https://hao-ai-lab.github.io/dsc291-
s24/

DSC 291: ML Systems
Spring 2024

LLMs
Parallelization
Single-device Optimization

Basics

Compilation Process

Transformer,

ML
ResNet, LSTM

‘ Lowering

Models

‘ CodeGen

Compilation Process

ML Transformer,

ResNet, LSTM

‘ Lowering

Models

Op-level optimizations

‘ CodeGen

e T B e Ky ah i1 e e Ao D 17| o i TR 57
Vgt aniag) wing) | Vs Vo S Vi "F
- e e

Lower-level code optimization

Specification

[
'C = tvm.compute((m, n),
' lambda y, x: tvm.sum(A[k, y]l * B[k, x], axis=k))

Search Space of Possible Program Optimizations

Low-level Program Variants

inp_buffer AL[8][8], BL[8][8] for in ran 128): :

acc_buffer CL[8] [8] e e for y in range(1024):

for yo in range(128): Clyo*8:yo*8+8] [x0*8:x0+8+8] = 0 for x in range(1024):

X0 It 0 for ko in range(128): Clyl[x] = @
$or ko & Fenge(198); for yi in range(8): for k in range(1024):

vdla.dma_copy2d (AL, A[kox8:kox8+8] [yo*8:yo*8+8]) for xi in range(8): Clyl[x] += A[k] [yl * BI[k] [x]
vdla.dma_copy2d(BL, B[ko*8:ko*8+8] [x0*8:x0*8+8]) for ki in range(8):
vdla. fused_gemm8x8_add(CL, AL, BL) Clyox8+yi] [xo*8+xi] +=

vdla.dma_copy2d(C[yo*8:yo*8+8, xox8: xo*8+8], CL) Alkox8+ki] [yox8+yi] * B[ko*8+ki] [x0o*8+xi]

Low-level Loop Representation

@dot-add(x, w, b) Multi-dimensional

S e B el T g T

for® 1; 7 1In gr1d(16, 162/./,,. i
Y[i) J] = e

tar 1, 1, k 18 prid{le, 16, 16):

J] LE= X[l)] . W[k: J]

for i, j in grid(16, 16):

Zl1, 3] = Y[1i, J] + b[]J] -

_—— Loop nests

4

~~__ Array
e computation

-
~
-

-

Transforming Loops: Loop Splitting

Code

def gpu kernel():

for x in range(128):
ge() Clthreadld.x * 4 + blockIdx.x] = . . .

C[x] = A[x] + B[X]

1

' for xi in range(4):

for xo in range(32):

for xo in range(32):
for xi in range(4): Clxo * 4 + xi]

Clxe * 4 ¥+ Xi]

= A[xo * 4 + xi] + B[xo * 4 + xi] = Alxo * 4 + xi] + B[x0 * 4 + xi]

Problems

* We need to enumerate so many possibilities
e We need to fit with each device (register/cache sizes)

* We need to apply this to so many operators

Core Research Problems

* We need to enumerate so many possibilities
* How to represent all possibilities
* What is the problem of missing some possibilities?

* We need to find the (close-to-)optimal values(register/cache
sizes)

* How to search?
* We need to apply this to so many operators and devices

* How to reduce search space

[]
a lilAwvwvar A A~~~ ll=— N

Search via Learned Cost Model

One configuration instance in

/ the search space

L

Search el <
_V Code Generator (s g .7 din

Planner

Search Space

) tie —F@)
learning <
ML Cost Model C— B D

Training data

Search Space Definition e.g. Template based

* Issue: still need experts to write templates

..]

T Ja2 1N rangé(“;j:
Disen] = Max(Cl«asly 0:0)

How to Search

* Sequential Construction using Early pruning

e Cost Model

Beam Search with Early Pruning

Incomplete Program

for i.0 in range(512): history data f(x)
tor 3.0 in range(s512): € Expression E D j » Cost Model — Objective Function

D ssa] = Max({Clses]sz 0V:0) L

update _---
How to build the next statement ? Schedule " _ 1 “9 e .
S, —» Exploration Module — Code Generator —> Hardware Environment

Candidate 1 ~» 3 Pruned R e e f(x)

. experiment feedback™ "~ S
Candidate 2) Kept | T T T et
Candidate 3 =) Kept

Candidate 4 > 3¢ Pruned

8
|
Q
—
o
Va
Mo
\

ol TR
—
- -
—
-— an o

Ssummary: Operator Compiler

* Program abstraction
* Represent the program/optimization of interest
* Build Search space through a set of transformations
* Good coverage of common optimizations like tiling
* Effective Search
* Accurate cost models

* Transferability

Agenda on this part

* ML Compilation Overview
* Operator compilation
* Graph optimization
* Memory Optimization
* Activation checkpointing
* Quantization and Mixed precision

* Two Guest Talks covering details in compilation, JIT, graph fusion,

and beyona:

* Meta PyTorch lead developer: Jason Ansel

Recall: fusing conv and bn

Z(n,c,h,w) = (z X(ndh+uw+v)xW, (c,d,u,v)) + B, (n,c,h,w)

duv

BatchNorm

Wy(n,c,h,w) =W(n,c,h,w) * R(c)

B,(n,c,h,w) = B(n,c,h,w) * R(c) + P(c)

Recall: ResNet

Conv3x3
+ Relu
Conv3x3
+ Relu

[
I

Enlarge
convs conv & add

(Decrease performance)

« The final graph is 30% faster on V100 but 10% slower
on K80.

Problems of High-level Graph Optimizations

Graph Optimizations

ML Graph Hardware
Operators Architectures Backends .

200 - 300 1000s 0s

Problem: Infeasible to manually design graph
optimizations
for all cases

Summary of Limitations

Robustness Scalability

Experts’ heuristics do not apply New operators and graph
to all DNNs/hardware structures require more rules

add conv

////', 3x3 add
conv f\ /\
3x3 W3 conv conv
/VT C;X"B" 1x1 1x1
VV3 ‘1-~§§ f‘\\\\\ T‘\\\\\
conv conv
33 1x1 concat DWC W3 DWC Wy
o S . S 0 i oY 3x3 5X5
ad
VV1 X: VV2 X: ng VV2 T!\\\\\ T‘\\\\\
A Wi Wa
Wy X4 X2

Only apply to specific hardware Only apply to specialized graph structures

Performance

Miss subtle optimizations for
specific DNNs/hardware

conv

DWC concat

5x5 /)vvg\\
/ \ W3 W4

concat concat

)

Wy W
X4 X

Automate Graph Transformation Big Ideds

Key idea: replace manually-designed graph optimizations with
automated generation and verification of graph substitutions for

tensor algebra

* Less engineering effort: 53,000 LOC for manual graph
optimizations in TensorFlow — 1,400 LOC

* Better performance: outperform existing optimizers by up to 3x

* Correctness: formally verified

TASO: Enumerate and Verify ALL possible graph

Input

TASO Workflow Comp. Graph

Graph

Graph

Subst. > Subst.

Generator <D - é Verifier

g

Operator
Specifications

Candidate

#v+ Verified 4
Substitutions Substitutions %

Optimized
Comp. Granh

Graph Substitution Generator

Enumerate all possible graphs up to a
fixed size using available operators

N 3%

Operators supported b
hardware backend

There are many subgraphs even only given 4 Ops

66M graphs with up to 4
operators

\

5O GO D114

A substitution = a pair of equivalent graphs

Graph Substitution Generator

L1, 3

Compute output fingerprints

'D with random input tensors
DA
< & & Q @ 0 Lo JIK O J

TASO generates 28744 substitutions by enumerating graphs with
up to 4 ops

Pruning repeated graphs

X X X X

- - : :
28744 . matmul matmul add add 734

A .
substitution —- \ I — e Z _ substitu
S matmul matmul matmul matmul .
/ a' 2N SR tions
/I\ B Al‘ B A B C B C A
source graph: A x (B x A) target graph: (A x B) x A source graph: A + (B x C) target graph: (B x C) + A

Common
Variable renaming subgraph

Can we trust graph substitutions?

® We have f(a) = g(b), f(b) = g(b)
® But can we say: f(x) = g(x) for vx

* We need to verify formally.

Substitution Verifier

Graph Subst.

Verifier

O Verified
4% Substitutions

Candidate
Substitutions

P1. conv iIs distributive
over concatenation
P2. conv is bilinear VX, wy, w, .

Conv (x, Concat(wy, wz)) =

Pn.
C oncat(C onv(x,wy), Conv(x, Wz))

ldea: writing specifications are easier than
actually, conducting the optimizations

How to Verify

Y Y5
, S
t t K 4
Conv Conv — ey
/ \ / \ Con/c:at \ Y:\ ;2
W1 X W2 * * Y, A Split
W, (W (X Automatead bt b s e
onv —
(Conv(x, w,), Conv (x, w5)) Split(Conv(x, Concat(w, w5))) ‘ th eorem 7 >\ /4 3 - 2 \
Concat
prover wp X W S
W, W, X
(Conv(x, w;), Conv (x, w,)) Split(Conv(x, Concat(w, w,)))
v, wi, W * Generadting 743 substitutions = 5 mins

(Conv(x, wy), Conv(x, Wz))
= Split (Conv(x, Concat(wy, Wz)))

* Verify against 43 op specs = 10 mins

* Supporting a new op requires experts to write
specs = 1400 LoC

* vs. 53K LoC of manual optimization in TF

Incorporating substitutions

* Goal: apply verified substitutions to obtain an optimized graph
* Cost Model

* Based on the sum of individual operator’s cost

* Profile each operator’'s cost on the target hardware

* Traverse the graph, apply substitutions, calculate cost, use backtracking

Cost
Model

Input Comp.
Graph

Performance (as of 2019)

mTensorFlow m®mTensorFlow XLA mTensorRT mTASO

N -
({e) N ()]
\

Runtime (ms)

w
-
o
b

(o2
’-------s

|

ResNet-50 [l NasNet-A

Competitive on Larger speedups on
standard models emerging models

Summary of Graph Optimization

Construct a R Enumerate all
search space possibilities

Prune the
candidates

Select top candidates
based on profile/cost
model

Optimized graph
and performance

Apply the

transformations

Limitations

* The best optimization is not covered by search space
* Search is too slow
* Evaluation of the resulting graph is too expensive

* Limits your trial-and-error times

A Failure Example

vp. Y|p| = Z[p] dp. Y|p] # Z|p]
\Tf Z Y V4
Add CoTnv : T T
/V \ / Dilated Conv
Conv Conv Add \ Conv
g ol R b b /A /A
W, W, X W, W, X X W X W
Fully Equivalent Transformations Partially Equivalent Transformations
* Math-equivalent * Better performance

* Missing some optimization opportunities* Not fully equivalent -> accuracy loss

How about: exploit the larger space partially equivalent transformations for

performance while still preserve correctness?

Motivating Example

(r)

t

B L e e
reshape & transpose

-

(1)

+ Correction

reshape
Input Program %
P g

Incorrect results

* Partial equivalent transformations + correction yield 1.2x speedup

* Which would otherwise be impossible in fully equivalent transformations

Partially Equivalent Transformations

- Mutant Mutant Program
o 4 Generator —/ o 4l Corrector jpm 4 % ' d Optimizer —/

Input Optimized
Program Mutant Corrected Program

Programs Mutants

* How to mutate?

* How to correct?

Mutant Generator: Step |

Enumerate all possible programs up to a
fixed size using available operators

Input
(Sub)program

SN Mutant
mmd Generator

—————————————————————————————

N 7’

Operators supported by
hardware backend

Mutant Generator: Step 2

Enumerate all possible programs up to a

fixed size using available operators

Fully equivalent transformations:

Input
(Sub)program

g * Find transformations with equal results
Operators supported by

hardware backend Partially equivalent transformations:

* Find transformations with equal shapes

How to Detect and Correct?

* Which part of the computation is not equivalent?

* How to correct the results?

?

By Enumeration

* For each possible input |

* For each position p

o Checkif f(1)[p] == g(1)[p]

e Complexity O(m x n):

* mM: possible inputs

* n:output shape

 How to reduce enumeration
effort?

How to reduce n?

® Can we just check out a few (or even just one) position at f(l)[P]
and assert the (in-)correctnesse

* Answer: Yes for 80% of the computation

® Reason: Neural nets computation are mostly Multi-Linear

* Define Multi-linear: f is mulii-linear it the output is linear to all inputs
o f(ly, .. X, .., [.)+ fUy, ...Y, L) =f(y, . X +Y, .., 1)
o af(ly,....X,...I,) = f(ly, ..., aX, ..., I,

How to reduce n

* Theorem 1: For two Multi-linear functions f and g, if f=g for O(1)
positions in a region, then f=g for all positions in the region

* Implications: only need to examine O(1) positions for each

region I

* Reduce O(mn) -> O(m)
Group all output positions with an T

identical summation interval into a region et

Il(d,h+ X, W "I“y)
XI,(d,cx,7y)

Summation interval

How to reduce m?

® Theorm 2:if 31, f(D[p] # g(I)[p]. then the probability that f and g

C
give identical results on f random Inputs Is (2—;)

* Implications: Run f random tests with random input, and if all t

passed, It Is very unlikely f and g are inequivalent
* O(mn) ->O(m) -> Oft) (t << m)

Correct the Mutant

* Goal: quickly and efficiently

correcting the outputs of a

Mutant program

reshape & transpose

reshape & transpose

Mutant Program

Correct the Mutant

L |
reshape & transpose

* Goal: quickly and efficiently

correcting the outputs of a

Mutant program

* Step I: recompute the incorrect

outputs using the original

program

Mutant Program

Correct the Mutant

* Goal: quickly and efficiently]

correcting the outputs of a

Mutant program

* Step I: recompute the incorrect

outputs using the original L ——=== e A L.
reshape & transpose Kernel Fusion
program 7

* Step 2: opportunistically fuse %

correction kernels with other

operators

2,

= ‘ W Mutant Program
4 Generator pu d %—/ Corrector jum 4 —/ Optimizer
Input @
Program
. Mutant Corrected
Programs Mutants

a Q gtrlzz? | Graph
Operator v Generator (]}.; b Bl verifier [e Optimizer
Specifications

Candidate A+ Verified
Substitutions Substitutions

Summary & Questions to discuss

* Fully equivalent transformations vs. Partial
* How to define search space
* How to prune search space
* How to verify & correct

* How to apply to the ML graph optimization

Compilation Process

ML Transformer,
Models ResNet, LSTM

‘ Lowering

|deally, they
should be
co-optimized?
Guest lectures

Topics will be covered later by Guests

How to lower user

Transformer,
ResNet, LSTM

* The programisinpPy ———&F ‘ _
Lowering

e Control flows

program to IRs?

* Dynamism

Emerging hardware:
TPUs/LPUs

—

Agenda on this part

* ML Compilation Overview
* Operator compilation
* Graph optimization
e Memory Optimization
* Activation checkpointing
* Quantization and Mixed precision

* Two Guest Talks covering details in compilation, JIT, graph fusion,

and beyona:

* Meta PyTorch lead developer: Jason Ansel

Memory Optimization

* Checkpointing and rematerialization
* CPU Swapping

* Quantization and Mixed precision

Recap: Memory Hierarchy

blockO block3 Shared memory: 64 KB per core
threadO thread1 thread8
Registers Reqgisters

T e GPU memory(Global memory):

RTX3080 10GB
RTX3090 24GB
Global memory A100 40/80 GB

Source of Memory Consumption

A simplified view of a typical computational graph for training,
weights are omitted and implied in the grad steps.

input linear relu linear loss

DI > > P

Sources of memory consumption
- » Model weights
« Optimizer states

 |ntermediate activation values

linear-grad relu-grad linear-grad loss-grad

Optimizer states

Q
®
(®

At Inference

input linear relu linear loss

L — T 1T 1]

We only need O(1) memory for computing the final output of a N layer deep network
by cycling through two buffers

