
DSC 291: ML Systems
Spring 2024

1

https://hao-ai-lab.github.io/dsc291-
s24/

Basics

Single-device Optimization

LLMs

Parallelization



Compilation Process

IR and transformers

Op-level optimizations

CodeGen

Lowering



Compilation Process

IR and transformers

Op-level optimizations

CodeGen

Lowering



Lower-level code optimization



Low-level Loop Representation



Transforming Loops: Loop Splitting



Problems

• We need to enumerate so many possibilities

• We need to fit with each device (register/cache sizes)

• We need to apply this to so many operators



Core Research Problems

• We need to enumerate so many possibilities

• How to represent all possibilities

• What is the problem of missing some possibilities?

• We need to find the (close-to-)optimal values(register/cache 

sizes)

• How to search?

• We need to apply this to so many operators and devices

• How to reduce search space

• How to generalize?



Search via Learned Cost Model



Search Space Definition e.g. Template based

• Issue: still need experts to write templates

 



How to Search

• Sequential Construction using Early pruning

• Cost Model



Summary: Operator Compiler

• Program abstraction

• Represent the program/optimization of interest

• Build Search space through a set of transformations

• Good coverage of common optimizations like tiling

• Effective Search

• Accurate cost models

• Transferability



Agenda on this part

• ML Compilation Overview

• Operator compilation

• Graph optimization

• Memory Optimization

• Activation checkpointing

• Quantization and Mixed precision

• Two Guest Talks covering details in  compilation, JIT, graph fusion, 

and beyond:

• Meta PyTorch lead developer: Jason Ansel

• Google JAX/XLA lead developer: Jinliang Wei



Recall: fusing conv and bn



Recall: ResNet

• The final graph is 30% faster on V100 but 10% slower 
on K80.



Problems of High-level Graph Optimizations 

200 - 300 1000s 10s

Problem: Infeasible to manually design graph 
optimizations
for all cases 



Summary of Limitations



Automate Graph Transformation Big Ideas

Key idea: replace manually-designed graph optimizations with 

automated generation and verification of graph substitutions for 

tensor algebra

• Less engineering effort: 53,000 LOC for manual graph 

optimizations in TensorFlow → 1,400 LOC

• Better performance: outperform existing optimizers by up to 3x

• Correctness: formally verified



TASO: Enumerate and Verify ALL possible graph 



Graph Substitution Generator



There are many subgraphs even only given 4 Ops
66M graphs with up to 4 
operators

A substitution = a pair of equivalent graphs



Graph Substitution Generator

TASO generates 28744 substitutions by enumerating graphs with 
up to 4 ops



Pruning repeated graphs

Variable renaming
Common 
subgraph

28744 
substitution
s

734 
substitu
tions



Can we trust graph substitutions?

•  



Substitution Verifier 

Idea: writing specifications are easier than 
actually, conducting the optimizations 



How to Verify

• Generating 743 substitutions  = 5 mins

• Verify against 43 op specs = 10 mins

• Supporting a new op requires experts to write 
specs = 1400 LoC 

• vs. 53K LoC of manual optimization in TF

Automated 
theorem 
prover



Incorporating substitutions 

• Goal: apply verified substitutions to obtain an optimized graph

• Cost Model

• Based on the sum of individual operator’s cost

• Profile each operator’s cost on the target hardware

• Traverse the graph, apply substitutions, calculate cost, use backtracking 

Cost
Model



Performance (as of 2019)



Summary of Graph Optimization

Enumerate all 
possibilities

Construct a 
search space

Prune the 
candidates

Apply the 
transformations

Select top candidates 
based on profile/cost 

model

Optimized graph 
and performance

Limitations

• The best optimization is not covered by search space

• Search is too slow

• Evaluation of the resulting graph is too expensive

• Limits your trial-and-error times



A Failure Example

• Math-equivalent

• Missing some optimization opportunities

• Better performance 

• Not fully equivalent -> accuracy loss

How about: exploit the larger space partially equivalent transformations for 

performance while still preserve correctness?



Motivating Example

+ Correction 

• Partial equivalent transformations + correction yield 1.2x speedup

• Which would otherwise be impossible in fully equivalent transformations 

space



Partially Equivalent Transformations

• How to mutate?

• How to correct?



Mutant Generator: Step 1



Mutant Generator: Step 2

Fully equivalent transformations:

• Find transformations with equal results

Partially equivalent transformations:

• Find transformations with equal shapes

 



How to Detect and Correct?

• Which part of the computation is not equivalent?

• How to correct the results?



By Enumeration

• For each possible input I

• For each position p

• Check if f(I)[p] == g(I)[p]

• Complexity O(m x n):

• m: possible inputs

•  n: output shape

• How to reduce enumeration 
effort?

• Reduce m and n



How to reduce n?

•  



How to reduce n

• Theorem 1: For two Multi-linear functions f and g, if f=g for O(1) 

positions in a region, then f=g for all positions in the region

• Implications: only need to examine O(1) positions for each 

region

• Reduce O(mn) -> O(m)
Group all output positions with an 

identical summation interval into a region



How to reduce m?

•  



Correct the Mutant

• Goal: quickly and efficiently 

correcting the outputs of a 

mutant program



Correct the Mutant

• Goal: quickly and efficiently 

correcting the outputs of a 

mutant program

• Step 1: recompute the incorrect 

outputs using the original 

program



Correct the Mutant

• Goal: quickly and efficiently 

correcting the outputs of a 

mutant program

• Step 1: recompute the incorrect 

outputs using the original 

program

• Step 2: opportunistically fuse 

correction kernels with other 

operators



Recap



Summary & Questions to discuss

• Fully equivalent transformations vs. Partial

• How to define search space

• How to prune search space

• How to verify & correct

• How to apply to the ML graph optimization



Compilation Process

IR and transformers

Op-level optimizations

CodeGen

Lowering

Ideally, they 
should be 

co-optimized?
Guest lectures



Topics will be covered later by Guests

How to lower user 

program to IRs?

• The program is in PY

• Control flows

• Dynamism IR and transformers

Op-level optimizations

CodeGen

Lowering

How to co-optimize to 

maximize the potential 

Emerging hardware: 

TPUs/LPUs



Agenda on this part

• ML Compilation Overview

• Operator compilation

• Graph optimization

• Memory Optimization

• Activation checkpointing

• Quantization and Mixed precision

• Two Guest Talks covering details in  compilation, JIT, graph fusion, 

and beyond:

• Meta PyTorch lead developer: Jason Ansel

• Google JAX/XLA lead developer: Jinliang Wei



Memory Optimization

• Checkpointing and rematerialization

• CPU Swapping 

• Quantization and Mixed precision



Recap: Memory Hierarchy



Source of Memory Consumption



At Inference


