fastvideo.v1.tests.utils
#
Module Contents#
Functions#
Compare videos with the same filename between reference_folder and generated_folder
Example usage:
results = compare_folders(reference_folder, generated_folder,
args.use_ms_ssim)
for video_name, ssim_value in results.items():
if ssim_value is not None:
print(
f"{video_name}: {ssim_value[0]:.4f}, Min SSIM: {ssim_value[1]:.4f}, Max SSIM: {ssim_value[2]:.4f}"
)
else:
print(f"{video_name}: Error during comparison")
valid_ssims = [v for v in results.values() if v is not None]
if valid_ssims:
avg_ssim = np.mean([v[0] for v in valid_ssims])
print(f"
|
|
Compute SSIM between two videos. |
|
Write SSIM results to a JSON file in the same directory as the generated videos. |
Data#
API#
- fastvideo.v1.tests.utils.compare_folders(reference_folder, generated_folder, use_ms_ssim=True)[source]#
Compare videos with the same filename between reference_folder and generated_folder Example usage: results = compare_folders(reference_folder, generated_folder, args.use_ms_ssim) for video_name, ssim_value in results.items(): if ssim_value is not None: print( f"{video_name}: {ssim_value[0]:.4f}, Min SSIM: {ssim_value[1]:.4f}, Max SSIM: {ssim_value[2]:.4f}" ) else: print(f"{video_name}: Error during comparison") valid_ssims = [v for v in results.values() if v is not None] if valid_ssims: avg_ssim = np.mean([v[0] for v in valid_ssims]) print(f"
Average SSIM across all videos: {avg_ssim:.4f}β) else: print(β No valid SSIM values to averageβ)
- fastvideo.v1.tests.utils.compute_video_ssim_torchvision(video1_path, video2_path, use_ms_ssim=True)[source]#
Compute SSIM between two videos.
- Parameters:
video1_path β Path to the first video.
video2_path β Path to the second video.
use_ms_ssim β Whether to use Multi-Scale Structural Similarity(MS-SSIM) instead of SSIM.