
DSC 291: ML Systems
Spring 2024

1

https://hao-ai-lab.github.io/dsc291-
s24/

Basics

Single-device Optimization

LLMs

Parallelization

Memory Optimization

• Checkpointing and rematerialization

• CPU Swapping

• Quantization and Mixed precision

Recap: Memory Hierarchy

Our Goal

• Fit the workload on limited memory and ensure

peak memory < available memory

Note:

• We are not min (memory)

• We are not min(max(memory))

• We just need max(memory) < available memory

• Unless otherwise specificized

Source of Memory Consumption

How to estimate memory of model weights

• Lifetime:

• When will this memory be needed

• Size

• How large the memory is

At Inference: Lifetime?

We only need O(1) memory for computing the final output of a

N layer deep network by cycling through two buffers

Lifetime of

• weights

• activations?

• Optimizer states?

Estimate size: Popular float standards

• What does exponent and fraction control in float point
representation?

• What’s the difference between bf16 and fp16?

Estimate the weight size: GPT-3 as an example

• Model weights: 175B, each param = 16 / 32 bits = 2 / 4 bytes

• 175B * 2 / 4 = 350G / 700G

• Rule of thumb: check precision, and N * 2 or N * 4

Estimate the activation size

• Conv2d activation:

• bs * nc * wi * hi -> bs * nc * wo * ho

• Transformers activation:

• bs * seqlen * d_model: 3.2M * 12288 = 39.321B = 78 / 156 G

Estimate the Optimizer State Size?

• Adam Optimizer: What is the memory added?

Optimizer state: first
moment estimate (mean)

Optimizer state: second
moment estimate
(variance)

Put into practice

• Because the need to keep intermediate value around for the

gradient steps. Training a N-layer neural network would require
O(N).

Memory Overview

• Parameters: 175B * (fp32) = 350 / 700 G

• Activations:

• At the transformer boundary: (N = 96) * 78 / 156 G = 7488 / 14976 G

• This is not accurate because transformers is a composite layers.

• A lot more than this: roughly 5 x (7488 / 14976).

• Optimizer states: (precision: fp32) * 2 * 175B = (8) * 175 G

Reduce memory

• Single Device trick (today)

• Parallelization (next week)

Reduce activation memory

Observation

• The activation is not needed again until the backward pass comes

• Discard some of them and recompute the missing intermediate
nodes in small segments

Reduce activation memory

• Extreme case: discord nothing

• Memory ++, compute --

• Extreme case: discard all and recompute for each layer

• Memory --, compute++

• We want to strike a balance?

Reduce activation memory

Q: what is the total recomputation cost?

Memory dynamics

Other factors

• Model are heterogenous

• Which layer to checkpoint at

• Could influence memory cost because layer out has different sizes

• Could influence the recompute cost because the computation

between two checkpoints could be different

• Only applies to activations!

Alternative Method: Move to DRAM

CPU Swap

• SwapIn: swap from CPU DRAM to HBM

• SwapOut: swap from HBM to CPU DRAM

• This applies to both weights and activations!

SwapOut SwapOut SwapOut

SwapInSwapInSwapIn

Discussion

• When will this work and when will this not work?

SwapOut SwapOut SwapOut

SwapInSwapInSwapIn

Reduce Memory of Parameters: Quantization

• Use a lower precision than fp32

• FP32 -> fp16: 2x reduction on memory

• Issue: might lose accuracy

How to do downcast?

• FP32 -> BF16: keep the exponent part and downcast the precision part

• FP32 -> fp16: convert exponent and precision part

• A lot of papers to discuss how to downcast without losing accuracy

25

Discussion: how to downcast to FP8, int4, 1-bit?

It is more about memory

One way: Mix-precision training

• Some layers are more sensitive to dynamic range

• Normalization: f / sum(f)

• Softmax (same with normalization)

• Common issues: aggregation of a lot entries

• Param += \sum(grad_t) -> can loss precision during accum

• Idea: identify which ops are sensitive to precisions:

• Use full precision (fp32) for them via upcasting

• Use half precision to those robust ops

A standardized 16-32 mix-precision pipeline

Analysis of the memory usage of Mix-precision training

• Parameters: 175B * (fp16, 2 bytes) = 350G

• Assume we checkpoint at transformer layer boundary:

• Activations: (N = 96) * 3.2M * 12288 * 2 = 7488 G

• How about optimizer states?

Analysis of the memory usage of Mix-precision training

• How about optimizer states?

• Master copy (fp32) = 4 * 175 = 700

• Grad (fp16) = 2 * 175 = 350

• Running copy (fp16) = 2 * 175 = 350

• Adam mean and variance (fp32) = 2 * 4 * 175 = 1400G

• Rule the thumb: (4 + 2 + 2 + 4 + 4) N = 16N memory for an LLM

Summary

• Understanding deep learning memory

• Size

• Lifetime

• Single Device memory saving techniques

• Checkpointing and rematerialization

• CPU Swap

• Quantization and mixed-precision training

• After applying single device memory saving, we still do not have

enough memory, what to do?

Next Week

• Guest Lecture by Jason from PyTorch Team

• Attendance is mandatory

• Reading of next week: his lecture and related paper

• We start to talk about Paralellization

