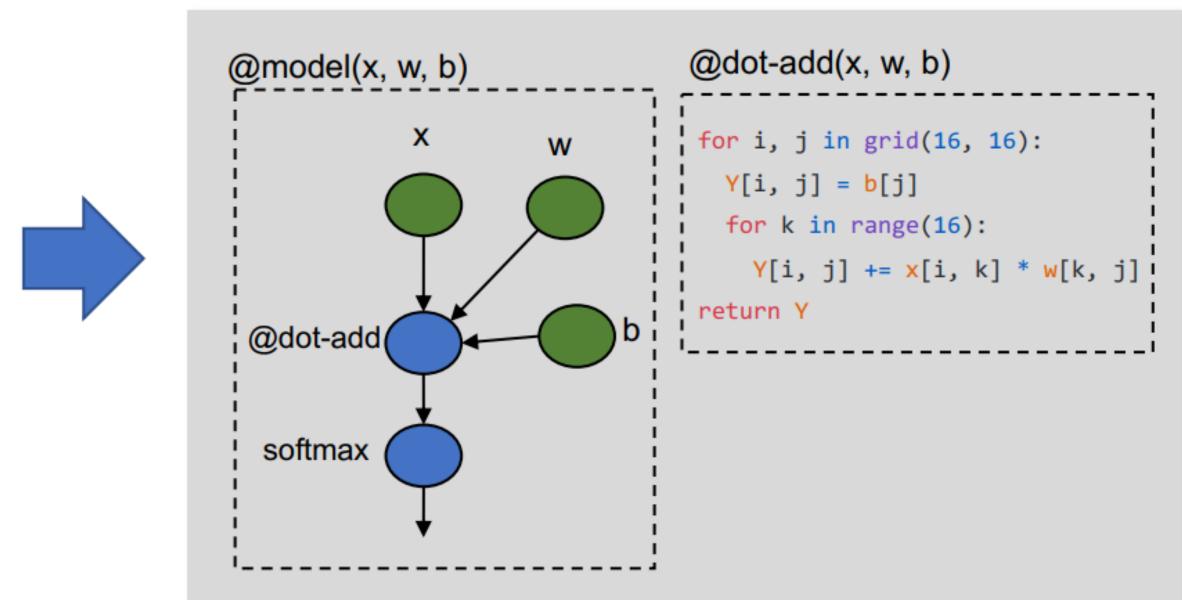
Example Compile flow: lowering to loop IR





Example Compile flow: Loop transformers

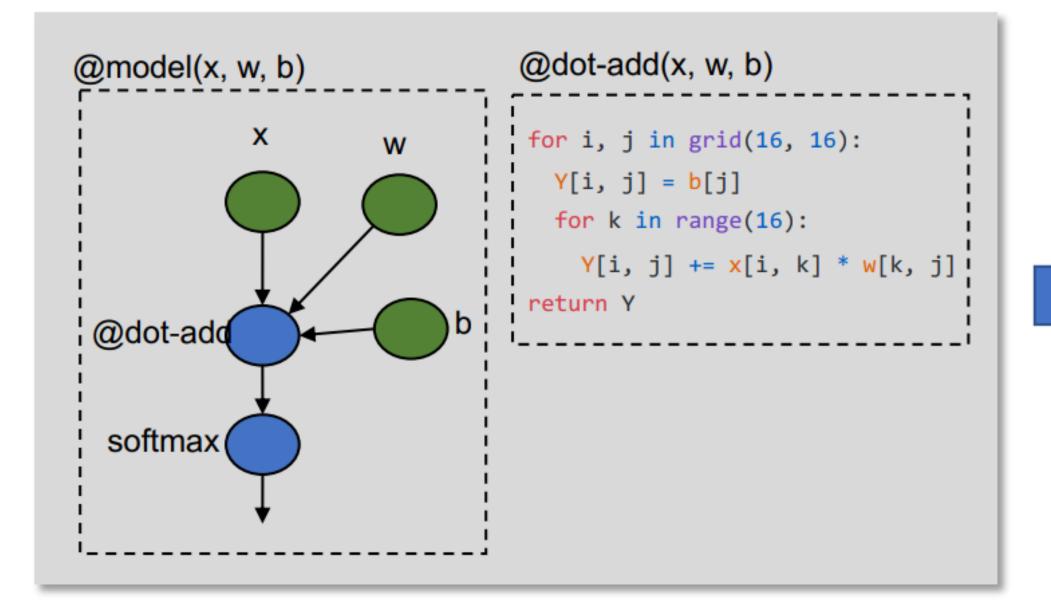


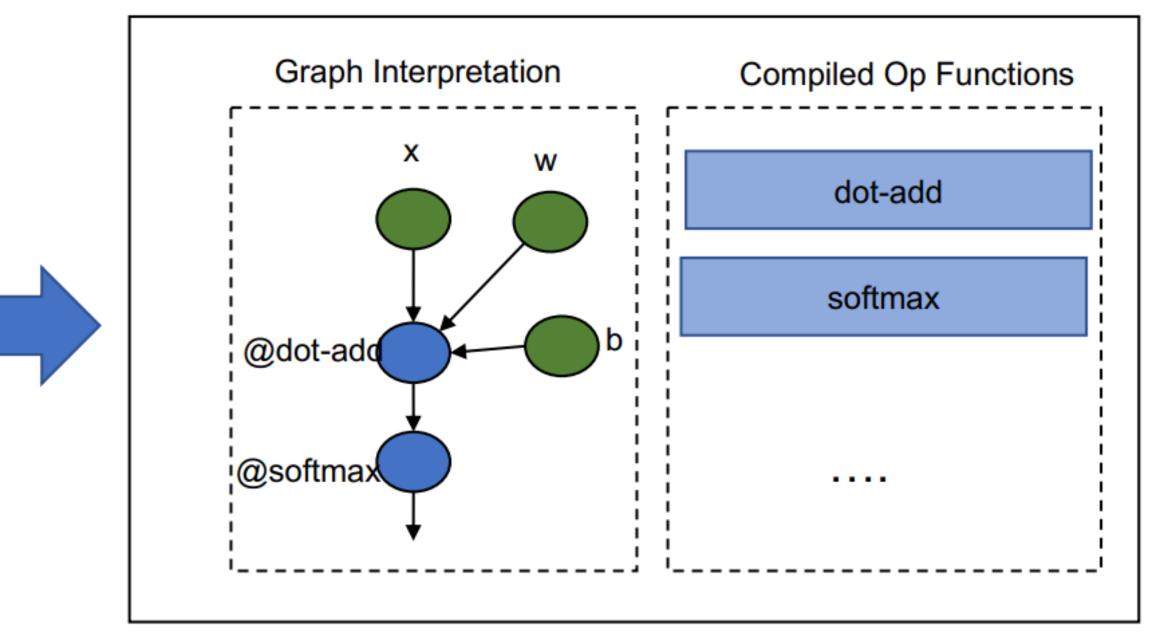


Low-level transformations

Example Compilation: CodeGen

Eventually, we transform a user code into some binary artifacts





Runtime Execution