fastvideo.v1.dataset.transform
#
Module Contents#
Classes#
First use the short side for cropping length, center crop video, then resize to the specified size |
|
Convert tensor data type from uint8 to float, divide value by 255.0 and |
|
Temporally crop the given frame indices at a random location. |
Functions#
|
|
Convert tensor data type from uint8 to float, divide value by 255.0 and permute the dimensions of clip tensor |
|
API#
- class fastvideo.v1.dataset.transform.CenterCropResizeVideo(size, top_crop=False, interpolation_mode='bilinear')[source]#
First use the short side for cropping length, center crop video, then resize to the specified size
Initialization
- class fastvideo.v1.dataset.transform.Normalize255[source]#
Convert tensor data type from uint8 to float, divide value by 255.0 and
Initialization
- class fastvideo.v1.dataset.transform.TemporalRandomCrop(size)[source]#
Temporally crop the given frame indices at a random location.
- Parameters:
size (int) – Desired length of frames will be seen in the model.
Initialization
- fastvideo.v1.dataset.transform.center_crop_th_tw(clip, th, tw, top_crop) torch.Tensor [source]#
- fastvideo.v1.dataset.transform.crop(clip, i, j, h, w) torch.Tensor [source]#
- Parameters:
clip (torch.tensor) – Video clip to be cropped. Size is (T, C, H, W)
- fastvideo.v1.dataset.transform.normalize_video(clip) torch.Tensor [source]#
Convert tensor data type from uint8 to float, divide value by 255.0 and permute the dimensions of clip tensor
- Parameters:
clip (torch.tensor, dtype=torch.uint8) – Size is (T, C, H, W)
- Returns:
Size is (T, C, H, W)
- Return type:
clip (torch.tensor, dtype=torch.float)
- fastvideo.v1.dataset.transform.resize(clip, target_size, interpolation_mode) torch.Tensor [source]#