fastvideo.v1.STA_configuration
#
Module Contents#
Functions#
Average losses across all prompts for each mask strategy. |
|
Configure Sliding Tile Attention (STA) parameters based on the specified mode. |
|
Read and parse JSON files containing mask search results. |
|
Select the best mask strategy for each head based on loss minimization. |
API#
- fastvideo.v1.STA_configuration.average_head_losses(results: List[Dict[str, Any]], selected_masks: List[List[int]]) Dict[str, Dict[str, numpy.ndarray]] [source]#
Average losses across all prompts for each mask strategy.
- fastvideo.v1.STA_configuration.configure_sta(mode: str = 'STA_searching', layer_num: int = 40, time_step_num: int = 50, head_num: int = 40, **kwargs) List[List[List[Any]]] [source]#
Configure Sliding Tile Attention (STA) parameters based on the specified mode.
Parameters:#
mode : str The STA mode to use. Options are: - ‘STA_searching’: Generate a set of mask candidates for initial search - ‘STA_tuning’: Select best mask strategy based on previously saved results - ‘STA_inference’: Load and use a previously tuned mask strategy layer_num: int, number of layers time_step_num: int, number of timesteps head_num: int, number of heads
**kwargs : dict Mode-specific parameters:
For 'STA_searching': - mask_candidates: list of str, optional, mask candidates to use - mask_selected: list of int, optional, indices of selected masks For 'STA_tuning': - mask_search_files_path: str, required, path to mask search results - mask_candidates: list of str, optional, mask candidates to use - mask_selected: list of int, optional, indices of selected masks - skip_time_steps: int, optional, number of time steps to use full attention (default 12) - save_dir: str, optional, directory to save mask strategy (default "mask_candidates") For 'STA_inference': - load_path: str, optional, path to load mask strategy (default "mask_candidates/mask_strategy.json")
- fastvideo.v1.STA_configuration.read_specific_json_files(folder_path: str) List[Dict[str, Any]] [source]#
Read and parse JSON files containing mask search results.
- fastvideo.v1.STA_configuration.save_mask_search_results(mask_search_final_result: List[Dict[str, List[float]]], prompt: str, mask_strategies: List[str], output_dir: str = 'output/mask_search_result/') Optional[str] [source]#
- fastvideo.v1.STA_configuration.select_best_mask_strategy(averaged_results: Dict[str, Dict[str, numpy.ndarray]], selected_masks: List[List[int]], skip_time_steps: int = 12, timesteps: int = 50, head_num: int = 40) Tuple[Dict[str, List[int]], float, Dict[str, int]] [source]#
Select the best mask strategy for each head based on loss minimization.