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Basics

Single-device Optimization

LLMs

Parallelization



Memory Optimization

• Checkpointing and rematerialization

• CPU Swapping 

• Quantization and Mixed precision



Recap: Memory Hierarchy



Our Goal

• Fit the workload on limited memory and ensure 

peak memory < available memory

Note:

• We are not min (memory)

• We are not min(max(memory))

• We just need max(memory) < available memory

• Unless otherwise specificized 



Source of Memory Consumption



How to estimate memory of model weights

• Lifetime:

• When will this memory be needed

• Size

• How large the memory is



At Inference: Lifetime?

We only need O(1) memory for computing the final output of a 

N layer deep network by cycling through two buffers

Lifetime of 

• weights 

• activations?

• Optimizer states?



Estimate size: Popular float standards

• What does exponent and fraction control in float point 
representation?

• What’s the difference between bf16 and fp16?



Estimate the weight size: GPT-3 as an example 

• Model weights: 175B, each param = 16 / 32 bits = 2 / 4 bytes

• 175B * 2 / 4 = 350G / 700G

• Rule of thumb: check precision, and N * 2 or N * 4



Estimate the activation size

• Conv2d activation: 

• bs * nc * wi * hi -> bs * nc * wo * ho 

• Transformers activation:

• bs * seqlen * d_model: 3.2M * 12288  = 39.321B = 78 / 156 G



Estimate the Optimizer State Size?

• Adam Optimizer: What is the memory added?

Optimizer state: first 
moment estimate (mean)

Optimizer state: second 
moment estimate 
(variance)



Put into practice 

• Because the need to keep intermediate value around for the 

gradient steps. Training a N-layer neural network would require 
O(N).



Memory Overview

• Parameters: 175B * (fp32) = 350 / 700 G

• Activations: 

• At the transformer boundary: (N = 96) * 78 / 156 G = 7488 / 14976 G

• This is not accurate because transformers is a composite layers.

• A lot more than this: roughly 5 x (7488 / 14976).

• Optimizer states: (precision: fp32) * 2 * 175B = (8) * 175 G



Reduce memory

• Single Device trick (today)

• Parallelization (next week) 



Reduce activation memory

Observation

• The activation is not needed again until the backward pass comes

• Discard some of them and recompute the missing intermediate 
nodes in small segments



Reduce activation memory

• Extreme case: discord nothing

• Memory ++, compute --

• Extreme case: discard all and recompute for each layer

• Memory --, compute++

• We want to strike a balance?



Reduce activation memory

Q: what is the total recomputation cost?



Memory dynamics 



Other factors

• Model are heterogenous

• Which layer to checkpoint at

• Could influence memory cost because layer out has different sizes

• Could influence the recompute cost because the computation 

between two checkpoints could be different

• Only applies to activations!



Alternative Method: Move to DRAM



CPU Swap

• SwapIn: swap from CPU DRAM to HBM

• SwapOut: swap from HBM to CPU DRAM

• This applies to both weights and activations!

SwapOut SwapOut SwapOut

SwapInSwapInSwapIn



Discussion

• When will this work and when will this not work?

SwapOut SwapOut SwapOut

SwapInSwapInSwapIn



Reduce Memory of Parameters: Quantization

• Use a lower precision than fp32

• FP32 -> fp16: 2x reduction on memory

• Issue: might lose accuracy



How to do downcast?

• FP32 -> BF16: keep the exponent part and downcast the precision part

• FP32 -> fp16: convert exponent and precision part

• A lot of papers to discuss how to downcast without losing accuracy
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Discussion: how to downcast to FP8, int4, 1-bit? 



It is more about memory



One way: Mix-precision training

• Some layers are more sensitive to dynamic range

• Normalization: f / sum(f) 

• Softmax (same with normalization)

• Common issues: aggregation of a lot entries

• Param += \sum(grad_t) -> can loss precision during accum

• Idea: identify which ops are sensitive to precisions:

• Use full precision (fp32) for them via upcasting

• Use half precision to those robust ops



A standardized 16-32 mix-precision pipeline



Analysis of the memory usage of Mix-precision training

• Parameters: 175B * (fp16, 2 bytes) = 350G

• Assume we checkpoint at transformer layer boundary:

• Activations: (N = 96) * 3.2M * 12288 * 2 = 7488 G

• How about optimizer states?



Analysis of the memory usage of Mix-precision training

• How about optimizer states?

• Master copy (fp32) = 4 * 175 = 700

• Grad (fp16) = 2 * 175 = 350

• Running copy (fp16) = 2 * 175 = 350

• Adam mean and variance (fp32) = 2 * 4 * 175 = 1400G

• Rule the thumb: (4 + 2 + 2 + 4 + 4) N = 16N memory for an LLM



Summary

• Understanding deep learning memory

• Size

• Lifetime

• Single Device memory saving techniques 

• Checkpointing and rematerialization

• CPU Swap

• Quantization and mixed-precision training

• After applying single device memory saving, we still do not have 

enough memory, what to do?



Next Week

• Guest Lecture by Jason from PyTorch Team

• Attendance is mandatory 

• Reading of next week: his lecture and related paper

• We start to talk about Paralellization


