fastvideo.training.ode_causal_pipeline
#
Module Contents#
Classes#
Training pipeline for ODE-init using precomputed denoising trajectories. |
Functions#
Data#
API#
- class fastvideo.training.ode_causal_pipeline.ODEInitTrainingPipeline(model_path: str, fastvideo_args: fastvideo.fastvideo_args.TrainingArgs, required_config_modules: list[str] | None = None, loaded_modules: dict[str, torch.nn.Module] | None = None)[source]#
Bases:
fastvideo.training.training_pipeline.TrainingPipeline
Training pipeline for ODE-init using precomputed denoising trajectories.
Supervision: predict the next latent in the stored trajectory by
feeding current latent at timestep t into the transformer to predict noise
stepping the scheduler with the predicted noise
minimizing MSE to the stored next latent at timestep t_next
Initialization
Initialize the pipeline. After init, the pipeline should be ready to use. The pipeline should be stateless and not hold any batch state.
- initialize_pipeline(fastvideo_args: fastvideo.fastvideo_args.FastVideoArgs)[source]#
- initialize_training_pipeline(training_args: fastvideo.fastvideo_args.TrainingArgs)[source]#
- initialize_validation_pipeline(training_args: fastvideo.fastvideo_args.TrainingArgs)[source]#
- visualize_intermediate_latents(training_batch: fastvideo.pipelines.pipeline_batch_info.TrainingBatch, training_args: fastvideo.fastvideo_args.TrainingArgs, step: int)[source]#
Add visualization data to wandb logging and save frames to disk.