fastvideo.pipelines.preprocess.preprocess_pipeline_ode_trajectory
#
ODE Trajectory Data Preprocessing pipeline implementation.
This module contains an implementation of the ODE Trajectory Data Preprocessing pipeline using the modular pipeline architecture.
Sec 4.3 of CausVid paper: https://arxiv.org/pdf/2412.07772
Module Contents#
Classes#
ODE Trajectory preprocessing pipeline implementation. |
Data#
API#
- fastvideo.pipelines.preprocess.preprocess_pipeline_ode_trajectory.EntryClass#
None
- class fastvideo.pipelines.preprocess.preprocess_pipeline_ode_trajectory.PreprocessPipeline_ODE_Trajectory(model_path: str, fastvideo_args: fastvideo.fastvideo_args.FastVideoArgs | fastvideo.fastvideo_args.TrainingArgs, required_config_modules: list[str] | None = None, loaded_modules: dict[str, torch.nn.Module] | None = None)[source]#
Bases:
fastvideo.pipelines.preprocess.preprocess_pipeline_base.BasePreprocessPipeline
ODE Trajectory preprocessing pipeline implementation.
Initialization
Initialize the pipeline. After init, the pipeline should be ready to use. The pipeline should be stateless and not hold any batch state.
- create_pipeline_stages(fastvideo_args: fastvideo.fastvideo_args.FastVideoArgs)[source]#
Set up pipeline stages with proper dependency injection.
- forward(batch: fastvideo.pipelines.pipeline_batch_info.ForwardBatch, fastvideo_args: fastvideo.fastvideo_args.FastVideoArgs, args)[source]#
- get_pyarrow_schema() pyarrow.Schema [source]#
Return the PyArrow schema for ODE Trajectory pipeline.
- preprocess_text_and_trajectory(fastvideo_args: fastvideo.fastvideo_args.FastVideoArgs, args)[source]#
Preprocess text-only data and generate trajectory information.